
Bayesian Probabilistic Matrix Factorization

using Markov Chain Monte Carlo

Ruslan Salakhutdinov rsalakhu@cs.toronto.edu

Andriy Mnih amnih@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada

Abstract

Low-rank matrix approximation methods
provide one of the simplest and most effective
approaches to collaborative filtering. Such
models are usually fitted to data by finding
a MAP estimate of the model parameters, a
procedure that can be performed efficiently
even on very large datasets. However, un-
less the regularization parameters are tuned
carefully, this approach is prone to overfit-
ting because it finds a single point estimate
of the parameters. In this paper we present a
fully Bayesian treatment of the Probabilistic
Matrix Factorization (PMF) model in which
model capacity is controlled automatically by
integrating over all model parameters and
hyperparameters. We show that Bayesian
PMF models can be efficiently trained us-
ing Markov chain Monte Carlo methods by
applying them to the Netflix dataset, which
consists of over 100 million movie ratings.
The resulting models achieve significantly
higher prediction accuracy than PMF models
trained using MAP estimation.

1. Introduction

Factor-based models have been used extensively in the
domain of collaborative filtering for modelling user
preferences. The idea behind such models is that pref-
erences of a user are determined by a small number of
unobserved factors. In a linear factor model, a user’s
rating of an item is modelled by the inner product of
an item factor vector and a user factor vector. This
means that the N × M preference matrix of ratings
that N users assign to M movies is modeled by the
product of an D × N user coefficient matrix U and a
D×M factor matrix V (Rennie & Srebro, 2005; Srebro

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

& Jaakkola, 2003). Training such a model amounts to
finding the best rank-D approximation to the observed
N ×M target matrix R under the given loss function.

A variety of probabilistic factor-based models have
been proposed (Hofmann, 1999; Marlin, 2004; Marlin
& Zemel, 2004; Salakhutdinov & Mnih, 2008). In these
models factor variables are assumed to be marginally
independent while rating variables are assumed to be
conditionally independent given the factor variables.
The main drawback of such models is that inferring
the posterior distribution over the factors given the
ratings is intractable. Many of the existing methods
resort to performing MAP estimation of the model pa-
rameters. Training such models amounts to maximiz-
ing the log-posterior over model parameters and can
be done very efficiently even on very large datasets.

In practice, we are usually interested in predicting rat-
ings for new user/movie pairs rather than in estimat-
ing model parameters. This view suggests taking a
Bayesian approach to the problem which involves in-
tegrating out the model parameters. In this paper, we
describe a fully Bayesian treatment of the Probabilis-
tic Matrix Factorization (PMF) model which has been
recently applied to collaborative filtering (Salakhutdi-
nov & Mnih, 2008). The distinguishing feature of our
work is the use of Markov chain Monte Carlo (MCMC)
methods for approximate inference in this model. In
practice, MCMC methods are rarely used on large-
scale problems because they are perceived to be very
slow by practitioners. In this paper we show that
MCMC can be successfully applied to the large, sparse,
and very imbalanced Netflix dataset, containing over
100 million user/movie ratings. We also show that it
significantly increases the model’s predictive accuracy,
especially for the infrequent users, compared to the
standard PMF models trained using MAP with regu-
larization parameters that have been carefully tuned
on the validation set.

Previous applications of Bayesian matrix factorization
methods to collaborative filtering (Lim & Teh, 2007;
Raiko et al., 2007) have used variational approxima-

Bayesian Probabilistic Matrix Factorization using MCMC

tions for performing inference. These methods at-
tempt to approximate the true posterior distribution
by a simpler, factorized distribution under which the
user factor vectors are independent of the movie factor
vectors. The consequence of this assumption is that
that the variational posterior distributions over the
factor vectors is a product of two multivariate Gaus-
sians: one for the viewer factor vectors and one for
the movie factor vectors. This assumption of indepen-
dence between the viewer and movie factors seems un-
reasonable, and, as our experiments demonstrate, the
distributions over factors in such models turn out to
be non-Gaussian. This conclusion is supported by the
fact that the Bayesian PMF models outperform their
MAP trained counterparts by a much larger margin
than the variationally trained models do.

2. Probabilistic Matrix Factorization

Probabilistic Matrix Factorization (PMF) is a proba-
bilistic linear model with Gaussian observation noise
(see Fig. 1, left panel). Suppose we have N users
and M movies. Let Rij be the rating value of user i
for movie j, Ui and Vj represent D-dimensional user-
specific and movie-specific latent feature vectors re-
spectively. The conditional distribution over the ob-
served ratings R ∈ R

N×M (the likelihood term) and
the prior distributions over U ∈ R

D×N and V ∈
R

D×M are given by:

p(R|U, V, α) =

N
∏

i=1

M
∏

j=1

[

N (Rij |U
T
i Vj , α

−1)

]Iij

(1)

p(U |αU) =
N
∏

i=1

N (Ui|0, α−1
U I) (2)

p(V |αV) =

M
∏

j=1

N (Vj |0, α−1
V I), (3)

where N (x|µ, α−1) denotes the Gaussian distribution
with mean µ and precision α, and Iij is the indicator
variable that is equal to 1 if user i rated movie j and
equal to 0 otherwise.

Learning in this model is performed by maximizing
the log-posterior over the movie and user features with
fixed hyperparameters (i.e. the observation noise vari-
ance and prior variances):

ln p(U, V |R, α, αV , αU) = ln p(R|U, V, α) +

+ ln p(U |αU) + ln p(V |αV) + C,

where C is a constant that does not depend on the pa-
rameters. Maximizing this posterior distribution with
respect to U and V is equivalent to minimizing the

sum-of-squares error function with quadratic regular-
ization terms:

E =
1

2

N
∑

i=1

M
∑

j=1

Iij

(

Rij − UT
i Vj

)2

+
λU

2

N
∑

i=1

‖ Ui ‖
2
Fro +

λV

2

M
∑

j=1

‖ Vj ‖2
Fro, (4)

where λU = αU/α, λV = αV /α, and ‖ · ‖2
Fro denotes

the Frobenius norm. A local minimum of the objective
function given by Eq. 4 can be found by performing
gradient descent in U and V .

The main drawback of this training procedure is the
need for manual complexity control that is essential
to making the model generalize well, particularly on
sparse and imbalanced datasets. One way to control
the model complexity is to search for appropriate val-
ues of regularization parameters λU and λV defined
above. We could, for example, consider a set of reason-
able parameter values, train a model for each setting
of the parameters, and choose the model that performs
best on the validation set. This approach however is
computationally very expensive, since it requires train-
ing a multitude of models instead of training a single
one.

Alternatively, we could introduce priors for the hy-
perparameters and maximize the log-posterior of the
model over both parameters and hyperparameters,
which allows model complexity to be controlled auto-
matically based on the training data (Nowlan & Hin-
ton, 1992; Salakhutdinov & Mnih, 2008). Though this
approach has been shown to work in practice it is not
well-grounded theoretically, and it is not difficult to
construct a simple example for which such joint opti-
mization would not produce the desired results.

In the next section we describe a fully Bayesian treat-
ment of the PMF model with model parameters and
hyperparameters integrated out using MCMC meth-
ods, which provides fully automatic complexity con-
trol.

3. Bayesian Probabilistic Matrix

Factorization

3.1. The Model

The graphical model representing Bayesian PMF is
shown in Fig. 1 (right panel). As in PMF, the likeli-
hood of the observed ratings is given by Eq. 1. The
prior distributions over the user and movie feature vec-

Bayesian Probabilistic Matrix Factorization using MCMC

UVj i

Rij

j=1,...,M
i=1,...,N

V U

α

α α

j

Rij

j=1,...,M
i=1,...,N

Vµ µ Ui

ΛU

µU

0ν , W0

µ0V0

VΛ

, W00ν

α

Figure 1. The left panel shows the graphical model for Probabilistic Matrix Factorization (PMF). The right panel shows
the graphical model for Bayesian PMF.

tors are assumed to be Gaussian:

p(U |µU , ΛU) =
N
∏

i=1

N (Ui|µU , Λ−1
U), (5)

p(V |µV , ΛV) =

M
∏

i=1

N (Vi|µV , Λ−1
V). (6)

We further place Gaussian-Wishart priors on the user
and movie hyperparameters ΘU = {µU , ΛU} and
ΘV = {µV , ΛV }:

p(ΘU |Θ0) = p(µU |ΛU)p(ΛU)

= N (µU |µ0, (β0ΛU)−1)W(ΛU |W0, ν0), (7)

p(ΘV |Θ0) = p(µV |ΛV)p(ΛV)

= N (µV |µ0, (β0ΛV)−1)W(ΛV |W0, ν0). (8)

Here W is the Wishart distribution with ν0 degrees of
freedom and a D × D scale matrix W0:

W(Λ|W0, ν0) =
1

C
|Λ|(ν0−D−1)/2 exp (−

1

2
Tr(W−1

0 Λ)),

where C is the normalizing constant. For convenience
we also define Θ0 = {µ0, ν0, W0}. In our experiments
we also set ν0 = D and W0 to the identity matrix
for both user and movie hyperparameters and choose
µ0 = 0 by symmetry.

3.2. Predictions

The predictive distribution of the rating value R∗

ij for
user i and query movie j is obtained by marginalizing

over model parameters and hyperparameters:

p(R∗

ij |R, Θ0) =

∫∫

p(R∗

ij |Ui, Vj)p(U, V |R, ΘU , ΘV)

p(ΘU , ΘV |Θ0)d{U, V }d{ΘU , ΘV }. (9)

Since exact evaluation of this predictive distribution
is analytically intractable due to the complexity of the
posterior we need to resort to approximate inference.

One choice would be to use variational methods (Hin-
ton & van Camp, 1993; Jordan et al., 1999) that pro-
vide deterministic approximation schemes for posteri-
ors. In particular, we could approximate the true pos-
terior p(U, V, ΘU , ΘV |R) by a distribution that factors,
with each factor having a specific parametric form such
as a Gaussian distribution. This approximate poste-
rior would allow us to approximate the integrals in
Eq. 9. Variational methods have become the method-
ology of choice, since they typically scale well to large
applications. However, they can produce inaccurate
results because they tend to involve overly simple ap-
proximations to the posterior.

MCMC-based methods (Neal, 1993), on the other
hand, use the Monte Carlo approximation to the pre-
dictive distribution of Eq. 9 given by:

p(R∗

ij |R, Θ0) ≈
1

K

K
∑

k=1

p(R∗

ij |U
(k)
i , V

(k)
j). (10)

The samples {U
(k)
i , V

(k)
j } are generated by running

a Markov chain whose stationary distribution is the
posterior distribution over the model parameters and
hyperparameters {U, V, ΘU , ΘV }. The advantage of

Bayesian Probabilistic Matrix Factorization using MCMC

the Monte Carlo-based methods is that asymptoti-
cally they produce exact results. In practice, how-
ever, MCMC methods are usually perceived to be so
computationally demanding that their use is limited
to small-scale problems.

3.3. Inference

One of the simplest MCMC algorithms is the Gibbs
sampling algorithm, which cycles through the latent
variables, sampling each one from its distribution con-
ditional on the current values of all other variables.
Gibbs sampling is typically used when these condi-
tional distributions can be sampled from easily.

Due to the use of conjugate priors for the parame-
ters and hyperparameters in the Bayesian PMF model,
the conditional distributions derived from the poste-
rior distribution are easy to sample from. In particu-
lar, the conditional distribution over the user feature
vector Ui, conditioned on the movie features, observed
user rating matrix R, and the values of the hyperpa-
rameters is Gaussian:

p(Ui|R, V, ΘU , α) = N
(

Ui|µ
∗

i ,
[

Λ∗

i

]

−1)
(11)

∼
M
∏

j=1

[

N (Rij |U
T
i Vj , α

−1)

]Iij

p(Ui|µU , ΛU),

where

Λ∗

i = ΛU + α

M
∑

j=1

[

VjV
T
j

]Iij
(12)

µ∗

i = [Λ∗

i]
−1

(

α

M
∑

j=1

[

VjRij

]Iij
+ ΛUµU

)

. (13)

Note that the conditional distribution over the user
latent feature matrix U factorizes into the product of
conditional distributions over the individual user fea-
ture vectors:

p(U |R, V, ΘU) =
N
∏

i=1

p(Ui|R, V, ΘU).

Therefore we can easily speed up the sampler by sam-
pling from these conditional distributions in parallel.
The speedup could be substantial, particularly when
the number of users is large.

The conditional distribution over the user hyperpa-
rameters conditioned on the user feature matrix U is
given by the Gaussian-Wishart distribution:

p(µU , ΛU |U, Θ0) =

N (µU |µ
∗

0, (β
∗

0ΛU)−1)W(ΛU |W
∗

0 , ν∗

0), (14)

where

µ∗

0 =
β0µ0 + NŪ

β0 + N
, β∗

0 = β0 + N, ν∗

0 = ν0 + N,

[

W ∗

0

]

−1
= W−1

0 + NS̄ +
β0N

β0 + N
(µ0 − Ū)(µ0 − Ū)T

Ū =
1

N

N
∑

i=1

Ui S̄ =
1

N

N
∑

i=1

(Ui − Ū)(Ui − Ū)T .

The conditional distributions over the movie feature
vectors and the movie hyperparameters have exactly
the same form. The Gibbs sampling algorithm then
takes the following form:

Gibbs sampling for Bayesian PMF

1. Initialize model parameters {U1, V 1}

2. For t=1,...,T

• Sample the hyperparameters
(Eq. 14):

Θt

U ∼ p(ΘU |U t
, Θ0)

Θt

V ∼ p(ΘV |V t
, Θ0)

• For each i = 1, ..., N sample user features in
parallel (Eq. 11):

U
t+1

i ∼ p(Ui|R, V
t
, Θt

U)

• For each i = 1, ..., M sample movie features in
parallel:

V
t+1

i ∼ p(Vi|R, U
t+1

, Θt

V)

4. Experimental Results

4.1. Description of the dataset

The data, collected by Netflix, represent the distribu-
tion of all ratings Netflix obtained between October,
1998 and December, 2005. The training data set con-
sists of 100,480,507 ratings from 480,189 randomly-
chosen, anonymous users on 17,770 movie titles. As
part of the training data, Netflix also provides valida-
tion data, containing 1,408,395 ratings. In addition,
Netflix also provides a test set containing 2,817,131
user/movie pairs with the ratings withheld. The pairs
were selected from the most recent ratings from a sub-
set of the users in the training data set. Performance
is assessed by submitting predicted ratings to Netflix
which then posts the root mean squared error (RMSE)
on an unknown half of the test set. As a baseline, Net-
flix provided the test score of its own system trained
on the same data, which is 0.9514.

Bayesian Probabilistic Matrix Factorization using MCMC

0 10 20 30 40 50 60

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Epochs

R
M

S
E

PMF

Bayesian PMF

Netflix
Baseline Score

SVD

Logistic PMF

 4 8 16 32 64 128 256 512
0.89

0.895

0.9

0.905

0.91

0.915

0.92

Number of Samples

R
M

S
E 30−D

60−D
5.7 hrs. 23 hrs. 90 hrs.

11.7 hrs.
47 hrs. 188 hrs.

Bayesian PMF

Figure 2. Left panel: Performance of SVD, PMF, logistic PMF, and Bayesian PMF using 30D feature vectors, on the
Netflix validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs,
or passes, through the entire training set. Right panel: RMSE for the Bayesian PMF models on the validation set as a
function of the number of samples generated. The two curves are for the models with 30D and 60D feature vectors.

4.2. Training PMF models

For comparison, we have trained a variety of linear
PMF models using MAP, choosing their regularization
parameters using the validation set. In addition to lin-
ear PMF models, we also trained logistic PMF mod-
els, in which we pass the dot product between user-
and movie-specific feature vectors through the logistic
function σ(x) = 1/(1 + exp(−x)) to bound the range
of predictions:

p(R|U, V, α) =
N
∏

i=1

M
∏

j=1

[

N (Rij |σ(UT
i Vj), α

−1)

]Iij

. (15)

The ratings 1, ..., 5 are mapped to the interval [0, 1]
using the function t(x) = (x − 1)/4, so that the range
of valid rating values matches the range of predictions
our model can make. Logistic PMF models can some-
times provide slightly better results than their linear
counterparts.

To speed up training, instead of performing full batch
learning, we subdivided the Netflix data into mini-
batches of size 100,000 (user/movie/rating triples) and
updated the feature vectors after each mini-batch. We
used a learning rate of 0.005 and a momentum of 0.9
for training the linear as well as logistic PMF models.

4.3. Training Bayesian PMF models

We initialized the Gibbs sampler by setting the model
parameters U and V to their MAP estimates obtained
by training a linear PMF model. We also set µ0 =
0, ν0 = D, and W0 to the identity matrix, for both
user and movie hyperpriors. The observation noise

precision α was fixed at 2. The predictive distribution
was computed using Eq. 10 by running the Gibbs

sampler with samples {U
(k)
i , V

(k)
j } collected after each

full Gibbs step.

4.4. Results

In our first experiment, we compared a Bayesian PMF
model to an SVD model, a linear PMF model, and a
logistic PMF model, all using 30D feature vectors. The
SVD model was trained to minimize the sum-squared
distance to the observed entries of the target matrix,
with no regularization applied to the feature vectors.
Note that this model can be seen as a PMF model
trained using maximum likelihood (ML). For the PMF
models, the regularization parameters λU and λV were
set to 0.002. Predictive performance of these models
on the validation set is shown in Fig. 2 (left panel).
The mean of the predictive distribution of the Bayesian
PMF model achieves an RMSE of 0.8994, compared to
an RMSE of 0.9174 of a moderately regularized linear
PMF model, an improvement of over 1.7%.

The logistic PMF model does slightly outperform its
linear counterpart, achieving an RMSE of 0.9097.
However, its performance is still considerably worse
than that of the Bayesian PMF model. A simple
SVD achieves an RMSE of about 0.9280 and after
about 10 epochs begins to overfit heavily. This ex-
periment clearly demonstrates that SVD and MAP-
trained PMF models can overfit and that the pre-
dictive accuracy can be improved by integrating out
model parameters and hyperparameters.

Bayesian Probabilistic Matrix Factorization using MCMC

−20 −10 0 10 20

−20

−10

0

10

20

Dimension1

D
im

en
si

on
3

User A (4 ratings)

−20 −10 0 10 20
0

5

10

15

20

25

30

35

Dimension3

F
re

qu
en

cy
 C

ou
nt

−20 −10 0 10 20
0

5

10

15

20

25

30

35

Dimension1

F
re

qu
en

cy
 C

ou
nt

−20 −10 0 10 20

−20

−10

0

10

20

Dimension5

D
im

en
si

on
1

User C (319 ratings)

−20 −10 0 10 20
0

5

10

15

20

25

30

35

Dimension1

F
re

qu
en

cy
 C

ou
nt

−20 −10 0 10 20
0

5

10

15

20

25

Dimension5

F
re

qu
en

cy
 C

ou
nt

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

Dimension1

D
im

en
si

on
2

Movie X (5 ratings)

−1 −0.5 0 0.5 1
0

20

40

60

80

100

120

Dimension2

F
re

qu
en

cy
 C

ou
nt

−1 −0.5 0 0.5 1
0

20

40

60

80

100

Dimension1

F
re

qu
en

cy
 C

ou
nt

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

Dimension1

D
im

en
si

on
2

Movie Y (142 ratings)

−0.2 −0.1 0 0.1 0.2
0

10

20

30

40

50

60

70

Dimension2

F
re

qu
en

cy
 C

ou
nt

−0.2 −0.1 0 0.1 0.2
0

10

20

30

40

50

60

Dimension1

F
re

qu
en

cy
 C

ou
nt

Figure 3. Samples from the posterior over the user and movie feature vectors generated by each step of the Gibbs
sampler. The two dimensions with the highest variance are shown for two users and two movies. The first 800 samples
were discarded as “burn-in”.

D Valid. RMSE % Test RMSE %
PMF BPMF Inc. PMF BPMF Inc.

30 0.9154 0.8994 1.74 0.9188 0.9029 1.73
40 0.9135 0.8968 1.83 0.9170 0.9002 1.83
60 0.9150 0.8954 2.14 0.9185 0.8989 2.13
150 0.9178 0.8931 2.69 0.9211 0.8965 2.67
300 0.9231 0.8920 3.37 0.9265 0.8954 3.36

Table 1. Performance of Bayesian PMF (BPMF) and lin-
ear PMF on Netflix validation and test sets.

We than trained larger PMF models with D = 40 and
D = 60. Capacity control for such models becomes a
rather challenging task. For example, a PMF model
with D = 60 has approximately 30 million parameters.
Searching for appropriate values of the regularization
coefficients becomes a very computationally expensive
task. Table 1 further shows that for the 60-dimensional
feature vectors, Bayesian PMF outperforms its MAP
counterpart by over 2%. We should also point out
that even the simplest possible Bayesian extension of
the PMF model, where Gamma priors are placed over
the precision hyperparameters αU and αV (see Fig. 1,
left panel), significantly outperforms the MAP-trained
PMF models, even though it does not perform as well

as the Bayesian PMF models.

It is interesting to observe that as the feature di-
mensionality grows, the performance accuracy for the
MAP-trained PMF models does not improve, and con-
trolling overfitting becomes a critical issue. The pre-
dictive accuracy of the Bayesian PMF models, how-
ever, steadily improves as the model complexity grows.
Inspired by this result, we experimented with Bayesian
PMF models with D = 150 and D = 300 feature
vectors. Note that these models have about 75 and
150 million parameters, and running the Gibbs sam-
pler becomes computationally much more expensive.
Nonetheless, the validation set RMSEs for the two
models were 0.8931 and 0.8920. Table 1 shows that
these models not only significantly outperform their
MAP counterparts but also outperform Bayesian PMF
models that have fewer parameters. These results
clearly show that the Bayesian approach does not re-
quire limiting the complexity of the model based on the
number of the training samples. In practice, however,
we will be limited by the available computer resources.

For completeness, we also report the performance re-
sults on the Netflix test set. These numbers were ob-

Bayesian Probabilistic Matrix Factorization using MCMC

 A B C D

1

1.5

2

2.5

3

3.5

4

4.5

5
P

re
di

ct
ed

 R
at

in
gs

Users
 1−5 6−10 −20 −40 −80 −160 −320 −640 >641

0.8

0.9

1

1.1

1.2

Number of Observed Ratings

R
M

S
E

Logistic
PMF

Bayesian
PMF

Movie Average

Figure 4. Left panel: Box plot of predictions, obtained after each full Gibbs step, for 4 users on a randomly chosen test
movies. Users A,B,C, and D have 4, 23, 319 and 660 ratings respectively. Right panel: Performance of Bayesian PMF,
logistic PMF, and the movie average algorithm that always predicts the average rating of each movie. The users were
grouped by the number of observed ratings in the training data. The linear PMF model performed slightly worse than
the logistic PMF model.

tained by submitting the predicted ratings to Netflix
who then provided us with the test score on an un-
known half of the test set. The test scores are slightly
worse than the validation scores, but the relative be-
havior across all models remains the same.

To diagnose the convergence of the Gibbs sampler, we
monitored the behaviour of the Frobenius norms of
the model parameters and hyperparameters: U , V , Λ,
and µ. Typically, after a few hundred samples these
quantities stabilize. Fig. 2 (right panel) shows the
RMSE error on the Netflix validation set for Bayesian
PMF models as the number of samples increases. Af-
ter obtaining a few hundred samples1 the predictive
accuracy does not significantly improve. Note that
the initial predictive accuracy is already high because
the Markov chain is initialized using the MAP values
of the model parameters.

For the Bayesian PMF model with D = 30 we also col-
lected samples over the user and movie feature vectors
generated by each full step of the Gibbs sampler. The
first 800 samples were discarded as “burn-in”. Figure
3 shows these samples for two users and two movies
projected onto the two dimensions of the highest vari-
ance. Users A and C were chosen by randomly picking
among rare users who have fewer than 10 ratings and
more frequent users who have more than 100 ratings
in the training set. Movies X and Y were chosen in the
same way. Note that the empirical distribution of the

1We store the model parameters after each full Gibbs
step as a sample. The fact that these samples are not
independent does not matter for making predictions.

samples from the posterior appear to be non-Gaussian.

Using these samples from the posterior we also looked
at the uncertainty of the predictions of four users on
randomly chosen test movies. Figure 4 (left panel)
shows results for users A,B,C, and D who have 4, 23,
319 and 660 ratings respectively. Note that there is
much more uncertainty about the prediction of user
A than about the prediction of user D, whose feature
vector is well-determined. Figure 4 (right panel) shows
that the Bayesian PMF model considerably outper-
forms the logistic PMF model on users with few rat-
ings. As the number of ratings increases, both the
logistic PMF and the Bayesian PMF exhibit similar
performance.

The advantage of Bayesian PMF models is that by av-
eraging over all settings of parameters that are com-
patible with the data as well as the prior they deal with
uncertainty more effectively than the non-Bayesian
PMF models, which commit to a single most probable
setting.

Since the main concern when applying Bayesian meth-
ods to large datasets is their running time, we provide
the times for our simple Matlab Bayesian PMF im-
plementation. One full Gibbs step on a single core of
a recent Pentium Xeon 3.00GHz machine for models
with D = 10, 30, 60, 300 takes 6.6, 12.9 , 31.6, and 220
minutes respectively. Note that the most expensive as-
pect of training Bayesian PMF models is the inversion
of a D × D matrix per feature vector2 (see Eq. 13),

2In our implementation, we solve a system of D equa-

Bayesian Probabilistic Matrix Factorization using MCMC

which is an O(D3) operation.

5. Conclusions

We have presented a fully Bayesian treatment of Prob-
abilistic Matrix Factorization by placing hyperpriors
over the hyperparameters and using MCMC meth-
ods to perform approximate inference. We have also
demonstrated that Bayesian PMF models can be suc-
cessfully applied to a large dataset containing over
100 million movie ratings, and achieve significantly
higher predictive accuracy compared to the MAP-
trained PMF models with carefully tuned regulariza-
tion parameters. An additional advantage of using a
Bayesian model is that it provides a predictive dis-
tribution instead of just a single number, allowing the
confidence in the prediction to be quantified and taken
into account when making recommendations using the
model.

Using MCMC instead of variational methods for ap-
proximate inference in Bayesian matrix factorization
models leads to much larger improvements over the
MAP trained models, which suggests that the assump-
tions made by the variational methods about the struc-
ture of the posterior are not entirely reasonable. This
conclusion is confirmed by inspecting the empirical dis-
tribution of the samples from the posterior, which ap-
pears to be significantly non-Gaussian.

A major problem of MCMC methods is that it is hard
to determine when the Markov chain has converged to
the desired distribution. In practice, we have to rely on
rules of thumb to diagnose convergence, which means
that there is a risk of using samples from a distribu-
tion that differs from the true posterior distribution,
potentially leading to suboptimal predictions. Our re-
sults show that this problem is not a sufficient reason
to reject MCMC methods.

For our models, the number of samples from the
posterior that can be generated within a reasonable
amount of time will typically be constrained by the
available computer resources. However, as mentioned
above, sampling the feature vectors for multiple users
or movies in parallel provides an easy way to greatly
speed up the process of generating samples using mul-
tiple cores.

Acknowledgments

We thank Geoffrey Hinton for many helpful discus-
sions. This research was supported by NSERC.

tions instead of inverting a matrix. The computational cost
of this operation is still O(D3).

References

Hinton, G. E., & van Camp, D. (1993). Keeping the
neural networks simple by minimizing the descrip-
tion length of the weights. COLT (pp. 5–13).

Hofmann, T. (1999). Probabilistic latent semantic
analysis. Proceedings of the 15th Conference on Un-
certainty in AI (pp. 289–296). San Fransisco, Cali-
fornia: Morgan Kaufmann.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., &
Saul, L. K. (1999). An introduction to variational
methods for graphical models. Machine Learning,
37, 183.

Lim, Y. J., & Teh, Y. W. (2007). Variational Bayesian
approach to movie rating prediction. Proceedings of
KDD Cup and Workshop.

Marlin, B. (2004). Modeling user rating profiles for
collaborative filtering. In S. Thrun, L. Saul and
B. Schölkopf (Eds.), Advances in neural information
processing systems 16. Cambridge, MA: MIT Press.

Marlin, B., & Zemel, R. S. (2004). The multiple mul-
tiplicative factor model for collaborative filtering.
Machine Learning, Proceedings of the Twenty-first
International Conference (ICML 2004), Banff, Al-
berta, Canada. ACM.

Neal, R. M. (1993). Probabilistic inference using
Markov chain Monte Carlo methods (Technical Re-
port CRG-TR-93-1). Department of Computer Sci-
ence, University of Toronto.

Nowlan, S. J., & Hinton, G. E. (1992). Simplify-
ing neural networks by soft weight-sharing. Neural
Computation, 4, 473–493.

Raiko, T., Ilin, A., & Karhunen, J. (2007). Princi-
pal component analysis for large scale problems with
lots of missing values. ECML (pp. 691–698).

Rennie, J. D. M., & Srebro, N. (2005). Fast max-
imum margin matrix factorization for collabora-
tive prediction. Machine Learning, Proceedings of
the Twenty-Second International Conference (ICML
2005), Bonn, Germany (pp. 713–719). ACM.

Salakhutdinov, R., & Mnih, A. (2008). Probabilistic
matrix factorization. Advances in Neural Informa-
tion Processing Systems 20. Cambridge, MA: MIT
Press.

Srebro, N., & Jaakkola, T. (2003). Weighted low-rank
approximations. Machine Learning, Proceedings
of the Twentieth International Conference (ICML
2003), Washington, DC, USA (pp. 720–727). AAAI
Press.

