
LEARNING DEEP GENERATIVE MODELS

by

Ruslan Salakhutdinov

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2009 by Ruslan Salakhutdinov

Abstract

Learning Deep Generative Models

Ruslan Salakhutdinov
Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

2009

Building intelligent systems that are capable of extracting high-level representations from high-dimensional

sensory data lies at the core of solving many AI related tasks, including object recognition, speech

perception, and language understanding. Theoretical and biological arguments strongly suggest that

building such systems requires models with deep architectures that involve many layers of nonlinear

processing.

The aim of the thesis is to demonstrate that deep generative models that contain many layers of latent

variables and millions of parameters can be learned efficiently, and that the learned high-level feature

representations can be successfully applied in a wide spectrum of application domains, including visual

object recognition, information retrieval, and classification and regression tasks. In addition, similar

methods can be used for nonlinear dimensionality reduction.

The first part of the thesis focuses on analysis and applications of probabilistic generative models

called Deep Belief Networks. We show that these deep hierarchical models can learn useful feature

representations from a large supply of unlabeled sensory inputs. The learned high-level representations

capture a lot of structure in the input data, which is useful for subsequent problem-specific tasks, such

as classification, regression or information retrieval, even though these tasks are unknown when the

generative model is being trained.

In the second part of the thesis, we introduce a new learning algorithm for a different type of hier-

archical probabilistic model, which we call a Deep Boltzmann Machine. Like Deep Belief Networks,

Deep Boltzmann Machines have the potential of learning internal representations that become increas-

ingly complex at higher layers, which is a promising way of solving object and speech recognition

problems. Unlike Deep Belief Networks and many existing models with deep architectures, the approx-

imate inference procedure, in addition to a fast bottom-up pass, can incorporate top-down feedback.

This allows Deep Boltzmann Machines to better propagate uncertainty about ambiguous inputs.

ii

Acknowledgements

First and foremost, I would like to thank my advisor GeoffreyHinton for being an incredible advisor,
an amazing teacher, and providing me with a warm and outstanding intellectual environment at the
University of Toronto. I would also like to thank Sam Roweis,my second advisor, and my committee
members, Radford Neal and Rich Zemel, for their valuable feedback, support, and guidance.

Many thanks goes to the members of the Toronto Machine Learning group: Andriy Mnih, Iain
Murray, Vinod Nair, Ilya Sutskever, and Tijmen Tieleman formany interesting and inspiring discussions.

I also thank my parents and my family for their continuing support. Finally, a special thank you
goes to my wife Olga for being supportive and putting up with me.

iii

Contents

1 Introduction 1
1.1 Contributions of This Thesis 2
1.2 Summary of Remaining Chapters 3

2 Deep Belief Networks 5
2.1 Restricted Boltzmann Machines 5
2.2 A Greedy Learning Algorithm for Deep Belief Networks 7
2.3 Generalizing RBM’s to Modeling Real-valued and Count Data 11

3 Learning Feature Hierarchies with Deep Belief Networks 15
3.1 Learning Features for Discrimination and Regression 15

3.1.1 Gaussian Processes for Regression and Binary Classification 16
3.1.2 Learning the Covariance Function for a Gaussian Process 17
3.1.3 Experimental results 18
3.1.4 Discussion .21

3.2 Nonlinear Dimensionality Reduction 21
3.2.1 Pretraining Autoencoders 22
3.2.2 Experimental results 23
3.2.3 Discussion .26

3.3 Document Retrieval 27
3.3.1 Semantic Hashing .. 27
3.3.2 Experimental Results 28
3.3.3 Discussion .32

3.4 Learning Nonlinear Mappings that Preserve Class Neighbourhood Structure 32
3.4.1 Learning Nonlinear NCA 33
3.4.2 Experimental Results 35
3.4.3 Regularized Nonlinear NCA 35
3.4.4 Discussion .37

4 Evaluating Deep Belief Networks as Density Models 38
4.1 Introduction 38
4.2 Estimating Partition Functions 39

4.2.1 Annealed Importance Sampling (AIS) 39
4.2.2 Ratios of Partition Functions of two RBM’s 41
4.2.3 Estimating Partition Functions of RBM’s 43

4.3 Estimating Lower Bounds for DBN’s 43
4.4 Experimental Results 44

iv

4.4.1 Estimating partition functions of RBM’s 45
4.4.2 Estimating lower bounds for DBN’s 47

4.5 Discussion 48

5 Deep Boltzmann Machines 50
5.1 Introduction 50
5.2 Boltzmann Machines (BM’s) 51

5.2.1 A Stochastic Approximation Procedure for Estimatingthe Model’s Expectations 52
5.2.2 A Variational Approach to Estimating the Data-Dependent Expectations 54

5.3 Deep Boltzmann Machines (DBM’s) 55
5.3.1 Greedy Layerwise Pretraining of DBM’s 56
5.3.2 Evaluating DBM’s .. 59
5.3.3 Discriminative Fine-tuning of DBM’s 60

5.4 Experimental Results 61
5.5 Discussion 64

6 Conclusions 66
6.1 Summary of Contributions 66
6.2 Future Directions 67

A Appendix 76
A.1 Details of the Datasets 76
A.2 Details of Training 79
A.3 Details of Matlab code 79

v

Chapter 1

Introduction

Building intelligent systems that have the potential of extracting high-level representations from rich
sensory input lies at the core of solving many AI related tasks, including visual object recognition,
speech perception, and language understanding. Theoretical and biological arguments strongly suggest
that building such systems requires deep architectures – models that are composed of several layers of
nonlinear processing.

Many existing machine learning algorithms use “shallow” architectures, including neural networks
with only one hidden layer, kernel regression, support vector machines, and many others. Theoretical
results show that the internal representations learned by such systems are necessarily simple and are
incapable of extracting some types of complex structure from rich sensory input (Bengio and LeCun
[2007], Bengio [2009]). Training these systems also requires large amounts of labeled training data.
By contrast, it appears that, for example, object recognition in the visual cortex uses many layers of
nonlinear processing and requires very little labeled input (Lee et al. [1998]). Therefore developing new
and efficient learning algorithms for models with deep architectures, that can also make efficient use of
a large supply of unlabeled sensory input, is of crucial importance.

Multilayer neural networks are perhaps the best examples ofmodels with deep architectures. Back-
propagation (Rumelhart et al. [1986]) was the first learningalgorithm for these deep networks that
could learn multiple layers of representation. However, inadditional to requiring labeled data, back-
propagation does not work well in practice when training models that contain more than a few layers
(DeMers and Cottrell [1993], Hecht-Nielsen [1995], Tesauro [1992], Bengio et al. [2007], Larochelle
et al. [2009]). In general, since models with deep architectures are composed of several layers of param-
eterized nonlinear modules, the associated loss functionsare almost always non-convex. The presence
of many bad local optima or plateaus in the loss function makes deep models far more difficult to opti-
mize. Local gradient-based optimization algorithms, suchas backpropagation, that start at some random
initial configuration, often get trapped in a poor local optimum, particularly when training models with
more than two or three layers. By contrast, models with shallow architectures (e.g. support vector
machines) generally use convex loss functions, which typically allows one to carry out parameter op-
timization efficiently in these models. The appeal of convexity has steered most of machine learning
research into developing learning algorithms that can be cast as solving convex optimization problems.

Recently, Hinton et al. [2006] introduced a moderately fast, unsupervised learning algorithm for
deep generative models called Deep Belief Networks (DBN’s). A key feature of this algorithm is its
greedy layer-by-layer training that can be repeated several times in order to efficiently learn a deep, hi-
erarchical probabilistic model. The new learning algorithm has excited many researchers in the machine
learning community, primarily because of the following three crucial characteristics:

1. The greedy layer-by-layer learning algorithm can find a good set of model parameters fairly

1

CHAPTER 1. INTRODUCTION 2

quickly, even for models that contain many layers of nonlinearities and millions of parameters.

2. The learning algorithm can make efficient use of very largesets of unlabeled data, and so the
model can be pretrained in completely unsupervised fashion. The very limited labeled data can
then be used to only slightly fine-tune the model for a specifictask at hand using standard gradient-
based optimization.

3. There is an efficient way of performing approximate inference, which makes the values of the
latent variables in the deepest layer easy to infer.

The strategy of layer-wise unsupervised training allows efficient training of deep networks and gives
promising results for many challenging learning problems.Many variants of this greedy algorithm have
been successfully applied not only for classification tasks(Hinton et al. [2006], Bengio et al. [2007],
Larochelle et al. [2009]), but also regression tasks (Salakhutdinov and Hinton [2008]), visual object
recognition (Ranzato et al. [2007, 2008], Bengio and LeCun [2007], Ahmed et al. [2008]), dimen-
sionality reduction (Hinton and Salakhutdinov [2006], Salakhutdinov and Hinton [2007b]), information
retrieval (Ranzato and Szummer [2008], Torralba et al. [2008], Salakhutdinov and Hinton [2007a]),
modeling image patches (Osindero and Hinton [2008]), extracting optical flow (Memisevic and Hinton
[2007]), and robotics (Hadsell et al. [2008]). Research on models with deep architectures is still at an
early stage. Much of the current thesis will focus on analysis and applications, as well as developing
new learning algorithms for deep hierarchical generative models.

The thesis has two main parts, which can be read almost independently. In the first part, we will
primarily concentrate on analysis and applications of DeepBelief Networks. First, we will address the
question of how well Deep Belief Networks perform in variousapplications, including dimensionality
reduction, information retrieval, regression and classification tasks, particularly when dealing with a
large supply of high-dimensional, richly structured unlabeled input and very limited amount of labeled
training data. Second, we will address the problem of assessing generalization performance of Deep
Belief Networks as density models, which will allow us to notonly compare DBN’s to other probabilistic
models, but also perform model selection and complexity control.

In the second part of the thesis, we will introduce a new learning algorithm for a different type of
hierarchical probabilistic model, which we call a Deep Boltzmann Machine (DBM). Deep Boltzmann
Machines, like Deep Belief Networks, have the potential of learning internal representations that become
progressively complex at higher layers. High-level representations can be built from a large supply of
unlabeled sensory inputs and the very limited labeled data can then be used to only slightly adjust the
model for a problem-specific task. Second, unlike Deep Belief Networks and many existing models
with deep architectures (Larochelle et al. [2009], Bengio and LeCun [2007], Ahmed et al. [2008]), the
approximate inference procedure, in addition to a bottom-up pass, can incorporate top-down feedback,
allowing Deep Boltzmann Machines to better propagate uncertainty about ambiguous inputs. We will
show that DBM’s can learn good generative models and performwell on handwritten digit and visual
object recognition tasks.

1.1 Contributions of This Thesis

The most significant research contributions in this thesis are:

1. We show how the feature representations that a Deep BeliefNetwork extracts from a large supply
of unlabeled data can be used to learn a good covariance kernel for a Gaussian process. If the
input data is high-dimensional and highly-structured, a Gaussian kernel applied to the top layer
of extracted features in the DBN works much better than a similar kernel applied to the raw input,

CHAPTER 1. INTRODUCTION 3

especially if the DBN is fine-tuned by backpropagating gradients obtained from the Gaussian
process.

2. We introduce an efficient way of initializing the weights of deep autoencoders based on the greedy
learning algorithm for Deep Belief Networks. This allows deep autoencoder networks to learn
low-dimensional codes that work much better than principalcomponent analysis as a tool to
reduce the dimensionality of data.

3. We demonstrate how deep autoencoders can learn to map documents into “semantic” binary
codes. By using learned binary codes as memory addresses, wecan learn aSemantic Address
Space, so a document can be mapped to a memory address in such a way that a small hamming-
ball around that memory address contains semantically similar documents. We call this model
“Semantic Hashing” and show that it allows us to perform veryfast and accurate information
retrieval.

4. We show how to efficiently pretrain and fine-tune a deep nonlinear transformation from the input
space to a low-dimensional feature space in which K-nearestneighbour classification performs
well.

5. We show how a Monte Carlo based algorithm, Annealed Importance Sampling, combined with
approximate inference, can be used to estimate a lower boundon the log-probability that a Deep
Belief Network with multiple hidden layers assigns to the test data. This allows us to directly
assess generalization performance of Deep Belief Networksas density models.

6. Finally, we introduce a new learning algorithm for Boltzmann machines that combines varia-
tional techniques and Markov chain Monte Carlo. The new algorithm readily extends to learning
Boltzmann machines with real-valued, count, or tabular data. We further introduce a modified
greedy layer-by-layer pretraining algorithm that will allow us to quickly find a good set of model
parameters for Deep Boltzmann Machines.

1.2 Summary of Remaining Chapters

Chapter 2: Deep Belief Networks.In this chapter we provide a brief technical overview of Restricted
Boltzmann Machines (RBM’s), that form component modules ofDeep Belief Networks, as well
as generalizations of RBM’s to modeling real-valued and count data. We then review the greedy
learning algorithm for Deep Belief Networks.

Chapter 3: Learning Feature Hierarchies with Deep Belief Networks. This chapter presents several
ideas based on greedily learning a hierarchy of features from high-dimensional, highly-structured
sensory input. We first show how unlabeled data and a Deep Belief Network can be used learn a
good covariance kernel for a Gaussian process. We then show how the greedy learning algorithm
can be used to make nonlinear autoencoders work considerably better than widely used methods,
such as principal component analysis and singular value decomposition. We also demonstrate
that these deep autoencoders can be used to discover binary “semantic” codes that allow fast and
accurate information retrieval. Finally, we show how to pretrain and fine-tune a deep nonlinear
network to learn a similarity metric over the input space that facilitates nearest-neighbor classifi-
cation. Some of this material appeared in Hinton and Salakhutdinov [2006], Salakhutdinov and
Hinton [2007a,b, 2008, 2009b, 2010], and Goldberger, Roweis, Hinton and Salakhutdinov [2004].

CHAPTER 1. INTRODUCTION 4

Chapter 4: Evaluating Deep Belief Networks as Density Models. In this chapter we show how a
Monte Carlo method, Annealed Importance Sampling (AIS), can be used to efficiently estimate
the partition function of an RBM. We further show how an AIS estimator, along with approxi-
mate inference, can be used to estimate a lower bound on the log-probability that a Deep Belief
Network assigns to the test data. Some of this material appeared in Salakhutdinov [2008] and
Salakhutdinov and Murray [2008].

Chapter 5: Deep Boltzmann Machines.This chapter presents a new learning algorithms for a differ-
ent type of hierarchical probabilistic model: a Deep Boltzmann Machine (DBM). Approximate
inference can be performed using variational approaches, such as mean-field. Learning can then
be carried out by applying a stochastic approximation procedure that uses Markov chain Monte
Carlo (MCMC) to approximate a model’s expected sufficient statistics, which is needed for max-
imum likelihood learning. The MCMC based approximation procedure provides nice asymptotic
convergence guarantees and belongs to the general class of approximation algorithms of Robbins–
Monro type. We show that this unusual combination of variational methods and MCMC is essen-
tial for creating a fast learning algorithm for Deep Boltzmann Machines. Some of this material
appeared in Salakhutdinov [2008, 2010] and Salakhutdinov and Hinton [2009a].

Chapter 6: Conclusions.In this chapter we provide a brief summary of our contributions and discuss
possible future research directions.

Chapter 2

Deep Belief Networks

Deep Belief Networks (DBN’s) are probabilistic generativemodels that contain many layers of hidden
variables, in which each layer captures high-order correlations between the activities of hidden features
in the layer below. The top two layers of the DBN form an undirected bipartite graph with the lower
layers forming a directed sigmoid belief network, as shown in Fig. 2.3. Hinton et al. [2006] introduced
a fast, unsupervised learning algorithm for these deep networks, which we review in this chapter. A
key feature of this algorithm is its greedy layer-by-layer training that can be repeated several times to
learn a deep, hierarchical model. The learning procedure also provides an efficient way of performing
approximate inference, which only requires a single bottom-up pass to infer the values of the top-level
hidden variables.

The main building block of a DBN is a bipartite undirected graphical model called the Restricted
Boltzmann Machine (RBM). RBM’s, and their generalizationsto exponential family models (Welling
et al. [2005]), have been successfully applied in collaborative filtering (Salakhutdinov et al. [2007]),
information and image retrieval (Gehler et al. [2006]), andtime series modeling (Taylor et al. [2006],
Sutskever and Hinton [2006]). In this chapter we provide a brief technical overview of RBM’s, general-
izations of RBM’s to modeling real-valued and count data, and the greedy learning algorithm for Deep
Belief Networks.

2.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine is a particular type of Markov random field that has a two-layer archi-
tecture (Smolensky [1986]), in which the visible, binary stochastic unitsv ∈ {0, 1}D are connected to
hidden binary stochastic unitsh ∈ {0, 1}F , as shown in Fig. 2.1. The energy of the state{v,h} is:

E(v,h; θ) = −v⊤Wh−b⊤v−a⊤h

= −
D∑

i=1

F∑

j=1

Wijvihj−
D∑

i=1

bivi−
F∑

j=1

ajhj, (2.1)

whereθ = {W,b,a} are the model parameters:Wij represents the symmetric interaction term between
visible unit i and hidden unitj; bi andaj are bias terms. The joint distribution over the visible and
hidden units is defined by:

P (v,h; θ) =
1

Z(θ)
exp (−E(v,h; θ)), (2.2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)). (2.3)

5

CHAPTER 2. DEEP BELIEF NETWORKS 6

h

v

W

Figure 2.1:Restricted Boltzmann Machine. The top layer represents a vector of stochastic binary unitsh and
the bottom layer represents a vector of stochastic binary visible variablesv.

Z(θ) is known as the partition function or normalizing constant.The probability that the model assigns
to a visible vectorv is:

P (v; θ) =
1

Z(θ)

∑

h

exp (−E(v,h; θ)). (2.4)

Due to the special bipartite structure of RBM’s, the hidden units can be explicitly marginalized out:

P (v; θ) =
1

Z(θ)

∑

h

exp
(
v⊤Wh + b⊤v + a⊤h

)

=
1

Z(θ)
exp(b⊤v)

F∏

j=1

∑

hj∈{0,1}

exp

(
ajhj +

D∑

i=1

Wijvihj

)

=
1

Z(θ)
exp(b⊤v)

F∏

j=1

(
1 + exp

(
aj +

D∑

i=1

Wijvi

))
. (2.5)

The conditional distributions over hidden unitsh and visible vectorv can be easily derived from Eq. 2.2
and are given by logistic functions:

P (h|v; θ) =
∏

j

p(hj |v), P (v|h; θ) =
∏

i

p(vi|h), (2.6)

p(hj = 1|v) = g

(
∑

i

Wijvi + aj

)
, (2.7)

p(vi = 1|h) = g



∑

j

Wijhj + bi


 , (2.8)

whereg(x) = 1/(1+exp(−x)) is the logistic function. The derivative of the log-likelihood with respect
to the model parametersθ can be obtained from Eq. 2.4:

∂ log P (v; θ)

∂W
= EPdata

[vh⊤]− EPModel
[vh⊤], (2.9)

∂ log P (v; θ)

∂a
= EPdata

[h]− EPModel
[h], (2.10)

∂ log P (v; θ)

∂b
= EPdata

[v]− EPModel
[v]. (2.11)

CHAPTER 2. DEEP BELIEF NETWORKS 7

EPdata
[·] denotes an expectation with respect to the data distribution Pdata(h,v; θ) = P (h|v; θ)Pdata(v),

with Pdata(v) = 1
N

∑
n δ(v − vn) representing the empirical distribution, and EPModel

[·] is an expec-
tation with respect to the distribution defined by the model,as in Eq. 2.2. Exact maximum likelihood
learning in this model is intractable because exact computation of the expectation EPModel

[·] takes time
that is exponential inmin{D,F}, i.e the number of visible or hidden units. In practice, learning is done
by following an approximation to the gradient of a differentobjective function, called the “Contrastive
Divergence” (CD) (Hinton [2002]):

∆W = α
(

EPdata
[vh⊤]− EPT

[vh⊤]
)

, (2.12)

whereα is the learning rate andPT represents a distribution defined by running a Gibbs chain, initialized
at the data, forT full steps. The special bipartite structure of RBM’s allowsfor quite an efficient Gibbs
sampler that alternates between sampling the states of the hidden units independently given the states of
the visible units, and vise versa (see Eq. 2.6). SettingT = ∞ recovers maximum likelihood learning.
In many application domains, however, the CD learning withT = 1 (or CD1) has been shown to work
quite well (Hinton [2002], Welling et al. [2005], Larochelle et al. [2009]).

2.2 A Greedy Learning Algorithm for Deep Belief Networks

The ideas underlying the greedy learning algorithm for DBN’s are actually rather simple. Consider
learning a DBN with two layers of hidden units{h1,h2}. We will also assume that the number of
the 2nd layer hidden units is the same as the number of visible units (see Fig. 2.2, right panel). The
top two layers of the DBN form an undirected bipartite graph (an RBM) and the lower layers form a
directed sigmoid belief network. The joint distribution over v, h1, andh2 defined by this model takes
the following form1:

P (v,h1,h2; θ) = P (v|h1;W 1)P (h1,h2;W 2), (2.13)

whereθ = {W 1,W 2} are the model parameters,P (v|h1;W 1) is the directed sigmoid belief network,
andP (h1,h2;W 2) is the joint distribution defined by the second layer RBM:

P (v|h1;W 1) =
∏

i

p(vi|h1;W 1), p(vi = 1|h1;W 1) = g



∑

j

W 1
ijh

1
j


 , (2.14)

P (h1,h2;W 2) =
1

Z(W 2)
exp

(
h1⊤W 2h2

)
. (2.15)

The greedy strategy relies on the following key observation. Consider a two-hidden-layer DBN with
tied parametersW 2 = W 1⊤. Then this DBN’s joint distributionP (v,h1; θ) =

∑
h2 P (v,h1,h2; θ)

is identical to the RBM’s joint distributionP (v,h1;W 1). Indeed, it is easy to see from Fig. 2.2
that bothP (h1;W 1) and P (v|h1;W 1) are the same for both models. To be more precise, using

1We will omit the bias terms for clarity of presentation.

CHAPTER 2. DEEP BELIEF NETWORKS 8

h

v

W
1

h
1

h
2

v

W
1

W
1⊤

Figure 2.2:Left: Restricted Boltzmann Machine.Right: A two-hidden-layer Deep Belief Network with tied
weightsW 2 =W 1⊤. The joint distributionP (v,h1; W 1) defined by this DBN is identical to the joint distribution
P (v,h1; W 1) defined by an RBM.

Eqs. 2.13, 2.14, 2.15 and the fact thatW 2 =W 1⊤, we obtain the DBN’s joint distribution:

P (v,h1; θ) = P (v|h1;W 1)×
∑

h2

P (h1,h2;W 2)

=
∏

i

p(vi|h1;W 1)× 1

Z(W 2)

∏

i


1 + exp



∑

j

W 2
jih

1
j






=
∏

i

exp
(
vi

∑
j W 1

ijh
1
j

)

1 + exp
(∑

j W 1
ijh

1
j

) × 1

Z(W 2)

∏

i


1 + exp



∑

j

W 2
jih

1
j






=
1

Z(W 1)

∏

i


exp


vi

∑

j

W 1
ijh

1
j




 [

sinceW 2
ji = W 1

ij, Z(W 1) = Z(W 2)
]

=
1

Z(W 1)
exp



∑

ij

W 1
ijvih

1
j


 , (2.16)

which is identical to the joint distribution defined by an RBM(Eq. 2.2).
The greedy learning algorithm uses a stack of RBM’s and proceeds as follows. We first train the

bottom RBM with parametersW 1, as described in section 2.1. We then initialize the2nd layer weights
to W 2 = W 1⊤, which ensures that the two-hidden-layer DBN is at least as good as our original RBM.
We can now improve the DBN’s fit to the training data by untyingand refiningW 2.

For any approximating distributionQ(h1|v), the log-likelihood of the two-hidden-layer DBN model
has the following variational lower bound, where the statesh2 are analytically summed out:

log P (v; θ) ≥
∑

h1

Q(h1|v)

[
log P (v,h1; θ)

]
+H(Q(h1|v))

=
∑

h1

Q(h1|v)

[
log P (h1;W 2) + log P (v|h1;W 1)

]
+H(Q(h1|v)), (2.17)

whereH(·) is the entropy functional. We setQ(h1|v) = P (h1|v;W 1) defined by the bottom RBM

(Eq. 2.6). Initially, whenW 2 = W 1⊤, Q is the DBN’s true factorial posterior overh1, in which case
the bound is tight. The strategy of greedy learning algorithm is to freeze the parameter vectorW 1 and

CHAPTER 2. DEEP BELIEF NETWORKS 9

RBM

RBM

RBM

Deep Belief Network

Figure 2.3:Left: Greedy learning a stack of RBM’s in which the samples from thelower-level RBM are used as
the data for training the next RBM.Right: The corresponding Deep Belief Network.

Algorithm 1 Recursive Greedy Learning Procedure for the DBN.

1: Fit parametersW 1 of the1st layer RBM to data.
2: Freeze the parameter vectorW 1 and use samplesh1 from Q(h1|v) = P (h1|v,W 1) as the data for

training the next layer of binary features with an RBM.
3: Freeze the parametersW 2 that define the2nd layer of features and use the samplesh2 from

Q(h2|h1) = P (h2|h1,W 2) as the data for training the3rd layer of binary features.
4: Proceed recursively for the next layers.

attempt to learn a better model forP (h1;W 2) by maximizing the variational lower bound of Eq. 2.17
with respect toW 2. Maximizing this bound with frozenW 1 amounts to maximizing:

∑

h1

Q(h1|v) log P (h1;W 2), (2.18)

which is equivalent to maximum likelihood training of the2nd layer RBM with vectorsh1 drawn from
Q(h1|v) as data. When presented with a dataset ofN training input vectors, the2nd layer RBM,
P (h1;W 2), will learn a better model of the “aggregated” posterior over h1, which is simply the mix-
ture of factorial posteriors for all the training cases:1

N

∑
n P (h1|vn;W 1). Note that any increase in

the variational lower bound, as a result of changingW 2, will result in an increase of the DBN’s data
likelihood2

This idea can be extended to training the3rd layer RBM on vectorsh2 drawn from the second
RBM. By initializing W 3 =W 2⊤, we are guaranteed to improve the lower bound on the log-likelihood,

2Improving the variational bound by changingW 2 from the value it initially had when the second hidden layer was created
increases the log-likelihood because the bound is initially tight. Further changes toW 2 that increase the variational bound
further are not guaranteed to increase the log-likelihood further, but they are guaranteed to keep it above the value it had
whenW 2 was created. When learning deeper layers, the variational bound does not start off being tight so even the initial
improvement in the bound when the deepest weights are first modified is not guaranteed to increase the log-likelihood.

CHAPTER 2. DEEP BELIEF NETWORKS 10

...

h2 ∼ P(h2
,h3)

h1 ∼ P(h1|h2)

v ∼ P(v|h1)

h3 ∼ Q(h3|h2)

h2 ∼ Q(h2|h1)

h1 ∼ Q(h1|v)

v

h3 ∼ Q̃(h3|v)

h2 ∼ Q̃(h2|v)

h1 ∼ Q̃(h1|v)

v

Gibbs chain

Figure 2.4: Left: Generating a sample from the Deep Belief Network.Right: Generating a sample from
approximate posteriorQ(h1,h2,h3|v) vs. generating a sample from fully factorized approximate posterior
Q̃(h1|v)Q̃(h2|v)Q̃(h3|v).

Algorithm 2 Modified Recursive Greedy Learning Procedure for the DBN.

1: Fit parametersW 1 of the1st layer RBM to data.
2: Freeze the parameter vectorW 1 and use samplesh1 from Q̃(h1|v) = P (h1|v,W 1) as the data for

training the next layer of binary features with an RBM.
3: Freeze the parametersW 2 that define the2nd layer of features and use the samplesh2 from Q̃(h2|v)

as the data for training the3rd layer of binary features.
4: Proceed recursively for the next layers.

although changingW 3 to improve the bound can decrease the actual log-likelihood. This greedy, layer-
by-layer training can be repeated several times to learn a deep, hierarchical model. The procedure is
summarized in Algorithm 1.

After training a DBN withL layers, the model’s joint distribution and its approximateposterior
distributionQ are given by:

P (v,h1, ...,hL) = P (v|h1)...P (hL−2|hL−1)P (hL−1,hL),

Q(h1, ...,hL|v) = Q(h1|v)Q(h2|h1)...Q(hL|hL−1).

To generate an approximate sample from the Deep Belief Network, we can run a prolonged alternating
Gibbs sampler (Eq. 2.6) to generate an approximate samplehL−1 from P (hL−1,hL), defined by the
top-level RBM, followed by a “top-down” pass through the sigmoid belief network by stochastically
activating each lower layer in turn (see Fig. 2.4, left panel). To get an exact sample from the approximate
posterior distributionQ, we can simply perform a “bottom-up” pass by stochasticallyactivating each
higher layer in turn. The marginal distribution of the top-level hidden units of our approximate posterior
Q(hL|v) will be non-factorial and, in general, could be multimodal.However, for many practical
applications (e.g. information retrieval) having an explicit form for Q(hL|v), which allows efficient
approximate inference, can be of crucial importance. One possible alternative is to choose the following
fully factorized approximating distributioñQ:

Q̃(h1, ...,hL|v) =
L∏

l=1

Q̃(hl|v), (2.19)

CHAPTER 2. DEEP BELIEF NETWORKS 11

where we define:

Q̃(h1|v) =
∏

j

q(h1
j |v), q(h1

j = 1|v) = g

(
∑

i

W 1
ijvi + a1

j

)
, and (2.20)

Q̃(hl|v) =
∏

j

q(hl
j |v), q(hl

j = 1|v) = g

(
∑

i

W l
ijq(h

l−1
i = 1|v) + al

j

)
, (2.21)

whereg(x) = 1/(1 + exp(−x)) and l = 2, .., L. The factorial posterior̃Q(hL|v) can be obtained
by simply replacing the stochastic hidden units in bottom layers with real-valued probabilities, and
then performing a single deterministic bottom-up pass to computeq(hL

j = 1|v). This fully factorized
approximation also suggests a modified greedy learning algorithm, summarized in Algorithm 2. In this
algorithm the samples, used for training higher-level RBM’s, are instead sampled from a fully factorized
approximate posterior̃Q. It is important to observe that the modified algorithmdoes not guaranteeto
improve the lower bound on the log-probability of the training data. Nonetheless, this is the actual
algorithm commonly used in practice (Taylor et al. [2006], Hinton and Salakhutdinov [2006], Torralba
et al. [2008], Bengio [2009]), and we will use it in the next chapter of this thesis. The modified algorithm
performs well, particularly when a fully factorized̃Q is used to perform approximate inference in the
final model. Details of Matlab implementation of the modifiedgreedy learning algorithm can be found
in Appendix A.

In practice, however, many of the assumptions that we have tomake in order to guarantee the
improvement of the lower bound on the data likelihood are violated. In particular, the assumption that
learning higher-level RBM’s can be carried out using maximum likelihood (see Eq. 2.18) is clearly

violated. Furthermore, when adding a new layerl, we typically do not initializeW l = W l−1⊤, which
would force the number of hidden units of the new RBM to be the same as the number of the visible
units of the lower level RBM3. In chapter 4 of this thesis, we will address a problem of evaluating
generalization performance of Deep Belief Networks as density models, which will allow us to do
model selection and complexity control.

2.3 Generalizing RBM’s to Modeling Real-valued and Count Data

Welling et al. [2005] introduced a class of two-layer undirected graphical models that generalize RBM’s
to exponential family distributions. In the remaining partof this section, we will review two specific
models: Gaussian RBM and Replicated Softmax model (Salakhutdinov and Hinton [2010]). These mod-
els will allow us to model real-valued data (e.g. image patches) and count data (e.g. word-count vectors
of documents), when learning DBN’s. Other extensions include exponential or truncated exponential
RBM’s (Bengio et al. [2007]), and Poisson RBM’s (Gehler et al. [2006])

Gaussian RBM’s

Consider modeling visible real-valued unitsv ∈ R
D and leth ∈ {0, 1}F be binary stochastic hidden

units. The energy of the state{v,h} of the Gaussian RBM is defined as follows:

E(v,h; θ) =

D∑

i=1

(vi − bi)
2

2σ2
i

−
D∑

i=1

F∑

j=1

Wijhj
vi

σi
−

F∑

j=1

ajhj , (2.22)

3Although if the number of hidden units per layer does not decrease, it easy to show (Hinton et al. [2006]) that adding each
new layer guarantees to increase a lower bound on the data likelihood, provided higher-level RBM’s are trained by maximum
likelihood.

CHAPTER 2. DEEP BELIEF NETWORKS 12

Training Samples

Learned Receptive Fields

Figure 2.5: Random subsets of the learned receptive fields.Left: The binary RBM trained on the MNIST
dataset (resolution is 28×28). Right: The Gaussian RBM trained on the NORB dataset (resolution is 96×96).
Each square displays the incoming weights from all the visible units into one hidden unit. White encodes a
positive weight and black encodes a negative weight on the scale of -3 to 3.

whereθ = {W,a,b, σ2} are the model parameters. The marginal distribution over the visible vectorv
takes form:

P (v; θ) =
∑

h

exp (−E(v,h; θ))∫
v′

∑
h

exp (−E(v,h; θ))dv′
. (2.23)

From Eq. 2.22, it is straightforward to derive the followingconditional distributions:

p(vi = x|h) =
1√
2πσi

exp


−

(
x− bi − σi

∑
j hjWij

)2

2σ2
i


 , (2.24)

p(hj = 1|v) = g

(
bj +

∑

i

Wij
vi

σi

)
, (2.25)

whereg(x) = 1/(1 + exp(−x)) is the logistic function. Observe that conditioned on the states of the
hidden units (Eq. 2.24), each visible unit is modeled by a Gaussian distribution, whose mean is shifted
by the weighted combination of the hidden unit activations.The derivative of the log-likelihood with
respect toW takes form:

∂ log P (v; θ)

∂Wij
= EPdata

[
1

σi
vihj

]
− EPModel

[
1

σi
vihj

]
.

As described in section 2.1, learning of the model parameters, including the varianceσ2, can be carried
out using Contrastive Divergence. In practice, however, instead of learningσ2, one would typically use
a fixed, predetermined value forσ2 (Nair and Hinton [2009], Hinton and Salakhutdinov [2006]).

CHAPTER 2. DEEP BELIEF NETWORKS 13

W1

W1 W2

W2

h

v

W1

W1

W1

W2

W2

W2

W1 W2

Latent Topics

Observed Softmax Visibles Multinomial Visible

Figure 2.6: The Replicated Softmax model. The top layer represents a vector h of stochastic, binary topic
features and the bottom layer consists of softmax visible units,v. All visible units share the same set of weights,
connecting them to the binary hidden units.Left and Middle: Two members of a Replicated Softmax family for
documents containing two and three words.Right: A different interpretation of the Replicated Softmax model,
in which M softmax units with identical weights are replaced by a single multinomial unit which is sampledM
times.

To see what a single RBM module can learn, Fig. 2.5 shows a random subset of parametersW , also
known as receptive fields, learned by a standard binary and a Gaussian RBM using CD1. Observe that
both RBM’s learn highly localized receptive fields.

Modeling Word Counts with a Family of Replicated Softmax Models

Consider an undirected graphical model that consists of onevisible layer and one hidden layer as shown
in Fig. 2.6. This model is a type of Restricted Boltzmann Machine in which the visible units that are
usually binary have been replaced by “softmax” units that can have one of a number of different states.
Let v ∈ {1, ...,K}D be a vector of visible units that takes on values in some discrete alphabet, and let
h ∈ {0, 1}F be binary stochastic hidden topic features. LetV be aK ×D observed indicator matrix
with vk

i = 1 if visible unit i takes on valuek. The energy of the state{V,h} is defined as follows:

E(V,h) = −
D∑

i=1

F∑

j=1

K∑

k=1

W k
ijhjv

k
i −

D∑

i=1

K∑

k=1

vk
i bk

i −
F∑

j=1

hjbj , (2.26)

whereW k
ij is a symmetric interaction term between visible uniti that takes on valuek, and hidden unit

j, bk
i is the bias of uniti that takes on valuek, andaj is the bias of hidden unitj. The conditional

distributions are given by softmax and logistic functions:

p(vk
i = 1|h) =

exp (bk
i +

∑F
j=1 hjW

k
ij)∑K

q=1 exp
(
bq
i +

∑F
j=1 hjW

q
ij

) (2.27)

p(hj = 1|V) = g

(
aj +

D∑

i=1

K∑

k=1

vk
i W k

ij

)
. (2.28)

Now suppose that for each document we create a separate RBM with as many softmax units as there
are words in the document. Assuming we can ignore the order ofthe words, all of these softmax units
can share the same set of weights. Consider a document that containsM words. In this case, we define
the energy of the state{V,h} to be:

E(V,h) = −
F∑

j=1

K∑

k=1

W k
j hj v̂

k −
K∑

k=1

v̂kbk −M

F∑

j=1

hjbj, (2.29)

CHAPTER 2. DEEP BELIEF NETWORKS 14

wherev̂k =
∑M

i=1 vk
i denotes the count for thekth word. The bias terms of the hidden units are scaled up

by the length of the document. This scaling is crucial and allows hidden units to behave sensibly when
dealing with documents of different lengths. We also note that usingM softmax units with identical
weights is equivalent to having one multinomial unit which is sampledM times, as shown in Fig. 2.6.
The derivative of the log-likelihood with respect to parametersW takes form:

∂ log P (V; θ)

∂W k
j

= EPdata

[
v̂khj

]
− EPModel

[
v̂khj

]
.

The weights can now be shared by the whole family of differentRBM’s that are created for documents
of different lengths. We call this the “Replicated Softmax”model]. Learning can be performed using
Contrastive Divergence.

Chapter 3

Learning Feature Hierarchies with Deep
Belief Networks

This chapter presents several ideas based on greedily learning a hierarchy of features from high-dimensional,
richly structured sensory input. Through extensive empirical evaluations we will attempt to address the
question of how well Deep Belief Networks perform in variousapplication domains. All of the presented
ideas will exploit the following two key properties of DBN’s. First, they can be learned efficiently from
large amounts of unlabeled data. Second, they can be discriminatively fine-tuned using the standard
backpropagation algorithm.

In section 3.1 we show how a Deep Belief Network can be used to extract useful feature repre-
sentations that would allow us to learn a good covariance kernel for a Gaussian process. In particular,
if the input data is high-dimensional and highly-structured, a Gaussian kernel applied to the top layer
of extracted features in the DBN works much better than a similar kernel applied to the raw input. In
sections 3.2 and 3.3 we show how the greedy learning algorithm can be used to make nonlinear au-
toencoders work considerably better compared to widely used methods, such as principal component
analysis (PCA) and singular value decomposition (SVD). We then demonstrate that these deep autoen-
coders can be used to discover binary “semantic” codes that allow fast and accurate information retrieval.
Finally, in section 3.4 we show how the DBN framework, using partially labeled data, can also be used
to efficiently learn a nonlinear transformation from the input space to a low-dimensional feature space
in which K-nearest neighbour classification performs well.

3.1 Learning Features for Discrimination and Regression

Many real-world applications are characterized by high-dimensional, highly-structured data with a large
supply of unlabeled data and a very limited amount of labeleddata. Applications such as information
retrieval and machine vision are examples where unlabeled data is readily available. Many models,
including logistic regression, Gaussian processes, and Support Vector Machines, are discriminative
models by nature, and within the standard regression or classification scenario, unlabeled data is of
no use. Given a set ofi.i.d. labeled input vectorsXl = {xn}Nn=1 and their associated target labels
{yn}Nn=1 ∈ R for regression or{yn}Nn=1 ∈ {−1, 1} for classification, discriminative methods model
p(yn|xn) directly. Unless some assumptions are made about the underlying distribution of the input
dataX = [Xl,Xu], unlabeled data,Xu, cannot be used. Many researchers have tried to use unlabeled
data by incorporating a model ofP (X). For classification tasks, Lawrence and Schölkopf [2001] model
P (X) as a mixture

∑
yn

p(xn|yn)p(yn) and then inferp(yn|xn), Seeger [2001] attempts to learn a co-
variance kernel for a Gaussian process based onP (X), and Lawrence and Jordan [2004] assume that

15

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 16

the decision boundaries should occur in regions where the data density,P (X), is low. When faced with
high-dimensional, highly-structured data, however, noneof the existing approaches have proved to be
particularly successful.

To make use of unlabeled data, we propose to first learn a DBN model of P (X) in an entirely
unsupervised way using the fast, greedy learning algorithmintroduced in section 2.2. We then use this
deep generative model to initialize a multilayer, nonlinear mappingF (x;W), parameterized byW , with
F : X→ Z mapping the input vectors inX into a feature spaceZ. The top-level features produced by
this mapping typically allow for a rather accurate reconstruction of the input and tend to capture a lot of
the higher-order structure in the input data. We can now fit a discriminative model to the labeled data
using the top-level features of the DBN model as inputs. Performance can be further improved by using
backpropagation through the DBN to discriminatively fine-tune the model parameters.

While greedily pretrained DBN’s can be used to provide inputvectors for many discriminative
methods, including logistic regression, SVM’s (Vapnik [1998], Lauer et al. [2007]), and kernel regres-
sion (Benedetti [1977]), in this section we will concentrate on using a Deep Belief Network to learn a
covariance kernel for a Gaussian process. In particular, weshow that the parametersW of the covari-
ance kernel can be fine-tuned using the labeled data by maximizing the log probability of the labels with
respect toW .

3.1.1 Gaussian Processes for Regression and Binary Classification

Gaussian processes (GP’s) are a widely used method for Bayesian nonlinear non-parametric regression
and classification (Rasmussen and Williams [2006], Seeger [2004], Neal [1997], Rasmussen [1996]).
GP’s are based on defining a covariance function that encodesprior knowledge of the smoothness of
the underlying process that is being modeled. Because of their flexibility and computational simplicity,
GP’s have been successfully used in many areas of machine learning.

Let us consider the following regression task. We are given adataset ofN i .i .d . labeled input
vectorsXl = {xn}Nn=1 and their corresponding real-valued targetsy = {yn}Nn=1. We are interested in
the following probabilistic regression model:

yn = f(xn) + ǫ, ǫ ∼ N (0, σ2), (3.1)

whereN (µ, σ2) denotes a Gaussian distribution with meanµ and varianceσ2. A Gaussian process
regression places a zero-mean GP prior over the underlying latent functionf we are modeling, so that
a-priori f |Xl ∼N (0,K), wheref = [f(x1), ..., f(xn)]T andK is the covariance matrix, whose entries
are specified by the covariance functionKij = K(xi,xj). The covariance function encodes our prior
notion of the smoothness off , or the prior assumption that if two input vectors are similar according to
some distance measure, their labels should be highly correlated. In this work we will use the spherical
Gaussian kernel, parameterized by{α, β}:

Kij = α exp

(
− 1

2β
(xi − xj)

⊤(xi − xj)

)
. (3.2)

Integrating out the function valuesf , the marginal log-likelihood takes form:

L = log P (y|Xl; θ) = −N

2
log 2π − 1

2
log |K + σ2I| − 1

2
y⊤(K + σ2I)−1y, (3.3)

which can then be maximized with respect to the parametersθ = {α, β, σ}. Given a new test pointx∗,
a prediction is obtained by conditioning on the observed data andθ. The distribution of the predicted
valuey∗ atx∗ takes the form:

y∗|x∗,Xl,y; θ ∼ N
(
k∗⊤(K + σ2I)−1y, k∗∗ − k∗⊤(K + σ2I)−1k∗ + σ2

)
, (3.4)

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 17

W

W

W

W

W

W

GP

Input X

target y

Feature
Representation
F(X;W)

1

RBM

RBM
2

3

1000

1000

3

RBM

2

T

T

T

1000
1

1000

1000

1000

1000

1000

Figure 3.1:Left: Pretraining consists of learning a stack of RBM’s.Right: After pretraining, the RBM’s are
used to initialize a covariance function of the Gaussian process, which is then fine-tuned by backpropagation.

wherek∗∗ = K(x∗,x∗) andk∗ = K(x∗,Xl) is theN × 1 vector of the covariances evaluated between
all training and a test point.

For a binary classification task, we similarly place a zero mean GP prior over the values of an under-
lying latent function,f , which are then passed through the logistic functiong(x) = 1/(1+exp(−x)) to
define a priorp(yn = 1|xn) = g(f(xn)). Given a new test pointx∗, inference is done by first obtaining
the distribution overf∗ = f(x∗):

p(f∗|x∗,Xl,y; θ) =

∫
p(f∗|x∗,Xl, f ; θ)P (f |Xl,y; θ)df , (3.5)

which is then used to produce a probabilistic prediction:

p(y∗ = 1|x∗,Xl,y; θ) =

∫
g(f∗)p(f∗|x∗,Xl,y; θ)df∗. (3.6)

The non-Gaussian likelihood makes the integral in Eq. 3.5 analytically intractable. In our experiments,
we approximate the non-Gaussian posteriorP (f |Xl,y; θ) with a Gaussian one using expectation prop-
agation (Minka [2001]). For more thorough reviews and implementation details refer to Rasmussen and
Williams [2006], Seeger [2004], and Neal [1997].

3.1.2 Learning the Covariance Function for a Gaussian Process

Using the layer-by-layer learning algorithm of section 2.2, we first learn a stack of RBM’s. After learn-
ing is complete, the stochastic activities of the binary units in each layer are replaced by deterministic,
real-valued probabilities and the DBN is used to initializea multilayer, nonlinear mappingF (x;W) as
shown in Fig. 3.1. This learning is treated as apretraining stage that captures a lot of the higher-order
structure in the input data and is used to define a Gaussian covariance function, parameterized by{α, β}
andW :

Kij = α exp

(
− 1

2β

(
F (xi;W)− F (xj ;W)

)⊤(
F (xi;W)− F (xj ;W)

))
. (3.7)

The covariance kernel is initialized in an entirely unsupervised way. We can now maximize the marginal
log-likelihood of Eq. 3.3 with respect to the parameters of the covariance kernel{α, β,W} and obser-
vation noiseσ2, using the labeled training data (Rasmussen and Williams [2006], Lawrence [2004]).

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 18

32.99 −41.15 66.38−22.07 27.49 Unlabeled
Training Data Test Data

A

B

Figure 3.2:Top A: Randomly sampled examples of the training and test data.Bottom B: The same sample of
the training and test images but with rectangular occlusions.

The partial derivatives of the marginal log-likelihood with respect to the parameters takes the form:

∂L

∂θi
=

1

2
tr

((
K−1

y yy⊤K−1
y −K−1

y

) ∂Ky

∂θi

)
, (3.8)

whereKy = K +σ2I andθ = {α, β,W, σ2}. Using the chain rule, the gradient∂Ky/∂W is computed
using standard backpropagation algorithm. It is necessaryto compute the inverse ofKy, so each gradient
evaluation hasO(N3) complexity whereN is the number of the labeled training cases. However,
when learning the stack of Restricted Boltzmann Machines that are composed to form the initial DBN,
each gradient evaluation scales linearly in time and space with the number of unlabeled training cases.
Therefore the pretraining stage can make efficient use of very large sets of unlabeled data to build high-
level features. The small amount of labeled data can then be used to only slightly refine those features.

3.1.3 Experimental results

We present several experimental results on three publicly available datasets: the MNIST dataset, the
Olivetti face dataset, and the Reuters (RCV1-v2) dataset. Our first task is to extract the orientation of
a face from a gray-level image of a large patch of the face. Thesecond task is to discriminate between
images of odd digits and images of even digits. The third taskis to discriminate between two different
classes of newswire story based on the vector of word counts in each story.

In all of experiments, when training higher-level RBM’s, the visible units were set to the activa-
tion probabilities of the hidden units in the lower-level RBM, but the hidden units of every RBM had
stochastic binary values. For the fine-tuning stage, we usedthe method of conjugate gradients. Details
of pretraining and fine-tuning, along with the detailed description of the used datasets, can be found in
Appendix A.

Extracting the Orientation of a Face Patch

The Olivetti face dataset contains ten 64×64 images of each of forty different people. We constructed
a dataset of 13,000 25×25 images by rotating (−90◦ to +90◦), cropping, and subsampling the original
400 images. The intensities in the cropped images were normalized to have zero mean and the entire
dataset was then scaled by a single number to make the averagepixel variance be1. The dataset was
then subdivided into 12,000 training images, which contained the first 30 people, and 1,000 test images,
which contained the remaining 10 people. 1,000 randomly sampled face patches from the training set
were assigned an orientation label. The remaining 11,000 training images were used as unlabeled data.
We also made a more difficult version of the task by occluding part of each face patch with randomly
chosen rectangles. Figure 3.2 shows randomly sampled examples from the training and test data.

For training on the Olivetti face patches we used the 784-1000-1000-1000 architecture shown in
Fig. 3.1. When pretraining the first layer, the real-valued pixel intensities were modeled by a Gaussian

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 19

Training GPstandard GP-DBNgreedy GP-DBNfine GPpca
labels Sph. ARD Sph. ARD Sph. ARD Sph. ARD

A 100 22.24 28.57 17.94 18.37 15.28 15.01 18.13 (10) 16.47 (10)
500 17.25 18.16 12.71 8.96 7.25 6.84 14.75 (20) 10.53 (80)
1000 16.33 16.36 11.22 8.77 6.42 6.31 14.86 (20) 10.00 (160)

B 100 26.94 28.32 23.15 19.42 19.75 18.59 25.91 (10) 19.27 (20)
500 20.20 21.06 15.16 11.01 10.56 10.12 17.67 (10) 14.11 (20)
1000 19.20 17.98 14.15 10.43 9.13 9.23 16.26 (10) 11.55 (80)

Table 3.1:Performance results on the face-orientation regression task. The root mean squared error (RMSE) on
the test set is shown for each method using a spherical Gaussian kernel and a Gaussian kernel with ARD hyper-
parameters.By row: A) Non-occluded face data, B) Occluded face data. For the GPpca model, the number of
principal components that performs best on the test data is shown in parenthesis.

Feature 992

F
ea

tu
re

 3
12

 0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

log β

−1 0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

log β

More Relevant

Input Pixel Space

Feature Space

Figure 3.3:Left: A scatter plot of the two most relevant features, with each point replaced by the corresponding
input test image. For better visualization, overlapped images are not shown.Right: The histogram plots of the
learned ARD hyper-parameterslog β.

RBM with unit variance. The remaining RBM’s in the stack usedlogistic units. The entire training set
of 12,000 unlabeled images was used for greedy, layer-by-layer training of a Deep Belief Network. The
model contained about 2.8 million parameters, which may seem excessive for 12,000 training cases.
However, each training case involves modeling 625 real-valued pixels rather than just a single real-
valued target label.

After the DBN has been pretrained on the unlabeled data, a GP model was fitted to the labeled
data using the top-level features of the DBN model as inputs.We call this modelGP-DBNgreedy.
GP-DBNgreedy can be further fine-tuned by maximizing the marginal log probability of the labels with
respect toW using backpropagation algorithm. We call this modelGP-DBNfine. For comparison, we
fitted a GP model that used the pixel intensities of only the labeled images as its inputs. We call this
modelGPstandard. We also used PCA1 to reduce the dimensionality of the labeled images and fitted
several different GP models using the projections onto the first m principal components as the input.

1Principal components were extracted using all 12,000 training cases.

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 20

Train GPstandard GP-DBNgreedy GP-DBNfine GPpca
labels Sph. ARD Sph. ARD Sph. ARD Sph. ARD

100 0.0884 0.1087 0.0528 0.0597 0.0501 0.0599 0.0785 (10) 0.0920 (10)
500 0.0222 0.0541 0.0100 0.0161 0.0055 0.0104 0.0160 (40) 0.0235 (20)
1000 0.0129 0.0385 0.0058 0.0059 0.0050 0.0100 0.0091 (40) 0.0127 (40)

Table 3.2:Performance results on discriminating odd vs. even digits classification task, using the area under the
ROC (AUROC) metric. For each method we show 1-AUROC on the test set. An AUROC of 0.5 corresponds to
the classifier that makes random predictions. All methods were tried using both a spherical Gaussian kernel and
a Gaussian kernel with ARD hyper-parameters. For the GPpca model, the number of principal components that
performs best on the test data is shown in parenthesis.

Since we are only interested in a lower bound on the error of this model, we simply use the value ofm
that performs best on thetestdata. We call this modelGPpca. Table 3.1 shows the root mean squared
error (RMSE) of the predicted face orientations using all four types of GP models with varying amounts
of labeled data. The results show that both GP-DBNgreedy andGP-DBNfine significantly outperform
regular GP and GPpca models. Indeed, GP-DBNfine with only 100labeled training cases outperforms
GPstandard with 1000 labeled training cases.

To test the robustness of our approach to noise in the input wetook the same dataset and created
artificial rectangular occlusions (see Fig. 3.2, panel B). The number of rectangles per image was drawn
from a Poisson withλ = 2. The top-left location, length and width of each rectangle was sampled from
a uniform [0,25]. The pixel intensity of each occluding rectangle was set to the mean pixel intensity
of the entire image. Table 3.1 shows that the performance of all models degrades, but their relative
performances remain the same. GP-DBNfine on occluded data isstill much better than GPstandard on
non-occluded data.

We have also experimented with using a Gaussian kernel with ARD hyper-parameters (Rasmussen
and Williams [2006]), which is a common practice when the input vectors are high-dimensional:

Kij = α exp

(
−1

2
(xi − xj)

⊤D(xi − xj)

)
, (3.9)

whereD is the diagonal matrix withDii = 1/βi, so that the covariance function has a separate
length-scale parameter for each dimension. ARD hyper-parameters were optimized by maximizing
the marginal log-likelihood of Eq. 3.3. Table 3.1 shows thatARD hyper-parameters do not improve
GPstandard, but they do slightly improve GP-DBNfine and theystrongly improve GP-DBNgreedy and
GPpca when there are 500 or 1000 labeled training cases.

The histogram plot oflog β in Fig. 3.3 reveals that there are a few extracted features that are very
relevant (smallβ) to our prediction task. The same figure, left panel, shows a scatter plot of the two
most relevant features of GP-DBNgreedy model, with each point replaced by the corresponding input
test image. Clearly, these two features carry a lot of information about the orientation of the face. We
suspect that the GP-DBNfine model does not benefit as much fromthe ARD hyper-parameters because
the fine-tuning stage is already capable of turning down the activities of irrelevant top-level features.

Discriminating between Images of Odd and Even Digits

The MNIST digit dataset contains 60,000 training and 10,000test 28×28 images of ten handwritten
digits (0 to 9). 1000 randomly sampled training images were categorized into an even or an odd class.
The remaining 59,000 training images were used as unlabeleddata. As in the previous experiment, we
used the 784-1000-1000-1000 architecture with the entire training set of 60,000 unlabeled digits used

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 21

Number of labeled GPstandard GP-DBNgreedy GP-DBNfine
cases (50% in each class)

100 0.1295 0.1180 0.0995
500 0.0875 0.0793 0.0609
1000 0.0645 0.0580 0.0458

Table 3.3:Performance results using the area under the ROC (AUROC) metric on the text classification task. For
each method we show 1-AUROC on the test set.

for greedily pretraining the DBN model. Table 3.2 shows the area under the ROC curve for discriminat-
ing between odd and even digits. GP-DBNfine and GP-DBNgreedyperform considerably better than
GPstandard both with and without ARD hyper-parameters.

Classifying News Stories

The Reuters RCV1-v2 dataset is an archive of 804,414 newswire stories. The corpus covers four major
groups: Corporate/Industrial, Economics, Government/Social, and Markets. The data was randomly
split into 802,414 training and 2000 test articles. The testset contains 500 articles of each major group.
The available data was already in a convenient, preprocessed format, where common stopwords were
removed and all the remaining words were stemmed. We only made use of the 2000 most frequently
used word stems in the training data. As a result, each document was represented as a vector containing
2000 word counts. No other preprocessing was done.

For the text classification task we used a 2000-1000-1000-1000 architecture. The entire unlabeled
training set of 802,414 articles was used for learning a multilayer generative model of the text docu-
ments. The bottom layer of the DBN was trained using a Replicated Softmax model (see section 2.3).
Table 3.3 shows the area under the ROC curve for classifying documents belonging to the Corpo-
rate/Industrial vs. Economics groups. As expected, GP-DBNfine and GP-DBNgreedy work better
than GPstandard. The results of binary discrimination between other pairs of document classes are very
similar to the results presented in table 3.3. Our experiments using a Gaussian kernel with ARD hyper-
parameters did not show any significant improvements. Examining the histograms of the length-scale
parametersβ, we found that most of the input word-counts as well as most ofthe extracted features
were relevant to the classification task.

3.1.4 Discussion

We have shown how to greedily pretrain and discriminativelyfine-tune a covariance kernel for a Gaus-
sian process. For high-dimensional, highly-structured input, this is a very effective way to make use of
large unlabeled datasets, especially when labeled training data is scarce. The performance of pretrained
and fine-tuned GP models further reveals that the learned high-level feature representations capture a lot
of structure in the unlabeled input data, which is useful forsubsequent classification or regression tasks,
even though these tasks are unknown when the deep generativemodel is being trained.

The same framework can also be used to discover useful low-dimensional representations of high-
dimensional data, which can be used for exploratory data analysis, preprocessing, and data visualization.
We explore this idea in the next section.

3.2 Nonlinear Dimensionality Reduction

Scientists working with large amounts of high-dimensionaldata are constantly facing the problem of
dimensionality reduction: how to discover low-dimensional structure from high-dimensional observa-

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 22

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine−tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Figure 3.4: Pretraining consists of learning a stack of Restricted Boltzmann Machines each having only one
layer of feature detectors. The learned feature activations of one RBM are used as the “data” for training the next
RBM in the stack. After the pretraining, the RBM’s are “unrolled” to create a deep autoencoder, which is then
fine-tuned using backpropagation of error derivatives.

tions. There exist a variety of dimensionality reduction techniques, which can be broadly classified into:
linear methods, such as principal component analysis (PCA), nonlinear mappings, such as autoencoders
(Plaut and Hinton [1987], DeMers and Cottrell [1993]), and proximity based methods, such as Local
Linear Embedding (Roweis and Saul [2000]).

Most of the existing algorithms suffer from various drawbacks. If the data lie on an embedded low-
dimensional nonlinear manifold, then linear methods, eventhough computationally efficient, cannot
recover this structure as well as their nonlinear counterparts. Proximity based methods are more power-
ful, but their computational cost scales quadratically with the number of observations, so they generally
cannot be applied to very large high-dimensional datasets.Nonlinear mapping algorithms, such as au-
toencoders, are generally painfully slow to train, and are prone to getting stuck in local minima.

3.2.1 Pretraining Autoencoders

The standard way to train autoencoders is to use backpropagation to reduce the reconstruction error.
As we show, it is generally very difficult to optimize nonlinear autoencoders that have multiple hidden
layers with hundreds of thousands of parameters (DeMers andCottrell [1993], Hecht-Nielsen [1995],
Larochelle et al. [2009]). This is perhaps the main reason why this potentially powerful dimensionality
reduction algorithm has not found its applications in practice. Instead, we will use the greedy learning
algorithm to pretrain autoencoders, by learning a stack of RBM’s, as shown in Fig. 3.4. The key idea
is that the greedy learning algorithm can quickly find parameters that already produce a good data
reconstruction model.

After the pretraining stage, which is similar to the construction defined in subsection 3.1.2, the
stochastic activities of the binary features in each layer are replaced by deterministic, real-valued proba-
bilities and the model is “unrolled” to produce encoder and decoder networks. Initially both the encoder
and decoder networks share the same set of weights. The global fine-tuning stage then slightly refines
the weights for optimal reconstruction by using backpropagation of error derivatives through the whole

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 23

a)

b)

c)

d)

e)

a)

b)

c)

d)

Figure 3.5:Left Panel (by row): a) Random samples of curves from the test dataset;b) reconstructions produced
by the 6-dimensional deep autoencoder;c) reconstructions by “logistic PCA” using6 components;d) reconstruc-
tions by logistic ande) standard PCA using18 components. The average squared error per image for the last
four rows is1.44, 7.64, 2.45, 5.90. Right panel (by row): a) A random MNIST test image from each class;
b) reconstructions by the 30-dimensional autoencoder;c) reconstructions by 30-dimensional logistic PCA and d)
standard PCA. The average squared errors for the last three rows are3.00, 8.01, and13.87.

autoencoder.

3.2.2 Experimental results

In all our experiments, when pretraining deep autoencoders, the top level RBM was a Gaussian RBM,
as described in section 2.3, but with visible and hidden units switched. So the hidden units of the top
level RBM were modeled by a unit variance Gaussian distribution, whose mean was determined by
the weighted combination of the binary visible units. This allowed the low-dimensional codes to make
good use of continuous variables and facilitated comparisons with PCA. Description of the datasets,
along with details of software that we used for pretraining and fine-tuning deep autoencoders, can be
found in Appendix A.

Synthetic curves dataset

To evaluate the two-stage learning procedure, we first used asynthetic curves dataset that contains
28×28 images of “curves”, generated from three randomly chosen2-dimensional points. For this
dataset, the true intrinsic dimensionality of data is six, but the relationship between the pixel intensities
and the six numbers used to generate them is highly nonlinear. The pixel intensities were normalized
to lie in the interval[0, 1] (see Fig. 3.5, left panel). The intensities had a tendency tomostly take on
extreme values, and therefore were modeled in the first layerby a standard binary RBM. During the
fine-tuning stage, we minimized the cross-entropy error:

E = −
∑

i

pi log p̂i −
∑

i

(1− pi) log(1− p̂i), (3.10)

wherepi is the intensity of pixeli andp̂i is the intensity of its reconstruction.
We used a deep autoencoder that consisted of an encoder with layers of size (28×28)-400-200-100-

50-25-6 and a symmetric decoder. This is probably much deeper than is necessary for this task, but
one of the points of this experiment was to demonstrate that we could train very deep networks. The
6 units in the code layer were linear and all the other units were logistic. The autoencoder was trained
on 20,000 images and tested on 10,000 new images. Figure 3.5 shows that the autoencoder was able to
discover the nonlinear mapping between 784 pixel image and 6real numbers that allow almost perfect
reconstruction. PCA, on the other hand, gives considerablyworse results. Figure 3.5 also compares

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 24

50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

20

Number of Epochs

S
qu

ar
ed

 R
ec

on
st

ru
ct

io
n

E
rr

or

Pretrained Autoencoder

Randomly Initialized
Autoencoder

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Epochs

S
qu

ar
ed

 R
ec

on
st

ru
ct

io
n

E
rr

or

Pretrained Autoencoder

Randomly Initialized
Autoencoder

50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5

3

3.5

4

Number of Epochs

S
qu

ar
ed

 R
ec

on
st

ru
ct

io
n

E
rr

or

Pretrained
Shallow Autoencoder

Pretrained
Deep Autoencoder

Figure 3.6: The average squared reconstruction error per test image during fine-tuning on the curves train-
ing data. Left: The deep 784-400-200-100-50-25-6 autoencoder makes rapidprogress after pretraining but no
progress without pretraining.Middle: A shallow 784-532-6 autoencoder can learn without pretraining but pre-
training makes the fine-tuning much faster.Right: A 784-100-50-25-6 autoencoder performs slightly better than
a shallower 784-108-6 autoencoder that has about the same number of parameters. Both autoencoders were pre-
trained.

a)

b)

c)

Figure 3.7:By row: a) Random samples from the test dataset;b) reconstructions by the 30-dimensional autoen-
coder; andc) reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

our deep nonlinear autoencoder to a shallow linear autoencoder, which we call logistic PCA, where the
linear code units are directly connected to both the inputs and the logistic output units.

Figure 3.6, left panel, shows performance of pretrained andrandomly initialized deep autoencoders
on the curves dataset. Note that without pretraining, the deep autoencoder gets stuck at poor local
optimum. It always reconstructs the average of the trainingdata, even after prolonged fine-tuning.
Shallow autoencoders can learn without pretraining, but pretraining greatly reduces the total training
time. Figure 3.6, right panel, further reveals that when thenumber of parameters is the same, a deep
autoencoder produces a slightly lower reconstruction error on test data than a shallow autoencoder.

MNIST and Olivetti datasets

We used a (28×28)-1000-500-250-30 autoencoder to extract 30-dimensional codes of the handwritten
digits in the MNIST training set. Similar to the curves dataset, all units were logistic except for the 30
linear units in the code layer. After fine-tuning on all 60,000 training images using cross-entropy error,
the autoencoder was tested on 10,000 new images. Figure 3.5 shows that the deep autoencoder captures
the structure of the data much better than logistic PCA, which, in turn, is much better than standard
PCA. Figure 3.8 also shows that a two-dimensional autoencoder produces a much better visualization
of the data compared to the first two principal components of PCA.

We then used a (25×25)-2000-1000-500-30 autoencoder with linear input unitsto discover 30-

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 25

0
1
2
3
4
5
6
7
8
9

Figure 3.8:Left : The 2-D codes for 500 digits of each class produced by takingthe first two principal compo-
nents of all 60,000 training images.Right: The 2-D codes discovered by a 784-1000-500-250-2 autoencoder.

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Autoencoder 10D
LSA 10D
LSA 50D
Autoencoder 10D
prior to fine−tuning

Figure 3.9:Precision-Recall curves for the Reuters RCV1-v2 dataset, when a query document from the test set
is used to retrieve other test set documents, averaged over all 402,207 possible queries.

dimensional codes for grey-level image patches that were derived from the Olivetti face dataset. A
dataset of 165,600 25×25 images was created by randomly rotating (−90◦ to +90◦), scaling (1.4 to
1.8), cropping, and subsampling the original 400 images. The dataset was then subdivided into 124,200
training images, which contained the first thirty people, and 41,400 test images, which contained the re-
maining ten people. Figure 3.5, bottom panel, shows that thethe 30-dimensional autoencoder produces
much better reconstructions than 30-dimensional PCA.

Reuters Corpus

We can also use autoencoders to discover low-dimensional codes that would allow for fast document re-
trieval. We performed a set of experiments on Reuters RCV1-v2 dataset that contains 804,414 newswire

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 26

Legal/JudicialLeading
Economic
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government
Borrowings

Disasters and
Accidents

Energy Markets

Autoencoder 2-D Code SpaceLSA 2-D Code Space

Figure 3.10:Left : The codes produced by the 2-dimensional LSA.Right: The codes produced by a 2000-500-
250-125-2 autoencoder.

stories, manually categorized into 103 topics. The data wassplit randomly into 402,212 training and
402,212 test documents. We trained a 2000-500-250-125-10 autoencoder, where each document was
represented as a vector containing 2000 most frequently used words in the training dataset. When pre-
training the first layer, the word-count vectors were modelled by the Replicated Softmax model. For the
fine-tuning stage, we divided the count vector by the number of words, so that it represented a probabil-
ity distribution across words, and then used the cross-entropy error function with a softmax at the output
layer. Figure 3.9 shows that when we use the cosine of the angle between two codes to measure sim-
ilarity, the autoencoder significantly outperforms LatentSemantics Analysis (LSA) (Deerwester et al.
[1990]), a well-known document retrieval method based on singular value decomposition. Even prior
to fine-tuning, the autoencoder outperforms LSA. Figure 3.10 further shows that the two-dimensional
codes produced an autoencoder are much better organized, compared to the codes produced by LSA.

3.2.3 Discussion

Together with pretraining, nonlinear autoencoders can be very effective for nonlinear dimensionality
reduction. Unlike non-parametric methods, such as LLE (Roweis and Saul [2000]), ISOMAP (Tenen-
baum et al. [2000]), or t-SNE (van der Maaten and Hinton [2009]), autoencoders provide mappings
in both directions between the data and code spaces. They canalso be applied to very large datasets,
because both the pretraining and fine-tuning scale linearlyin time and space with the number of training
cases. In the next section we show how a network with multiplelayers and with hundreds of thousands
of parameters can be trained to discover “semantic” binary codes, so that similar input vectors will have
similar binary codewords. This, in turn, will allow us to very quickly and accurately retrieve a set of
documents that are similar to a given query document.

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 27

3.3 Document Retrieval

One of the most popular and widely used algorithms for retrieving documents that are similar to a
query document is TF-IDF (Salton and Buckley [1988], Salton[1991]), which measures the similarity
between documents by comparing their word-count vectors. The similarity metric weights each word
by both its frequency in the query document (Term Frequency)and the logarithm of the reciprocal of its
frequency in the whole set of documents (Inverse Document Frequency). TF-IDF, however, has several
major limitations: it computes document similarity directly in the word-count space, and it assumes that
the counts of different words provide independent evidenceof similarity.

To remedy these drawbacks, numerous models for capturing low-dimensional, latent representa-
tions have been proposed and successfully applied in the domain of information retrieval. A simple
and widely-used method is Latent Semantic Analysis (LSA) (Deerwester et al. [1990]), which extracts
low-dimensional semantic structure using SVD decomposition to get a low-rank approximation of the
word-document co-occurrence matrix. This allows documentretrieval to be based on “semantic” con-
tent rather than just on individually weighted words. LSA, however, is very restricted in the types of
semantic content it can capture because it is a linear method, so it can only capture pairwise correlations
between words. A probabilistic version of LSA (pLSA) was introduced by Hofmann [1999], using the
assumption that each word is modeled as a sample from a document-specific multinomial mixture of
word distributions. A proper generative model at the level of documents, Latent Dirichlet Allocation,
was introduced by Blei et al. [2003].

These probabilistic models can be viewed as graphical models in which hidden topic variables have
directed connections to variables that represent word-counts. Their major drawback is that exact infer-
ence is intractable due to explaining away, so they have to resort to slow or inaccurate approximations
to compute the posterior distribution over topics. This makes it difficult to fit the models to data. Also,
as Welling et al. [2005] point out, fast inference is important for information retrieval. To achieve this,
they introduce a class of two-layer undirected graphical models that generalize Restricted Boltzmann
Machines (RBM’s) to exponential family distributions. This allows them to model non-binary data
and to use non-binary latent variables. Maximum likelihoodlearning is intractable in these models,
but learning can still be performed by using Contrastive Divergence (Hinton [2002]). Several further
developments of these undirected models (Gehler et al. [2006], Xing et al. [2005]) show that they are
competitive in terms of retrieval accuracy with their directed counterparts.

All of the above models, however, have several important limitations. First, there are limitations on
the types of structure that can be represented efficiently bya single layer of hidden variables. We have
already seen in section 3.2 that a network with many hidden layers and with hundreds of thousands of
parameters can discover latent representations that work much better for information retrieval. Second,
many of the existing retrieval algorithms are based on computing a similarity measure between a query
document and other documents in the collection. The similarity is computed either directly in the word
space or in a low-dimensional latent space. Typically, the larger the size of document collection, the
longer it will take to search for relevant documents.

3.3.1 Semantic Hashing

Using the two-stage learning procedure, introduced in section 3.2, we can build an autoencoder that
learns to map documents into “semantic” binary codes. We call this model Semantic Hashing. By
using learned binary codes as memory addresses, we can effectively learn asemantic address space,
so a document can be mapped to a memory address in such a way that a small hamming-ball around
that memory address contains semantically similar documents, as shown in Fig. 3.11, left panel. This
representation will allow us to retrieve a short-list of semantically similar documents on very large

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 28

Semantically
Similar
Documents

Document

Address Space

Semantic
Hashing
Function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

5

Activation Probabilities

Pretrained

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

5

Activation Probabilities

Fine−tuned

Figure 3.11:Left : A schematic representation of Semantic Hashing.Right: The distribution of the activities
of the 128 code units on the 20-newsgroups training data before and after fine-tuning with backpropagation and
deterministic noise.

document sets in time independent of the number of documents. The short-list can then be given to a
slower but more precise retrieval method, such as TF-IDF.

Making the codes binary

During the pretraining stage, the bottom layer RBM is trained using a Replicated Softmax model, while
the remaining RBM’s in the stack use logistic units. During the fine-tuning, we want to find codes that
are good at reconstructing the data but are as close to binaryas possible. To make the codes binary, we
add Gaussian noise to the bottom-up input received by each code unit2. Let us assume that the output
of the decoder network is not very sensitive to small changesin the output of a code unit. Then the
best way to communicate information in the presence of addednoise is to make the bottom-up input
received by a code unit be either very large and negative or very large and positive. Figure 3.11, right
panel, shows that this is what the fine-tuning does.

To prevent the added Gaussian noise from messing up the conjugate gradient fine-tuning, we used
“deterministic noise” with mean zero and standard deviation 4, chosen by cross-validation. For each
training case, the sampled noise values are fixed in advance and do not change during training. After
fine-tuning, the codes were thresholded to produce binary code vectors. The asymmetry between0 and
1 in the energy function of an RBM causes the unthresholded codes to have many more values near
0 than near1, so we used a threshold of0.1. We also experimented with various values for the noise
variance and the threshold. Our results are fairly robust tovariations in these parameters and also to
variations in the number of layers and the number of units in each layer.

3.3.2 Experimental Results

To evaluate performance of our model on an information retrieval task we use Precision-Recall curves,
where we define:

Recall =
Number of retrieved relevant documents
Total number of all relevant documents

Precision=
Number of retrieved relevant documents

Total number of retrieved documents
2We tried other ways of encouraging the code units to be binary, such as penalizing the entropy

−p log p − (1 − p) log (1 − p) for each code unit, but Gaussian noise worked better.

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 29

comp.graphics

rec.sport.hockey

sci.cryptography

soc.religion.christian

talk.politics.guns

talk.politics.mideast

Accounts/Earnings

Government Borrowing

European Community
Monetary/Economic

Disasters and Accidents

Energy Markets

20-newsgroups Reuters RCV1-v2

Figure 3.12:A 2-dimensional embedding of the 128-bit codes using stochastic neighbor embedding for the 20-
newsgroups data (left panel) and the Reuters RCV1-v2 corpus(right panel). See in color for better visualization.

To decide whether a retrieved document is relevant to the query document, we simply look to see
if they have the same class label. This is the only time that the class labels are used. Results of Gehler
et al. [2006] show that pLSA and LDA models do not generally outperform LSA and TF-IDF. Therefore
for comparison we only used LSA and TF-IDF as benchmark methods. For LSA each word count,ci,
was replaced bylog(1 + ci) before the SVD decomposition, which slightly improved performance. For
both these methods we used the cosine of the angle between twovectors as a measure of their similarity.

Description of the Text Corpora

We present experimental results for document retrieval on two text datasets: 20-newsgroups and Reuters
RCV1-v2. The 20-newsgroups corpus contains 18,845 postings taken from the Usenet newsgroup col-
lection. The corpus is partitioned fairly evenly into 20 different newsgroups, each corresponding to a
separate topic. The data was split by date into 11,314 training and 7,531 test articles, so the training
and test sets were separated in time. The training set was further randomly split into 8,314 training and
3,000 validation documents. We only considered the 2000 most frequently used words in the training
dataset. As a result, each posting was represented as a vector containing 2000 word counts.

The Reuters RCV1-v2 corpus, which we used in two previous sections, is an archive of 804,414
newswire stories that have been manually categorized into 103 topics. Sample topics are displayed in
Fig. 3.12. The data was randomly split into 402,207 trainingand 402,207 test articles. The training
set was further randomly split into 302,207 training and 100,000 validation documents. We only used
the 2000 most frequently used words in the training dataset.More detailed description of these two
document corpora can be found in Appendix A.

Results using 128-bit codes

For both datasets we used a 2000-500-500-128 architecture.To see whether the learned 128-bit codes
preserve class information, we used stochastic neighbor embedding (Hinton and Roweis [2002]) to
visualize the 128-bit codes of all the documents from 5 and 6 separate classes. Figure 3.12 shows that
for both datasets the 128-bit codes preserve the class structure of the documents.

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 30

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

60

70

80

90

Recall (%)

P
re

ci
si

on
 (

%
)

Fine−tuned 128−bit codes
LSA 128
Binarized LSA 128

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

60

70

80

90

Recall (%)

P
re

ci
si

on
 (

%
)

LSA 128
TF−IDF
TF−IDF using 128−bit
codes for prefiltering

20-newsgroups

Figure 3.13:Precision-Recall curves for the 20-newsgroups dataset, when a query document from the test set is
used to retrieve other test set documents, averaged over all7,531 possible queries.

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Fine−tuned 128−bit codes
LSA 128

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

LSA 128
TF−IDF
TF−IDF using 128−bit
codes for prefiltering

Reuters RCV1-v2

Figure 3.14:Precision-Recall curves for the Reuters RCV1-v2 dataset, when a query document from the test set
is used to retrieve other test set documents, averaged over all 402,207 possible queries.

In addition to requiring very little memory, binary codes allow very fast search because fast bit
counting routines3 can be used to compute the Hamming distance between two binary codes. On a
3GHz Intel Xeon running C, for example, it only takes 3.6 milliseconds to search through 1 million
documents using 128-bit codes. The same search takes 72 milliseconds for 128-dimensional LSA.

Figures 3.13 and 3.14, left panels, show that the learned 128-bit codes are better at document re-
trieval than the 128 real-values produced by LSA. We also tried thresholding the 128 real-values pro-
duced by LSA to get binary codes. The thresholds were set so that each of the 128 components was a
0 for half of the training set and a 1 for the other half. The results of Fig. 3.13 reveal that binarizing
LSA significantly reduces its performance. This is hardly surprising since LSA has not been optimized
to make the binary codes perform well.

TF-IDF was slightly more accurate than our 128-bit codes when retrieving the top few documents
in either dataset. If, however, we use the 128-bit codes to preselect the top 100 documents for the
20-newsgroups data or the top 1000 for the Reuters data, and then re-rank these preselected docu-
ments using TF-IDF, we get better accuracy than running TF-IDF alone on the whole document set (see

3Code is available at http://www-db.stanford.edu/∼manku/bitcount/bitcount.html

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 31

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

TF−IDF
TF−IDF using 20 bits
TF−IDF using 20 bits
and 128 bits
Locally Sensitive Hashing

Accounts/Earnings

Government
Borrowing

European Community
Monetary/Economic

Disasters and
Accidents

Energy Markets

Reuters RCV1-v2

Figure 3.15: Left: Precision-Recall curves for the Reuters RCV1-v2 dataset, when a query document from
the test set is used to retrieve other test set documents, averaged over all 402,207 possible queries.Right: A
2-dimensional embedding of the 20-bit codes using stochastic neighbor embedding for the Reuters RCV1-v2
corpus.

Figs. 3.13 and 3.14, right panels). This means that some documents that TF-IDF would have considered
a very good match to the query document have been correctly eliminated by using the 128-bit codes as
a filter.

Results using 20-bit codes

Using 20-bit codes, we also checked whether our learning procedure could discover a way to model
similarity of count-vectors by similarity of 20-bit codewords that was good enough to allow high pre-
cision and retrieval for our set of 402,207 test documents. After learning to assign 20-bit addresses to
the training documents, we compute the 20-bit address of each test document and place a pointer to the
document at its address.4

For the 402,207 test documents, a 20-bit address space givesa density of about 0.4 documents per
address. For a given query document, we compute its 20-bit address and then retrieve all of the docu-
ments stored in a hamming ball of radius 4 (about6196 × 0.4 ≅ 2500 documents) without performing
any search at all. Figure 3.15 shows that neither precision nor recall is lost by restricting TF-IDF to this
fixed, preselected set.

Using a simple implementation of Semantic Hashing in C, it takes about 0.5 milliseconds to create
the short-list of about 3000 semantically similar documents (hamming-ball of radius 4) and about 0.01
seconds to retrieve the top few matches from that short-listusing TF-IDF. Locality Sensitive Hashing
(LSH) (Datar et al. [2004], Andoni and Indyk [2006]) takes about 0.5 seconds to perform the same
search using E2LSH 0.1 software, provided by Alexandr Andoni and Piotr Indyk. Also, LSH is an ap-
proximation to nearest-neighbor matching in the word-count space, so it cannot be expected to perform
better than TF-IDF and it generally performs slightly worse. Figure 3.15 shows that using Seman-
tic Hashing as a filter, in addition to being much faster, achieves higher accuracy than either LSH or
TF-IDF applied to the whole document set.

We can also use a two-stage filtering procedure by first retrieving documents using 20-bit addresses
in a hamming ball of larger radius 6 (about 24317 documents),filter these down to 1000 using 128-

4We actually start with a pointer tonull at all addresses and then replace it by a one-dimensional array that contains pointers
to all the documents that have that address.

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 32

bit codes, and then apply TF-IDF. This two-stage method achieves higher precision and better recall
compared to a single stage Semantic Hashing as shown in Fig. 3.15.

Semantic Hashing for Large Document Collections

For a billion documents, a 30-bit address space gives a density of about 1 document per address and
Semantic Hashing only requires a few Gigabytes of memory. Using a hamming-ball of radius 5 around
the address of a query document, we can create a long “shortlist” of about 175,000 similar documents
with no search at all. The items in the long shortlist could befurther filtered using, for example, 128-bit
binary codes produced by an autoencoder. Using stochastic gradient descent, scaling up the learning to
a billion training cases would not be particularly difficult. Indeed, Semantic Hashing has already been
scaled up and successfully applied to large image retrievaltasks that use 13 million images downloaded
from the web (Torralba et al. [2008]).

3.3.3 Discussion

By treating the learned binary codes as memory addresses, wecan find semantically similar documents
in a time that is independent of the size of the document collection. Our results show that using using
Semantic Hashing as a filter for TF-IDF, we can achieve higherprecision and recall than TF-IDF or
Locality Sensitive Hashing applied to the whole document collection.

One additional way to improve model performance is to regularize the code space using label in-
formation when it is available. This can be accomplished by forcing the codes for data points of the
same label to lie close to each other in the code space, which leads to the idea of supervised learning of
nonlinear mappings.

3.4 Learning Nonlinear Mappings that Preserve Class Neighbourhood
Structure

Learning a similarity measure or distance metric over the input spaceX is an important task in machine
learning. A good similarity measure can provide insight into how high-dimensional data is organized
and it can significantly improve the performance of algorithms like K-nearest neighbours (KNN) that
are based on computing distances (Cover and Hart [1967]).

For any given distance metricD (e.g. Euclidean) we can measure similarity between two input
vectorsxi, xj ∈ X by computingD[F (xi;W), F (xj ;W)], whereF (x;W) is a functionF : X → Z

mapping the input vectors inX into a feature spaceZ. As noted by Globerson and Roweis [2005],
learning a similarity measure is closely related to the problem of feature extraction, since for any fixed
D, any feature extraction algorithm can be thought of as learning a similarity metric. Previous work
studied the case whenD is Euclidean distance andF (x;W) is a simple linear projectionF (x;W) =
Wx. The Euclidean distance in the feature space is then the Mahalanobis distance in the input space:

D[F (xi), F (xj)] = (xi − xj)
⊤ W⊤W (xi − xj) . (3.11)

Linear discriminant analysis (LDA) learns the matrixW that minimizes the ratio of within-class
distances to between-class distances. Goldberger et al. [2004] learned the linear transformation that
optimized the performance of KNN in the resulting feature space. This differs from LDA because it
allows two members of the same class to be far apart in the feature space as long as each member of
the class is close to K other class members. Globerson and Roweis [2005] learned the matrixW such
that the input vectors from the same class mapped to a tight cluster. They showed that their method

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 33

approximates the local covariance structure of the data andis not based on a Gaussian assumption as
opposed to LDA that uses the global covariance structure. Weinberger et al. [2005] also learnedW with
the twin goals of making the K-nearest neighbours belong to the same class and making examples from
different classes be separated by a large margin. They succeeded in achieving a test error rate of 1.3%
on the MNIST dataset.

A linear transformation has a limited number of parameters and it cannot model higher-order cor-
relations between the original data dimensions. As shown insections 3.2 and 3.3, using a nonlinear
transformation functionF (x;W), we can discover low-dimensional representations that work much
better than existing linear methods provided the dataset islarge enough to allow the parameters to be
estimated. Using greedy unsupervised learning algorithm,we can train a multilayer, nonlinear encoder
network that transforms the input data vectorx into a low-dimensional feature representationF (x;W).
After the initial pretraining, the parameters can be fine-tuned by performing gradient descent in the
Neighbourhood Component Analysis (NCA) objective function, introduced by Goldberger et al. [2004].
The learning results in a nonlinear transformation of the input space that has been optimized to make
KNN perform well in the low-dimensional feature space.

3.4.1 Learning Nonlinear NCA

We are given a set ofN labeled training cases(xi, ci), i = 1, 2, ...,N , wherexi ∈ R
D, andci ∈

{1, 2, ..., C}. For each training vectorxi, define the probability that pointi selects one of its neighbours
j in the transformed feature space as:

pij =
exp (−d2

ij)∑
z 6=i exp (−d2

iz)
, pii = 0. (3.12)

We focus on the Euclidean distance metric:

dij = ‖ F (xi;W)− F (xj ;W) ‖,

andF (·;W) is a multilayer neural network parameterized by the weight vectorW . In the NCA model,
the probability that pointi belongs to classk depends on the relative proximity of all other data points
that belong to classk:

p(ci = k) =
∑

j:cj=k

pij. (3.13)

The NCA objective is to maximize the expected number of correctly classified points on the training
data:

ONCA =

N∑

i=1

∑

j:ci=cj

pij . (3.14)

One could alternatively maximize the sum of the log probabilities of correct classification:

OLG =

N∑

i=1

log



∑

j:ci=cj

pij


 . (3.15)

WhenF (x;W) = Wx is constrained to be a linear transformation, we get linear NCA (Goldberger
et al. [2004]). WhenF (x;W) is defined by a multilayer, nonlinear neural network, we can explore a

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 34

 1 3 5 7

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Number of Nearest Neighbours

T
es

t E
rr

or
 (

%
)

Nonlinear NCA 30D
Linear NCA 30D
Autoencoder 30D
PCA 30D

1

2
3

4

5
6

7

8
9

0

Linear NCA LDA PCA

Figure 3.16:Top right: The 2-dimensional codes produced by nonlinear NCA on the MNIST test data using a
784-500-500-2000-2 encoder.Bottom: The 2-dimensional codes produced by linear NCA, Linear Discriminant
Analysis, and PCA.

much richer class of transformations by backpropagating the derivatives of the objective functions in
Eq. 3.14 or 3.15 with respect to parameter vectorW through the layers of the encoder network. In
our experiments, the NCA objectiveONCA of Eq. 3.14 worked slightly better thanOLG. We suspect
that this is becauseONCA is more robust to handling outliers.OML, on the other hand, would strongly
penalize configurations where a point in the feature space does not lie close to any other member of its
class.

Denotedij = F (xi;W)−F (xj ;W), then the derivatives ofONCA with respect to parameter vector
W for theith training case are:

∂ONCA

∂W
=

∂ONCA

∂F (xi;W)

∂F (xi;W)

∂W
,

where

∂ONCA

∂F (xi;W)
= −2



∑

j:ci=cj

pij


dij −

∑

z 6=i

pizdiz




+ 2



∑

j:cj=ci

pjidji −
∑

z 6=i



∑

q:cz=cq

pzq


 pzidzi


 ,

and ∂F (xi;W)
∂W

is computed using standard backpropagation.

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 35

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

ci
si

on
 (

%
)

Nonlinear NCA 10D
Linear NCA 10D
Autoencoder 10D
LDA 10D
LSA 10D

atheism

comp.hardware

comp.windows
rec.autos

rec.hockey

sci.cryptography

sci.space

religion.christian

Figure 3.17:Left: Precision-Recall curves for the 20-newsgroups dataset when a query document from the test
set is used to retrieve other test set documents, averaged over all 7,531 possible queries.Right: The 2-dimensional
codes produced by nonlinear NCA on test dataset using 2000-500-500-2 encoder.

3.4.2 Experimental Results

In this section we present experimental results for the MNIST and 20-newsgroup datasets. For the
MNIST dataset, we pretrained a 28×28-500-500-2000-30 architecture. The 30 code units were linear
and the remaining hidden units were logistic. Figure 3.16 shows that Nonlinear NCA, after 50 epochs
of fine-tuning, achieves an error rate of 1.08%, 1.00%, 1.03%, and 1.01% using 1, 3, 5, and 7 near-
est neighbours. This is compared to the best reported error rates (without using any domain-specific
knowledge) of 1.6% for randomly initialized backpropagation and 1.4% for Support Vector Machines
(Decoste and Schölkopf [2002]). Linear methods such as linear NCA or PCA are much worse than
nonlinear NCA. Figure 3.16, right panel, shows the 2-dimensional codes produced by nonlinear NCA
compared to linear NCA, Linear Discriminant Analysis, and PCA.

For the 20-newsgroups dataset we used 2000-500-500-10 architecture. The 10 code units were
linear and the remaining hidden units were logistic. Figure3.17 shows that Nonlinear NCA significantly
outperforms other standard methods that use labeled data such as NCA and LDA, and other methods
that do not use labeled data such as Latent Semantic Analysis(LSA), and a deep autoencoder of the
same architecture. Clearly, additional labeled data can improve model performance.

3.4.3 Regularized Nonlinear NCA

The NCA objective, which encourages codes to lie close to other codes belonging to the same class, can
be combined with the autoencoder objective function (see Fig. 3.18, left panel) to maximize:

C = λONCA + (1− λ)(−E), (3.16)

whereONCA is defined in Eq. 3.14,E is the reconstruction error, andλ is a trade-off parameter. When
the derivative of the reconstruction errorE is backpropagated through the autoencoder, it is combined,
at the code level, with the derivatives ofONCA.

This setting is particularly useful for semi-supervised learning tasks. Consider having a set ofNl

labeled training data(xl, cl), where as beforexl ∈ R
D, andcl ∈ {1, 2, ..., C}, and a set ofNu unlabeled

training dataxu. Let N = Nl + Nu. The overall objective to maximize can be written as:

O = λ
1

Nl

Nl∑

l=1

∑

j|cl=cj

plj + (1− λ)
1

N

N∑

n=1

(−En) , (3.17)

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 36

 1 3 5 7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

Number of Nearest Neighbours

T
es

t E
rr

or
 (

%
)

Regularized NCA (λ=0.99)
Nonlinear NCA 30D (λ=1)
Linear NCA 30D
Autoencoder 30D (λ=0)
KNN in pixel space

 1 3 5 7
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Nearest Neighbours

T
es

t E
rr

or
 (

%
)

Regularized NCA (λ=0.99)
Nonlinear NCA 30D (λ=1)
Linear NCA 30D
Autoencoder 30D (λ=0)
KNN in pixel space

 1 3 5 7
2

2.5

3

3.5

4

4.5

5

5.5

6

Number of Nearest Neighbours

T
es

t E
rr

or
 (

%
)

Regularized NCA (λ=0.999)
Nonlinear NCA 30D (λ=1)
Linear NCA 30D
Autoencoder 30D (λ=0)
KNN in pixel space

1% labels 5% labels 10% labels

Figure 3.18:KNN on the MNIST test set when only a small fraction of class labels is available. Linear NCA
and KNN in pixel space do not take advantage of the unlabeled data.

whereEn is the reconstruction error for the input data vectorxn. For the MNIST dataset we use the
cross-entropy error:

Ep = −
∑

i

xn
i log x̂n

i −
∑

i

(1− xn
i) log(1− x̂n

i), (3.18)

wherexn
i ∈ [0, 1] is the intensity of pixeli for the training examplen, and x̂n

i is the intensity of its
reconstruction.

When the number of labeled examples is small, regularized nonlinear NCA performs better than
nonlinear NCA (λ = 1), which uses the unlabeled data for pretraining but ignoresit during the fine-
tuning. It also performs better than an autoencoder (λ = 0), which ignores the labeled set. To test
the effect of the regularization when most of the data is unlabeled, we randomly sampled 1%, 5% and
10% of the handwritten digits in each class and treated them as labeled data. The remaining digits were
treated as unlabeled data. Figure 3.18 reveals that regularized nonlinear NCA (λ = 0.99) outperforms
both nonlinear NCA (λ = 1) and an autoencoder (λ = 0). The parameterλ was selected using cross-
validation from among the values{0.5, 0.9, 0.99, 0.999}. Even when the entire training set is labeled,
regularized NCA still performs slightly better. In Chapter5 we will show that other deep models can
outperform regularized nonlinear NCA, even when the numberof labeled examples is small.

Splitting codes into class-relevant and class-irrelevantparts

To allow accurate reconstruction of a digit image, the code must contain information about aspects of
the image such as its orientation, slant, size and stroke thickness that are not relevant to its classifica-
tion. These irrelevant aspects necessarily contribute to the Euclidean distance between codes and harm
classification. To reduce this unwanted effect, we used 50-dimensional codes but only used the first
30 dimensions in the NCA objective function. The remaining 20 dimensions were free to code all the
aspects of an image that do not affect its class label but are important for its reconstruction.

Figure 3.18, right panel, shows how the reconstruction is affected by changing the activity level of
a single code unit. Changing a unit among the first 30 changes the class, while changing a unit among
the last 20 does not. Withλ = 0.99 the split codes achieve an error rate of 1.00% 0.97% 0.98% 0.97%
using 1, 3, 5, and 7 nearest neighbours. We also computed the 3NN error rate on the test set using only
the last 20 code units. It was 4.3%, clearly indicating that the class-relevant information is concentrated
in the first 30 units.

CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 37

30 20 30 20

.......

.......

.......

.......
λ*NCA

(1− λ) ∗ E

Figure 3.18:Left: The NCA objective function is only applied to the first
30 code units, but all 50 units are used for image reconstruction. Right:
The top row shows the reconstructed images as we vary the activation of
code unit 25 from 1 to -23 with a stepsize of 4. The bottom row shows
the reconstructed images as we vary code unit 42 from 1 to -23.

3.4.4 Discussion

Learning a similarity measure over the input space by greedily pretraining and then fine-tuning a deep
nonlinear encoder network can greatly facilitate nearest-neighbor classification. Using the reconstruc-
tion error as a regularizer and split codes to suppress the influence of class-irrelevant information in the
input, nonlinear NCA achieves an error rate of 1.00% on a widely used version of the MNIST hand-
written digit recognition task that does not use any domain-specific knowledge. Furthermore, similar
to learning a covariance kernel for a Gaussian process, the regularized version of nonlinear NCA can
make good use of large amounts of unlabeled data, so the classification accuracy is high even when the
amount of labeled training data is very limited.

Chapter 4

Evaluating Deep Belief Networks as
Density Models

Deep Belief Networks are generative models that contain many layers of hidden variables. Efficient
greedy algorithms for learning and approximate inference have allowed these models to be applied
successfully in many application domains, as we discussed in chapter 3. The main building block of a
DBN is a bipartite undirected graphical model called a Restricted Boltzmann Machine (RBM). Due to
the presence of the partition function exact maximum likelihood learning in RBM’s is intractable, and
model selection and complexity control are difficult. In this chapter we show that a Monte Carlo based
method, Annealed Importance Sampling (AIS), can be used to efficiently estimate the partition function
of an RBM. We further show how an AIS estimator, along with approximate inference, can be used to
estimate a lower bound on the log-probability that a DBN model with multiple hidden layers assigns to
the test data. This allows us to directly assess generalization performance of Deep Belief Networks as
density models.

4.1 Introduction

Deep Belief Networks (DBN’s), reviewed in chapter 2, are probabilistic generative models that contain
several layers of latent variables. The greedy learning algorithm for DBN’s proceeds by learning a
stack of undirected graphical models, called Restricted Boltzmann Machines (RBM’s). A key feature of
RBM’s is that inference in these models is easy. An unfortunate limitation is that the probability of data
under the model is known only up to a computationally intractable normalizing constant – the partition
function. A good estimate of the partition function would allow us to assess generalization performance
of RBM’s and DBN’s as density models. Indeed, assessing the generalization performance plays an
important role in model selection and complexity control. For many specific tasks, such as information
retrieval or object recognition, performance of RBM’s and DBN’s can be directly evaluated (Nair and
Hinton [2009], Bengio et al. [2007], Salakhutdinov and Hinton [2009b]). More broadly, however, the
model’s generalization capability can be evaluated by computing the probability that the model assigns
to the previously unseen input vectors, which is independent of any specific application.

There has been extensive research on obtaining deterministic approximations (Yedidia et al. [2005])
or deterministic upper bounds (Wainwright et al. [2005], Globerson and Jaakkola [2007]) on the log-
partition function of arbitrary discrete Markov random fields (MRF’s). These variational methods rely
critically on an ability to approximate the entropy of the undirected graphical model. However, for
densely connected MRF’s, such as RBM’s, these methods are unlikely to perform well (Salakhutdinov
[2008]). There have also been many developments in the use ofMonte Carlo methods for estimating

38

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 39

the partition function, including Annealed Importance Sampling (AIS) (Neal [2001]), Nested Sampling
(Skilling [2004]), and many others (see e.g. Neal [1993]). In this chapter we show how one such method,
AIS, by taking advantage of the bipartite structure of an RBM, can be used to efficiently estimate its
partition function. We further show that this estimator, along with approximate inference, can be used to
estimate a lower bound on the log-probability that a DBN model with multiple hidden layers assigns to
training or test data. This result will allow us to assess theperformance of DBN’s as generative models
and to compare them to other probabilistic models, such as plain mixture models.

4.2 Estimating Partition Functions

Suppose we have two distributions defined on some spaceX with probability density functionsPA(x) =
P ∗

A(x)/ZA andPB(x) = P ∗
B(x)/ZB , whereP ∗(·) denotes the unnormalized probability density. Let

ΩA andΩB be the support sets ofPA andPB respectively. One way of estimating the ratio of normal-
izing constants is to use a simple importance sampling (SIS)method. We use the following identity,
assuming thatΩB ⊆ ΩA, i.e. PA(v) 6= 0 wheneverPB(v) 6= 0:

ZB

ZA

=

∫
P ∗

B(x)dx

ZA

=

∫
P ∗

B(x)

P ∗
A(x)

PA(x)dx = EPA

[
P ∗

B(x)

P ∗
A(x)

]
.

Assuming we can draw independent samples fromPA, an unbiased estimate of the ratio of partition
functions can be obtained by using a simple Monte Carlo approximation:

ZB

ZA
≈ 1

M

M∑

i=1

P ∗
B(x(i))

P ∗
A(x(i))

≡ 1

M

M∑

i=1

w(i) = r̂SIS, (4.1)

wherex(i) ∼ PA. If we choosePA(x) to be a tractable distribution for which we can computeZA

analytically, we obtain an unbiased estimate of the partition functionZB. However, ifPA andPB are
not close enough, the estimatorr̂SIS will be very poor. In high-dimensional spaces, the varianceof an
estimatorr̂SIS will be very large, or possibly infinite (see MacKay [2003], chapter 29), unlessPA is a
near-perfect approximation toPB .

4.2.1 Annealed Importance Sampling (AIS)

Suppose that we can define a sequence of intermediate probability distributions: P0, ..., PK , with P0 =
PA andPK = PB , which satisfy the following conditions:

C1 Pk(x) 6= 0 wheneverPk+1(x) 6= 0.

C2 We must be able to easily evaluate the unnormalized probability P ∗
k (x), ∀x ∈ X , k = 0, ...,K.

C3 For eachk = 1, ...,K−1, we must be able to draw a samplex′ givenx using a Markov chain
transition operatorTk(x

′←x) that leavesPk(x) invariant:

∫
Tk(x

′←x)Pk(x)dx = Pk(x
′). (4.2)

C4 We must be able to draw (preferably independent) samples from PA.

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 40

Algorithm 3 Annealed Importance Sampling (AIS) run.
1: Selectβk with 0 = β0 < β1 < ... < βK = 1.
2: Samplex1 from PA = P0.
3: for k = 1 : K − 1 do
4: Samplexk+1 givenxk usingTk(xk+1←xk).
5: end for
6: SetwAIS =

∏K

k=1
P ∗

k (xk)/P ∗

k−1(xk).

The transition operatorsTk(x
′←x) represent the probability or probability density of transitioning from

statex to x′. Constructing a suitable sequence of intermediate probability distributions will depend on
the problem. One general way to define this sequence is to set:

Pk(x) ∝ P ∗
A(x)1−βkP ∗

B(x)βk , (4.3)

with 0 = β0 < β1 < ... < βK = 1 chosen by the user.
A single run of the AIS procedure is summarized in Algorithm 3. Note that there is no need to

compute the normalizing constants of any intermediate distributions. After performingM runs of AIS,
the importance weightsw(i)

AIS can be substituted into Eq. 4.1 to obtain an estimate of the ratio of partition
functions:

ZB

ZA

≈ 1

M

M∑

i=1

w
(i)
AIS = r̂AIS. (4.4)

It is shown in (Neal [2001, 2005]) that for sufficiently largenumber of intermediate distributionsK,
the variance of̂rAIS will be proportional to1/MK. ProvidedK is kept large, the total amount of
computation can be split in any way between the number of intermediate distributionsK and the number
of annealing runsM without adversely affecting the accuracy of the estimator.If samples drawn from
pA are independent, the AIS runs can be used to obtain the variance of the estimatêrAIS:

Var(r̂AIS) =
1

M
Var
(
w

(i)
AIS

)
≈ ŝ2

M
= σ̂2, (4.5)

whereŝ2 is estimated simply from the sample variance of the importance weights.
The intuition behind AIS is the following. Consider the following identity:

ZK

Z0
=
Z1

Z0

Z2

Z1
...
ZK

ZK−1
. (4.6)

Provided the two intermediate distributionsPk andPk+1 are close enough, a simple importance sampler
can be used to estimate each ratioZk+1/Zk:

Zk+1

Zk

≈ 1

M

M∑

i=1

P ∗
k+1(x

(i))

P ∗
k (x(i))

, where x(i) ∼ Pk.

These ratios can then be used to estimateZK

Z0
=
∏K−1

k=0
Zk+1

Zk
. The problem with this approach is that,

except forP0, we typically cannot easily draw exact samples from intermediate distributionsPk. We
could resort to Markov chain methods, but then it is hard to determine when the Markov chain has
converged to the desired distribution.

A remarkable fact shown by Neal [2001], Jarzynski [1997] is that the estimate ofZK/Z0 will be ex-
actly unbiased if each ratioZk+1/Zk is estimated usingM = 1, and a new sample is obtained by using

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 41

Markov chain starting at the previous sample. The proof of this fact relies on the observation that the AIS
procedure is just a simple importance sampling defined on theextended state spaceX=(x1,x2, ...,xK).
Indeed, AIS starts by first sampling from distributionP0(x) and then applying a series of transition op-
eratorsT1, T2, . . . , TK−1 that “move” the sample through the intermediate distributionsPk(x) towards
the target distributionPK(x). The probability of the resultant state sequenceX is given by:

Q(X) = P0(x1)

K−1∏

k=1

Tk(xk+1←xk). (4.7)

We can viewQ(X) as a proposal distribution for the target distributionP(X) on the extended spaceX.
This target distribution is defined by the reverse AIS procedure:

P(X) = PK(xK)
K−1∏

k=1

T̃k(xk←xk+1), (4.8)

whereT̃k are the reverse transition operators:

T̃k(x
′←x) = Tk(x←x′)

Pk(x
′)

Pk(x)
. (4.9)

If Tk is reversible theñTk is the same asTk. Due to invariance ofPk with respect toTk (Eq. 4.2), the
reverse transition operators are valid transition probabilities, which ensures that the marginal distribution
overxK in Eq. 4.8 is the correct distribution of interestPK(xK). Denoting the unnormalized proposal
and target distributions asQ∗(X) = Z0Q(X) andP∗(X) = ZKP(X), the importance weight can be
found using Eq. 4.1:

w =
P∗(X)

Q∗(X)
=
ZKP(X)

Z0Q(X)
=
ZKPK(xK)

∏K−1
i=1 T̃k(xk←xk+1)

Z0P0(x1)
∏K−1

k=1 Tk(xk+1←xk)

=
P ∗

K(xK)

P ∗
0 (x1)

K−1∏

k=1

P ∗
k (xk)

P ∗
k (xk+1)

=

K∏

k=1

P ∗
k (xk)

P ∗
k−1(xk)

, (4.10)

which are the weights provided by the AIS algorithm. Observethat the Markov transition operators do
not necessarily need to be ergodic. In particular, if we wereto choose dumb transition operators that
do nothing,Tk(x

′ ← x) = δ(x′ − x) for all k, we recover the original simple importance sampling
procedure.

4.2.2 Ratios of Partition Functions of two RBM’s

As discussed in section 2.1, a Restricted Boltzmann Machinehas a two-layer architecture in which the
visible, binary stochastic unitsv ∈ {0, 1}D are connected to hidden binary stochastic unitsh ∈ {0, 1}F .
The energy of the state{v,h} is:

E(v,h; θ) = −v⊤Wh−b⊤v−a⊤h

= −
D∑

i=1

F∑

j=1

Wijvihj−
D∑

i=1

bivi−
F∑

j=1

ajhj, (4.11)

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 42

whereθ = {W,b,a} are the model parameters. The probability that the model assigns to a visible
vectorv is:

P (v; θ) =
1

Z(θ)

∑

h

exp (−E(v,h; θ))

=
1

Z(θ)
exp(b⊤v)

F∏

j=1

(
1 + exp

(
aj +

D∑

i=1

Wijvi

))
. (4.12)

Suppose we have two RBM’s with parameter valuesθA = {W A,bA,aA} andθB = {W B ,bB ,aB}
that define probability distributionsPA and PB over V ∈ {0, 1}D . Each RBM can have a different
number of hidden unitshA ∈ {0, 1}FA andhB ∈ {0, 1}FB . Using Eq. 4.12, we could define generic
AIS intermediate distributions on the state spacex = {v}, as defined in Eq. 4.3. However, sampling
from these intermediate distributions would be slower thansampling from an RBM. Instead, we can
make use of the bipartite structure of an RBM by introducing the following sequence of distributions
for k = 0, ...,K:

Pk(v) =
P ∗

k (v)

Zk

=
1

Zk

∑

h

exp (−Ek(v,h)), (4.13)

where the energy function is given by:

Ek(v,h) = (1− βk)E(v,hA; θA) + βkE(v,hB ; θB), (4.14)

with 0 = β0 < β1 < ... < βK = 1 and h = {hA,hB}. For i = 0, we haveβ0 = 0 and so
P0 = PA. Similarly, for i = K, we havePK = PB . For the intermediate values ofk, we will have
some interpolation betweenPA andPB .

Let us now define a Markov chain transition operatorTk(v
′←v) that leavesPk(v) invariant. Using

Eqs. 4.13, 4.14, it is straightforward to derive a Gibbs sampler. The conditional distributions are given
by logistic functions:

p(hA
j = 1|v) = g

(
(1− βk)

(
∑

i

W A
ij vi + aA

j

))
, (4.15)

p(hB
j = 1|v) = g

(
βk

(
∑

i

W B
ij vi + aB

j

))
, (4.16)

p(v′i = 1|h) = g


(1− βk)



∑

j

W A
ij hA

j + bA
i


+ βk(

∑

j

W B
ij hB

j + bB
i)


 , (4.17)

whereg(x) = 1/(1 + exp(−x)). Givenv, Eqs. 4.15, 4.16 are used to stochastically activate hidden
unitshA andhB . Eq. 4.17 is then used to draw a new samplev′ as shown in Fig. 4.1, left panel. Due to
the special structure of RBM’s, the cost of summing outh is linear in the number of hidden units. We
can therefore easily evaluate:

P ∗
k (v) =

∑

hA,hB

e(1−βk)E(v,hA;θA)+βkE(v,hB ;θB)

= e(1−βk)
P

i bA
i vi




FA∏

j=1

(
1 + e(1−βk)(

P

i W A
ij vi+aA

j)
)

 × eβk

P

i bB
i vi




FB∏

j=1

(
1 + eβk(

P

i W B
ij vi+aB

j)
)

 .

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 43

v v′

(1− βk)W
A βkW

B

βkW
B (1− βk)W

A

hA hB

Model A Model B

P(v|h1;W1)

P(h1,h2;W2)

Figure 4.1:Left: The Gibbs transition operatorTk(v′←v) leavesPk(v) invariant when estimating the ratio of
partition functionsZB/ZA. Right: Two-hidden-layer Deep Belief Network as a generative model.

We will assume that the parameter values of each RBM satisfy|θ| < ∞, in which caseP (v) > 0
for all v ∈ V. This will ensure that condition C1 of the AIS procedure is always satisfied. We have
already shown that conditions C2 and C3 are satisfied. For condition C4, we can run a Gibbs sampler
(Eqs. 2.7, 2.8) to generate samples fromPA. These sample points will not be independent, but the AIS
estimator will still converge to the correct value, provided our Markov chain is ergodic (Neal [2001]).
However, assessing the accuracy of this estimator can be difficult, as it depends on both the variance of
the importance weights and on autocorrelations in the Gibbssampler.

4.2.3 Estimating Partition Functions of RBM’s

In the previous section we showed that we can use AIS to obtainan estimate ofZB/ZA. Consider an
RBM with parameter vectorθA = {0,bA,aA}, i.e. an RBM with a zero weight matrix. From Eq. 4.12,
we know:

ZA =
∏

j

(
1 + eaj

)∏

i

(
1 + ebi

)
. (4.18)

Moreover,

PA(v) =
∏

i

pA(vi) =
∏

i

1/(1 + e−bi),

so we can draw exact independent samples from this “base-rate” RBM. AIS in this case allows us to
obtain anunbiasedestimate of the partition functionZB. This approach closely resembles simulated an-
nealing (Kirkpatrick et al. [1983], Bertsimas and Tsitsiklis [1993]), since the intermediate distributions
of Eq. 4.13 take form:

Pk(v) =
exp

(
(1−βk)

(
vTbA

))

Zk

∑

hB

exp
(
−βkE

(
v,hB ; θB

))
.

We gradually changeβk (the inverse temperature) from 0 to 1, annealing from a simple “base-rate”
model to the final complex model.

4.3 Estimating Lower Bounds for DBN’s

Let us consider the Deep Belief Network with two layers of hidden features shown in Fig. 4.1, right
panel. The model’s joint distribution is:

P (v,h1,h2) = P (v|h1)P (h2,h1), (4.19)

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 44

whereP (v|h1) is the sigmoid belief network (Eq. 2.8), andP (h1,h2) is the joint distribution defined
by the second layer RBM. Note thatP (v|h1) is normalized.

By explicitly summing outh2, we can easily evaluate an unnormalized probabilityP ∗(v,h1) =
ZP (v,h1). Using the approximating factorial distributionQ of Eq. 2.19, which we get as a byproduct
of the greedy learning procedure, and the variational lowerbound of Eq. 2.17, we obtain:

log
∑

h1

P (v,h1) ≥
∑

h1

Q(h1|v) log P ∗(v,h1)− logZ +H(Q(h1|v)) = B(v). (4.20)

The entropy termH(·) can be computed analytically, sinceQ is factorial. The partition functionZ is
estimated by running AIS on the top-level RBM. And the expectation term can be estimated by a simple
Monte Carlo approximation:

∑

h1

Q(h1|v) log P ∗(v,h1) ≈ 1

M

M∑

i=1

log P ∗(v,h1(i)), (4.21)

whereh1(i) ∼ Q(h1|v). The variance of this Monte Carlo estimator will be proportional to 1/M
provided the variance oflog P ∗(v,h1(i)) is finite. In general, we will be interested in calculating the
lower bound averaged over the test set containingNt samples:

1

Nt

Nt∑

n=1

B(vn) ≈ 1

Nt

Nt∑

n=1

[
1

M

M∑

i=1

log p∗(vn,h1(i)) +H(Q(h1|vn))

]
− log Ẑ

= r̂B − log Ẑ = r̂Bound. (4.22)

In this case the variance of the estimator induced by the Monte Carlo approximation will asymptotically
scale as1/(NtM). We will show in the experimental results section that the value of M can be small
providedNt is large. The error of the overall estimatorr̂Bound in Eq. 4.22 will be mostly dominated by
the error in the estimate oflogZ.

Estimating this lower bound for Deep Belief Networks with more layers is now straightforward.
Consider a DBN withL hidden layers. The model’s joint distribution and its approximate factorial
posterior distributionQ are given by (see section 2.2):

P (v,h1, ...,hL) = P (v|h1)...P (hL−2|hL−1)P (hL−1,hL),

Q(h1, ...,hL|v) = Q(h1|v)Q(h2|v)...Q(hL|v).

The estimate of the lower bound can now be obtained by using Eqs. 4.20, 4.22. Note that most of the
computation resources will be spent on estimating the partition functionZ of the top level RBM.

4.4 Experimental Results

In our experiments we used the MNIST digit dataset, which contains 60,000 training and 10,000 test
images of ten handwritten digits (0 to 9), with 28×28 pixels. The dataset was binarized: each pixel
value was stochastically set to 1 in proportion to its pixel intensity. Samples from the training set are
shown in Fig. 4.2, middle left panel. Annealed importance sampling requires us to specifyβk that define
a sequence of intermediate distributions. In all of our experiments this sequence was chosen by quickly
running a few preliminary experiments and picking the spacing ofβk so as to minimize the variance of
the final importance weights. For the base-rate model the biases of the hidden unitsaA were set to zero
(see Eq. 4.18) and the biases of the visible unitsbA were set by maximum likelihood, then smoothed to
ensure thatP (v) > 0, ∀ v ∈ V. In all experiments we obtained unbiased estimates ofẐ and its standard
deviationσ̂ using Eqs. 4.4, 4.5. We also use natural logarithms, providing values in nats. Details of the
Matlab code, used in experiments, can be found in Appendix A.

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 45

Base-rateβ = 0 β = 0.5 β = 0.95 β = 1.0

� �

The course of an AIS run for model CD25(500)

Training samples MoB (100) CD1(500) CD3(500)

CD25(500) DBN-CD1(500)-CD1(2000) DBN-CD3(500)-CD3(2000) DBN-CD25(500)-CD25(2000)

Figure 4.2:Top row: displays the course of 16 AIS runs for CD25(500) model by starting from a simple base-
rate model and annealing to the final complex model.Middle row: First two panels show random samples from
the training set and a mixture of Bernoullis model with 100 components. The last 2 panels display random samples
generated from two RBM’s.Bottom row: Random samples generated from an RBM and three DBN models.

4.4.1 Estimating partition functions of RBM’s

In our first experiment we trained three RBM’s on the MNIST digits. The first two RBM’s had 25 hidden
units and were learned using Contrastive Divergence (subsection 2.1) withT=1 andT=3 respectively.
We call these models CD1(25) and CD3(25). The third RBM had 20hidden units and was learned using
CD with T=1. For all three models we can calculate the exact value of the partition function simply
by summing out the 784 visible units for each configuration ofthe hiddens. For all three models we
used 500βk spaced uniformly from 0 to 0.5, 4,000βk spaced uniformly from 0.5 to 0.9, and 10,000βk

spaced uniformly from 0.9 to 1.0, with a total of 14,500 intermediate distributions.
Table 4.1 shows that AIS can rather quickly provide an accurate estimate of the partition function.

For all three models, using only 10 AIS runs, we were able to obtain good estimates of partition functions
in just 20 seconds on a Pentium Xeon 3.00GHz machine. For model CD1(25), however, the variance of
the estimator was high, even with 100 AIS runs. Figure 4.3, top row, further reveals that as the number
of annealing runs is increased, AIS can almost exactly recover the true value of the partition function
across all three models.

We also directly estimated the ratio of normalizing constants of two RBM’s that have different
numbers of hidden units: CD1(20) and CD1(25). This estimator could be used to do complexity
control. In detail, using 100 AIS runs with uniform spacing of 10,000βk, we obtainedlog r̂AIS =

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 46

Table 4.1:Results of estimating log-partition functions of RBM’s along with the estimates of the average training
and test log-probabilities. For all models we used 14,500 intermediate distributions and 100 AIS runs.

True
Estimates

Time
Avg. Test log-prob. Avg. Train log-prob.

logZ log Ẑ log (Ẑ ± σ̂) log (Ẑ ± 3σ̂) (mins) true estimate true estimate

CD1(25) 255.41 256.52 255.00, 257.10 0.0000, 257.73 3.3 −151.57 −152.68 −152.35 −153.46
CD3(25) 307.47 307.63 307.44, 307.79 306.91, 308.05 3.3 −143.03 −143.20 −143.94 −144.11
CD1(20) 279.59 279.57 279.43, 279.68 279.12, 279.87 3.1 −164.52 −164.50 −164.89 −164.87

CD1(500) — 350.15 350.04, 350.25 349.77, 350.42 10.4 — −125.53 — −122.86
CD3(500) — 280.09 279.99, 280.17 279.76, 280.33 10.4 — −105.50 — −102.81
CD25(500) — 451.28 451.19, 451.37 450.97, 451.52 10.4 — −86.34 — −83.10

 10 100 500 1000 10000
252

253

254

255

256

257

258

259

Number of AIS runs

lo
g

Z

Large Variance

20 sec

3.3 min

17 min

33 min

5.5 hrs

Estimated logZ
True logZ

 10 100 500 1000 10000
304

305

306

307

308

309

310

Number of AIS runs

lo
g

Z

Estimated logZ
True logZ

 10 100 500 1000 10000
276

277

278

279

280

281

282

Number of AIS runs

lo
g

Z

Estimated logZ
True logZ

CD1(25) CD3(25) CD1(20)

 10 100 500 1000 10000
347

348

349

350

351

352

353

Number of AIS runs

lo
g

Z

Large variance

1.1 min
10.4 min

52 min 1.8 hrs 17.4 hrs

 10 100 500 1000 10000
277

278

279

280

281

282

283

Number of AIS runs

lo
g

Z

 10 100 500 1000 10000
448

449

450

451

452

453

Number of AIS runs

lo
g

Z
CD1(500) CD3(500) CD25(500)

Figure 4.3:Estimates of the log-partition functionslog Ẑ as we increase the number of annealing runs. The error
bars showlog (Ẑ ± 3σ̂).

log (ZCD1(20)/ZCD1(25)) =−24.49 with an error estimatelog (r̂AIS ± 3σ̂) = (−24.19,−24.93). Each
sample from CD1(25) was generated by starting a Markov chainat the previous sample and running it
for 10,000 steps. Compared to the true value of−24.18, this result suggests that our estimates may have
a small systematic error due to the Markov chain failing to visit some modes.

Our second experiment consisted of training two more realistic models: CD1(500) and CD3(500).
We used exactly the same spacing ofβk as before and exactly the same base-rate model. Results are
shown in table 4.1, bottom row. For each model we were able to get what appears to be a rather accurate
estimate ofZ. Of course, we are relying on an empirical estimate of AIS’s accuracy, which could
potentially be misleading. Nonetheless, Fig. 4.3, bottom panel, shows that as we increase the number of
annealing runs, the value of the estimator does not oscillate drastically.

While performing these tests, we observed that ContrastiveDivergence learning withT=3 results in
a considerably better generative model than CD learning with T=1: the difference of 20 nats is striking!
Clearly, the widely used practice of CD1 learning is a ratherpoor “substitute” for maximum likelihood

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 47

Table 4.2:Results of estimating lower boundsr̂Bound (Eq. 4.22) on the average training and test log-probabilities
for DBN’s. On average, the total error of the estimator is about± 2 nats.

Estimates Avg. bound on log-prob.

log Ẑ log (Ẑ ± 3σ̂) Test ± 3std Train ± 3std.

DBN-CD1(500)-CD1(2000) 277.33 275.90, 277.90 −100.64 ±0.77 −97.67 ±0.30
DBN-CD3(500)-CD3(2000) 229.92 229.01, 230.23 −98.29 ±0.75 −94.86 ±0.29
DBN-CD25(500)-CD25(2000) 466.70 465.86, 467.35 −86.22 ±0.67 −82.47 ±0.25

learning. Inspired by this result, we trained a model by starting with T=1, and gradually increasingT
to 25 during the course of CD learning, as suggested by Carreira-Perpinan and Hinton [2005]. We call
this model CD25(500). Training this model was computationally much more demanding. However, the
estimate of the average test log-probability for this modelwas about−86, which is 39 and 19 nats better
than the CD1(500) and CD3(500) models respectively. Figure4.2 shows samples generated from all
three models by randomly initializing binary states of the visible units and running the Gibbs sampler
for 100,000 steps. Certainly, samples generated by CD25(500) look much more like the real handwritten
digits, than either CD1(500) or CD3(500).

Using 10,000βk and 100 annealing runs, we also obtained an estimate of the log ratio of two
partition functionsr̂AIS = logZCD25(500)/ZCD3(500) = 169.96. The estimates of the individual log-

partition functions werelog ẐCD25(500) = 451.28 and log ẐCD3(500) = 280.09, in which case the log
ratio is451.28−280.09 = 171.19. This is in agreement (to within three standard deviations)with the
direct estimate of the ratio,̂rAIS =169.96.

For a simple comparison we also trained several mixture of Bernoullis models (see Fig. 4.2, middle
left panel) with 10, 100, and 500 components. The corresponding average test log-probabilities were
−168.95, −142.63, and−137.64. The data generated from the mixture model with 100 components
looks better than either CD1(500) or CD3(500), although ourquantitative results reveal this is due to
overfitting. Restricted Boltzmann Machines give much higher density to test data.

4.4.2 Estimating lower bounds for DBN’s

We trained three Deep Belief Networks with two hidden layers. The first model, which we call DBN-
CD1(500)-CD1(2000), was greedily learned by freezing the parameter vector of the CD1(500) model
and fitting the2nd layer RBM with 2000 hidden units using CD withT=1. Similarly, the other two
models, DBN-CD3(500)-CD3(2000) and DBN-CD25(500)-CD25(2000), added 2000 hidden units on
top of CD3(500) and CD25(500), and were learned using CD withT=3 andT=25 respectively. Training
the DBN’s took roughly three times longer than the RBM’s.

Table 4.2 shows the results. We used 15,000 intermediate distributions and 500 annealing runs to
estimate the partition function of the2nd layer RBM, which took 2.3 hours. We further usedM=5
samples from the approximating distributionQ(h|v) to do a simple Monte Carlo approximation of
Eq. 4.21. SettingM=100 did not make much difference. Table 4.2 also reports theempirical error in the
estimate of the lower bound̂rBound. From Eq. 4.22, we have Var(r̂Bound) = Var(r̂B)+Var(log Ẑ), both
of which are shown in table 4.2. Note that the two-hidden-layer Deep Belief Networks, DBN-CD1(500)-
CD1(2000) and DBN-CD3(500)-CD3(2000), significantly outperform their single layer counterparts:
CD1(500) and CD3(500). Adding a second layer for those two models improves model performance by
at least 25 and 7 nats. Figure 4.2 also shows the dramatic difference between samples generated by the
single layer RBM’s and corresponding two-hidden-layer DBN’s.

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 48

Table 4.3:Results of estimating lower bounds on the average test log-probabilities for DBN’s. On average, the
total error of the estimator is about± 2 nats.

No 2nd 2ndlayer

1st layer layer CD1(500) CD3(500) CD25(500) CD1(2000) CD3(2000) CD25(2000)

DBN-CD1(500)- -125.53 -101.40 -97.54 -89.52 -100.64 -94.44 -87.13
DBN-CD3(500)- -105.50 -100.27 -95.21 -88.38 -101.62 -98.29 -88.92
DBN-CD25(500)- -86.34 -101.55 -98.38 -86.90 -98.57 -96.97 -86.22

DBN-CD1(2000)- -122.84 -134.81 -119.45 -90.50 -116.44 -100.08 -92.53
DBN-CD3(2000)- -100.92 -112.81 -107.49 -89.48 -106.67 -98.73 -91.25
DBN-CD25(2000)- -86.26 -121.83 -112.64 -89.96 -102.24 -97.87 -88.29

Surprisingly, the greedy learning of DBN’s does not appear to suffer severely from overfitting. For
single layer models, the difference between the estimates of training and test log-probabilities was about
3 nats. For DBN’s, the corresponding difference in the estimates of the lower bounds was about 4 nats,
even though adding a second layer introduced over twice as many (or one million) new parameters.

The result of our experiments for DBN-CD25(500)-CD25(2000), however, was very different. For
this model, on the test data we obtainedr̂Bound =−86.22. This is comparable to the estimate of−86.34
for the average test log-probability of the CD25(500) model. Clearly, we cannot confidently assert that
the DBN is a better generative model compared to the carefully trained single layer RBM. This peculiar
result also supports previous claims that if the first level RBM already models data well, adding extra
layers will not help (LeRoux and Bengio [2008], Hinton et al.[2006]).

To estimate how loose the variational bound is, we randomly sampled 50 test cases, 5 of each class,
and ran AIS for each test case to estimate the true test log probability. Computationally, this is equivalent
to estimating 50 additional partition functions. Our estimate of the variational bound was 87.05 per test
case. The estimate of the true test log probability was 85.20, showing that the bound is actually rather
tight.

To further examine the effect that CD learning has on pretraining a stack of RBM’s, we trained
additional 36 models. Table 4.3 shows results of estimatingthe lower bound on the average test log-
probabilities. These results support our two previous observations. First, when training a lower-level
RBM with CD1 or CD3, adding an extra layer generally improvesmodel performance. Second, when a
lower-level RBM already models data well, adding an extra layer does not help. Performance of models
DBN-CD1(2000)-CD1(500), DBN-CD3(2000)-CD3(500), and DBN-CD25(2000)-CD25(500) further
reveals that decreasing the number of hidden units per layercan actually hurt model performance.

As an additional test, instead of randomly initializing parameters of the2nd layer RBM, we initial-
ized it by using the same parameters as the1st layer RBM but with hidden and visible units switched,
so that the2nd and3rd layers contained 500 and 784 hidden units. This initialization ensures that the
distribution over the visible unitsv defined by the two-hidden-layer DBN isexactly the sameas the
distribution overv defined by the1st layer RBM (see section 2.2). Therefore, after learning parame-
ters of the2nd layer RBM, the lower bound on the training data log-likelihood should improve. After
carefully training the second level RBM, our estimate of thelower bound on the test log-probability
was−85.97. Once again, we cannot confidently claim that adding an extralayer in this case yields
better generalization.

4.5 Discussion
As we discussed in chapter 2, under some strong assumptions,each additional layer of a DBN increases
a lower bound on the log-probability of thetraining data, provided the number of hidden units per layer

CHAPTER 4. EVALUATING DEEP BELIEF NETWORKS ASDENSITY MODELS 49

does not decrease. However, assessing generalization performance of these generative models is quite
difficult, since computing the exact probability of a test vector requires enumeration over an exponential
number of terms. In this chapter we developed an Annealed Importance Sampling procedure that takes
advantage of the bipartite structure of the RBM. This can provide a good estimate of the partition
function in a reasonable amount of computer time. Furthermore, we showed that this estimator, along
with approximate inference, can be used to obtain an estimate of the lower bound on the log-probability
of thetestdata. This allowed us to obtain some quantitative evaluation of the generalization performance
of these deep hierarchical models.

There are some disadvantages to using AIS. There is a need to specify theβk that define a sequence
of intermediate distributions. The number and the spacing of βk will be problem dependent and will
affect the variance of the estimator. We also have to rely on the empirical estimate of AIS accuracy,
which could potentially be very misleading (Neal [2001, 2005]). Even though AIS provides an unbiased
estimator ofZ, it may often give large underestimates and occasionally give even larger overestimates.
So in practice, it is more likely to underestimate the true value of the partition function, which will result
in an overestimate of the log-probability. But these drawbacks should not result in disfavoring the use
of AIS for RBM’s and DBN’s: it is much better to have a slightlyunreliable estimate than no estimate at
all, or an extremely indirect estimate, such as discriminative performance (Hinton et al. [2006], Bengio
et al. [2007]). We also find Annealed Importance Sampling andother stochastic methods attractive
because they can just as easily be applied to undirected graphical models that generalize RBM’s and
DBN’s to exponential family distributions. This will allowfuture application to models of real-valued
data, such as image patches (Osindero and Hinton [2008]), orcount data (Gehler et al. [2006]).

Another alternative would be to employ deterministic approximations (Yedidia et al. [2005]) or de-
terministic upper bounds (Wainwright et al. [2005]) on the log-partition function. However, for densely
connected MRF’s, we would not expect these methods to work well. My own findings (Salakhutdi-
nov [2008]) show that these methods provide quite inaccurate estimates of (or very loose upper bounds
on) the partition function, even for small RBM’s whentrained on real datathat has many modes with
similar probabilities.

Chapter 5

Deep Boltzmann Machines

In this chapter we present a new learning algorithm for a different type of hierarchical probabilistic
model: a Deep Boltzmann Machine (DBM). Unlike Deep Belief Networks, a DBM is a type of Markov
random field, or undirected graphical model, where all connections between layers are undirected. Deep
Boltzmann Machines are interesting for several reasons. First, like Deep Belief Networks, DBM’s have
the potential of learning internal representations that become increasingly complex at higher layers,
which is a promising way of solving object and speech recognition problems. High-level representations
can be built from a large supply of unlabeled sensory inputs and the very limited labeled data can
then be used to only slightly fine-tune the model for a specifictask at hand. Second, unlike Deep
Belief Networks and many other models with deep architectures (Ranzato et al. [2007], Vincent et al.
[2008], Serre et al. [2007]), the approximate inference procedure, in addition to a bottom-up pass, can
incorporate top-down feedback, allowing Deep Boltzmann Machines to better propagate uncertainty
about ambiguous inputs. This is perhaps the most important distinguishing characteristic of this model.
Finally, in the presence of enormous amounts of sensory data, the entire model can be trained online,
processing one example at a time.

5.1 Introduction

The original learning algorithm for Boltzmann machines, introduced by Hinton and Sejnowski [1983],
used randomly initialized Markov chains in order to performapproximate inference to estimate the
model’s expected sufficient statistics. This learning procedure, however, was too slow to be practical.
There have been many attempts in developing efficient learning and inference algorithms for Boltzmann
machines (see Welling and Hinton [2002], Welling and Teh [2003], Zhu and Liu [2002] and references
therein), but none of them have proven to be useful for large-scale problems in machine learning.

In this chapter we present an efficient learning procedure for fully general Boltzmann machines. Ap-
proximate inference can be performed using variational approaches, such as mean-field. Learning can
then be carried out by applying a stochastic approximation procedure that uses Markov chain Monte
Carlo (MCMC) to approximate a model’s expected sufficient statistics. The MCMC based approxi-
mation procedure provides nice asymptotic convergence guarantees and belongs to the general class
of approximation algorithms of Robbins–Monro type (Robbins and Monro [1951], Younes [1989]).
This unusual combination of variational methods and MCMC isessential for creating a fast learning
algorithm for general Boltzmann machines, or, more generally, undirected graphical models in the ex-
ponential family (Wainwright and Jordan [2003]). If the connections between hidden units are restricted
in such a way that the hidden units form multiple layers, it ispossible to modify the greedy learning
algorithm for Restricted Boltzmann Machines so that they can be used to initialize the parameters of a

50

CHAPTER 5. DEEP BOLTZMANN MACHINES 51

Deep Boltzmann Machine before applying our new learning procedure. Finally, we present results on
the MNIST and NORB datasets showing that Boltzmann machineslearn good generative models and
perform well on handwritten digit and visual object recognition tasks.

5.2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically coupled stochastic binary units. It contains a set
of visible unitsv ∈ {0, 1}D , and a set of hidden unitsh ∈ {0, 1}F (see Fig. 5.1, left panel), that
model complicated, higher-order correlations between thevisible units. The energy of the state{v,h}
is defined as:

E(v,h; θ) = −1

2
v⊤Lv− 1

2
h⊤Jh− v⊤Wh, (5.1)

whereθ = {W,L, J} are the model parameters1: W , L, J represent visible-to-hidden, visible-to-
visible, and hidden-to-hidden symmetric interaction terms. The diagonal elements ofL andJ are set to
0. The probability that the model assigns to a visible vectorv is:

P (v; θ) =
P ∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (5.2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (5.3)

whereP ∗ denotes unnormalized probability, andZ(θ) is the partition function. Theconditionaldistri-
butions over hidden and visible units are given by:

p(hj = 1|v,h−j) = g



∑

i

Wijvi +
∑

m6=j

Jjmhj


 , (5.4)

p(vi = 1|h,v−i) = g



∑

j

Wijhj +
∑

k 6=i

Likvj


 , (5.5)

whereg(x) = 1/(1 + exp(−x)) is the logistic function andx−i denotes a vectorx but withxi omitted.
The parameter updates, originally derived by Hinton and Sejnowski [1983], that are needed to perform
gradient ascent in the log-likelihood can be obtained from Eq. 5.2:

∆W = α
(

EPdata
[vh⊤]− EPmodel

[vh⊤]
)

,

∆L = α
(

EPdata
[vv⊤]− EPmodel

[vv⊤]
)

,

∆J = α
(

EPdata
[hh⊤]− EPmodel

[hh⊤]
)

,

whereα is a learning rate. EPdata
[·] denotes an expectation with respect to the completed data dis-

tribution Pdata(h,v; θ) = P (h|v; θ)Pdata(v), with Pdata(v) = 1
N

∑
n δ(v − vn) representing the

empirical distribution, and EPmodel
[·] is an expectation with respect to the distribution defined bythe

model (Eq. 5.2). We will sometimes refer to EPdata
[·] as thedata-dependent expectation, and EPmodel

[·]
as themodel’s expectation.

1We have omitted the bias terms for clarity of presentation

CHAPTER 5. DEEP BOLTZMANN MACHINES 52

L

J

W

General Boltzmann Machine
Restricted Boltzmann Machine

Figure 5.1:Left: A general Boltzmann machine. The top layer represents a vector of stochastic binary “hidden”
features and the bottom layer represents a vector of stochastic binary “visible” variables.Right: A Restricted
Boltzmann Machine with no hidden-to-hidden and no visible-to-visible connections.

Exact maximum likelihood learning in this model is intractable. The exact computation of the data-
dependent expectation takes time that is exponential in thenumber of hidden units, whereas the exact
computation of the model’s expectation takes time that is exponential in the number of hidden and
visible units. Hinton and Sejnowski [1983] proposed an algorithm that uses Gibbs sampling (Geman
and Geman [1984]) to approximate both expectations. For each iteration of learning, a separate Markov
chain is run for every training data vector to approximate EPdata

[·], and an additional chain is run to
approximate EPmodel

[·]. The main problem with this learning algorithm is the time required to approach
the stationary distribution, especially when estimating the model’s expectations, since the Gibbs chain
may need to explore a highly multimodal energy landscape. This is typical when modeling real-world
distributions, such as datasets of images, in which almost all of the possible images have extremely low
probability, but there are many very different images that occur with quite similar probabilities.

Setting bothJ=0 andL=0 recovers the Restricted Boltzmann Machine (RBM) model (see Fig. 5.1,
right panel). Although exact maximum likelihood learning in RBM’s is still intractable, learning can
be carried out efficiently using Contrastive Divergence (CD) (Hinton [2002]). It was further observed
(Welling and Hinton [2002], Hinton [2002]) that for Contrastive Divergence to perform well, it is im-
portant to obtain exact samples from the conditional distribution P (h|v; θ), which is intractable when
learning full Boltzmann machines.

5.2.1 A Stochastic Approximation Procedure for Estimatingthe Model’s Expectations

Instead of using CD learning, it is possible to make use of a stochastic approximation procedure (SAP)
that uses MCMC methods to stochastically approximate the model’s expectations (Younes [1989, 2000],
Neal [1992], Yuille [2004], Tieleman [2008]). SAP belongs to the general class of well-studied stochas-
tic approximation algorithms of the Robbins–Monro type (Younes [1989], Robbins and Monro [1951]).
To be more precise, let us consider the following canonical form of the exponential family associated
with the sufficient statistics vectorΦ:

P (x; θ) =
1

Z(θ)
exp (θ⊤Φ(x)). (5.6)

The derivative of the log-likelihood for an observationx0 with respect to parameter vectorθ is:

∂ log P (x0; θ)

∂θ
= Φ(x0)− EPmodel

[Φ(x)]. (5.7)

The idea behind learning parameter vectorθ using SAP is straightforward. Letθt andxt be the current
parameters and the state. Thenxt andθt are updated sequentially as follows:

CHAPTER 5. DEEP BOLTZMANN MACHINES 53

Algorithm 4 Stochastic Approximation Algorithm.

1: Randomly initializeθ0 andM sample particles{x̃0,1,, x̃0,M}.
2: for t = 0 : T (number of iterations)do
3: for i = 1 : M (number of parallel Markov chains)do
4: Samplex̃t+1,i givenx̃t,i using transition operatorTθt(x̃t+1,i← x̃t,i).
5: end for
6: Update:θt+1 = θt + αt

[
Φ(x0)− 1

M

∑M
m=1 Φ(x̃t+1,m)

]
.

7: Decreaseαt.
8: end for

• Given xt, a new statext+1 is sampled from the transition operatorTθt(xt+1 ← xt) that leaves
P (·; θt) invariant.

• A new parameterθt+1 is then obtained by replacing the intractable model’s expectation EPmodel
[Φ(x)]

with Φ(xt)

In practice, we typically maintain a set ofM sample pointsXt = {x̃t,1,, x̃t,M}, which we will often
refer to as sample particles. In this case, the intractable model’s expectation is replaced by the sample
average1/M

∑M
m=1 Φ(x̃t+1,m). The procedure is summarized in Algorithm 4.

The proof of convergence of these algorithms relies on the following basic decomposition. First, the
gradient of the log-likelihood function takes the form:

S(θ) =
∂ log P (x; θ)

∂θ
= Φ(x0)− EPmodel

[Φ(x)]. (5.8)

The parameter update rule then takes the following form:

θt+1 = θt + αt

[
Φ(x0)−

1

M

M∑

m=1

Φ(x̃t+1,m)

]
(5.9)

= θt + αtS(θt) + αt

[
EPmodel

[Φ(x)]− 1

M

M∑

m=1

Φ(x̃t+1,m)

]

= θt + αtS(θt) + αtǫt+1. (5.10)

The first term is the discretization of the ordinary differential equationθ̇ = S(θ). The algorithm is
therefore a perturbation of this discretization with the noise termǫ. The proof then proceeds by showing
that the noise term is not too large.

Precise sufficient conditions that ensure almost sure convergence to an asymptotically stable point
of θ̇ = S(θ) are given in Younes [1989, 2000], Yuille [2004]. One necessary condition requires the
learning rate to decrease with time, so that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α2

t < ∞. This condition can,
for example. be satisfied simply by settingαt = 1/(t0 + t). Other conditions ensure that the speed of
convergence of the Markov chain, governed by the transitionoperatorTθ, does not decrease too fast as
θ tends to infinity, and that the noise termǫ in the update of Eq. 5.9 is bounded. Typically, in practice,
the sequence|θt| is bounded, and the Markov chain, governed by the transitionkernelTθ, is ergodic.
Together with the condition on the learning rate, this ensures almost sure convergence of SAP to an
asymptotically stable point oḟθ = S(θ).

The intuition behind why this procedure works is the following. As the learning rate becomes
sufficiently small compared with the mixing rate of the Markov chain, this “persistent” chain will always

CHAPTER 5. DEEP BOLTZMANN MACHINES 54

stay very close to the stationary distribution, even if it isonly run for a few MCMC steps per parameter
update. Samples from the persistent chain will be highly correlated for successive parameter updates.
However, if the learning rate is sufficiently small, the chain will mix before the parameters have changed
enough to significantly alter the value of the estimator. This technique for learning Boltzmann machines
was used by Neal [1992]. When applied to learning RBM’s, Tieleman [2008] further shows that this
stochastic approximation algorithm, also termed Persistent Contrastive Divergence, performs quite well
compared to Contrastive Divergence learning.

5.2.2 A Variational Approach to Estimating the Data-Dependent Expectations

In variational learning (Hinton and Zemel [1994], Neal and Hinton [1998], Jordan et al. [1999]), the
true posterior distribution over latent variablesP (h|v; θ) for each training vectorv, is replaced by
an approximate posteriorQ(h|v;µ) and the parameters are updated to maximize the variational lower
bound on the log-likelihood:

log P (v; θ) ≥
∑

h

Q(h|v;µ) log P (v,h; θ) +H(Q)

= log P (v; θ)− KL [Q(h|v;µ)||P (h|v; θ)] , (5.11)

whereH(·) is the entropy functional. Variational learning has the nice property that in addition to
trying to maximize the log-likelihood of the training data,it tries to find parameters that minimize the
Kullback-Leibler divergences between the approximating and true posteriors. Using a naive mean-
field approach, we choose a fully factorized distribution inorder to approximate the true posterior:
Q(h;µ) =

∏F
j=1 q(hi), with q(hi = 1) = µi andF is the number of hidden units. The lower bound on

the log-probability of the data takes the following form:

log P (v; θ) ≥ 1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm +
∑

i,j

Wijviµj − logZ(θ)

+
∑

j

[µj log µj + (1− µj) log (1− µj)] .

The learning proceeds by first maximizing this lower bound with respect to the variational parameters
µ for fixedθ, which results in the mean-field fixed-point equations:

µj ← g



∑

i

Wijvi +
∑

m6=j

Jmjµm


 . (5.12)

This is followed by applying SAP to update the model parameters θ. We emphasize that variational ap-
proximations cannot be used for approximating the expectations with respect to the model distribution
in the Boltzmann machine learning rule, as attempted in Galland [1991], because the minus sign would
cause variational learning to adjust the parameters so as tomaximizethe divergence between the approx-
imating and true distributions. If, however, a Markov chainis used to estimate the model’s expectations,
variational learning can be applied for estimating the data-dependent expectations.

The choice of naive mean-field was deliberate. First, the convergence is usually fast, which greatly
facilitates learning. Second, for applications such as theinterpretation of images or speech, we expect
the posterior over hidden statesgiven the datato have a single mode, so simple and fast variational
approximations such as mean-field should be adequate. Indeed, making the true posterior unimodal
by sacrificing some log-likelihood could be advantageous for a system that will use the posterior to

CHAPTER 5. DEEP BOLTZMANN MACHINES 55

Algorithm 5 Boltzmann Machine Learning Procedure.

1: Given: a training set ofN binary data vectors{v}Nn=1, andM , the number of samples.
2: Randomly initialize parameter vectorθ0 andM samples:{ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}.
3: for t = 0 to T (number of iterations)do

4: // Variational Inference:
5: for each training examplevn, n = 1 to N do
6: Randomly initializeµ and run mean-field updates until convergence:

µj ← g
(∑

i Wijvi +
∑

m6=j Jmjµm

)
.

7: Setµn = µ.
8: end for

9: // Stochastic Approximation:
10: for each samplem = 1 to M do
11: Sample(ṽt+1,m, h̃t+1,m) given(ṽt,m, h̃t,m) by running a Gibbs sampler (Eqs. 5.4, 5.5).
12: end for

13: // Parameter Update:

14: W t+1 = W t + αt

(
1
N

∑N
n=1 vn(µn)⊤ − 1

M

∑M
m=1 ṽt+1,m(h̃t+1,m)⊤

)
.

15: J t+1 = J t + αt

(
1
N

∑N
n=1 µn(µn)⊤ − 1

M

∑M
m=1 h̃t+1,m(h̃t+1,m)⊤

)
.

16: Lt+1 = Lt + αt

(
1
N

∑N
n=1 vn(vn)⊤ − 1

M

∑M
m=1 ṽt+1,m(ṽt+1,m)⊤

)
.

17: Decreaseαt.
18: end for

control its actions. Having multiple alternative representations of the same sensory input increases the
likelihood, but makes it far more difficult to associate an appropriate action with that sensory input. The
mean-field inference helps to eliminate this problem. During learning, if the posterior given a training
input vector is multimodal, the mean-field inference will lock onto exactly one mode, and learning
will make that mode more probable. Our learning algorithm will therefore tend to find regions in the
parameter space in which the true posterior is unimodal.

5.3 Deep Boltzmann Machines (DBM’s)

In general, we will rarely be interested in learning a complex, fully connected Boltzmann machine.
Instead, we will focus on learning Deep Boltzmann Machines (see Fig. 5.2, right panel). Unlike Deep
Belief Networks, a Deep Boltzmann Machine is a Markov randomfield, where all connections between
layers are undirected.

Consider a three-hidden-layer Boltzmann machine, as shownin Fig. 5.2, right panel, with no within-
layer connections. The energy of the state{v,h1,h2,h3} is defined as:

E(v,h1,h2,h3; θ) = −v⊤W 1h1 − h1⊤W 2h2,−h2⊤W 3h3, (5.13)

whereθ = {W 1,W 2,W 3} are the model parameters, representing visible-to-hiddenand hidden-to-

CHAPTER 5. DEEP BOLTZMANN MACHINES 56

h3

h2

h1

v

W3

W2

W1

Deep Belief Network Deep Boltzmann Machine

Figure 5.2:Left: Deep Belief Network, with the top two layers forming an undirected graph and the remaining
layers form a belief net with directed, top-down connectionsRight: Deep Boltzmann machine, with both visible-
to-hidden and hidden-to-hidden connections but with no within-layer connections.

hidden symmetric interaction terms. The probability that the model assigns to a visible vectorv is:

P (v; θ) =
1

Z(θ)

∑

h1,h2,h3

exp (−E(v,h1,h2,h3; θ)). (5.14)

The conditional distributions over the visible and the three sets of hidden units are given by logistic
functions:

p(h1
j = 1|v,h2) = g

(
∑

i

W 1
ijvi +

∑

m

W 2
jmh2

m

)
, (5.15)

p(h2
m = 1|h1,h3) = g



∑

j

W 2
jmh1

j +
∑

l

W 3
mlh

3
l


 , (5.16)

p(h3
l = 1|h2) = g

(
∑

m

W 3
mlh

2
m

)
, (5.17)

p(vi = 1|h1) = g



∑

j

W 1
ijh

1
j


 . (5.18)

For approximate maximum likelihood learning, we could still apply the learning procedure for general
Boltzmann machines described above, but it would be rather slow, particularly when the hidden units
form layers that become increasingly remote from the visible units. There is, however, a fast way to
initialize the model parameters to good values, which we describe in the next section.

5.3.1 Greedy Layerwise Pretraining of DBM’s

In chapter 2 we reviewed a greedy, layer-by-layer unsupervised learning algorithm that consists of learn-
ing a stack of RBM’s one layer at a time. After greedy learning, the whole stack can be viewed as a
single probabilistic model called a Deep Belief Network. Surprisingly, this composite model isnot a
Deep Boltzmann Machine. The top two layers form a RestrictedBoltzmann Machine, but the lower
layers form adirectedsigmoid belief network (see Fig. 5.2, left panel).

CHAPTER 5. DEEP BOLTZMANN MACHINES 57

RBM

RBM

RBM

v v

W1 W1

h1

h1

h2

h2

h3 h3

2W2

W3 W3

W1

W2

W3

Pretraining

Deep Boltzmann Machine

Figure 5.3: Pretraining a DBM with three hidden layers consists of learning a stack of RBM’s that are then
composed to create a Deep Boltzmann Machine. The first and last RBM’s in the stack need to be modified by
copying the visible or hidden units.

After learning the first RBM in the stack, the generative model can be written as:

P (v; θ) =
∑

h1

P (h1;W 1)P (v|h1;W 1), (5.19)

whereP (h1;W 1) =
∑

v
P (h1,v;W 1) is an implicit prior overh1. The second RBM in the stack

attempts to learn a better model forP (h1;W 2) by maximizing the variational lower bound (see Eq. 2.17)
with respect toW 2. If initialized correctly, the2nd layer RBMP (h1;W 2) will become a better model
of the aggregated posterior overh1, which is simply the mixture of factorial posteriors for allthe training
cases:1

N

∑
n P (h1|vn;W 1) (see section 2.2). Since the2nd layer RBM replacesP (h1;W 1) by a better

model, inferringP (h1;W 1,W 2) would be possible by taking a geometric average of the two models
of h1, which could be approximated by using1/2W 1 bottom-up and1/2W 2 top-down. But usingW 1

bottom-up andW 2 top-down would effectively double the total input into the hidden unitsh1, which
may cause saturation.

To initialize model parameters of a DBM, we propose greedy, layer-by-layer pretraining heuristic by
learning a stack of RBM’s, but with a small change that is introduced to eliminate the doubling effect.
For the lower-level RBM, to compensate for the lack of top-down input intoh1, we double the input
and tie the visible-to-hidden weights, as shown in Fig. 5.3,left panel. In this modified RBM with tied
parameters, the conditional distributions over the hiddenand visible states are defined as:

p(h1
j = 1|v) = g

(
2
∑

i

W 1
ijvi

)
, (5.20)

p(vi = 1|h1) = g



∑

j

W 1
ijh

1
j


 . (5.21)

CHAPTER 5. DEEP BOLTZMANN MACHINES 58

Algorithm 6 Greedy Pretraining Algorithm for a Deep Boltzmann Machine with L-layers.

1: Make two copies of the visible vector and tie the visible-to-hidden weightsW 1. Fit W 1 of the
1st layer RBM to data.

2: FreezeW 1 that defines the1st layer of features, and use sampleshl from P (h1|v, 2W 1) (Eq. 5.20)
as the data for training the next layer RBM with weight vector2W 2.

3: FreezeW 2 that defines the2nd layer of features and use the samplesh2 from P (h2|h1, 2W 2) as
the data for training the3rd layer RBM with weight vector2W 3.

4: Proceed recursively for the next layersL− 1.
5: When learning the top-level RBM, double the number of hiddenunits and tie the visible-to-hidden

weightsW L.
6: Use the weights{W 1,W 2,,WL} to compose a Deep Boltzmann Machine.

Contrastive Divergence learning works well and the modifiedRBM is good at reconstructing its training
data. Conversely, for the top-level RBM, to compensate for the lack of bottom-up input intoh2, we
double the number of hidden units. The conditional distributions for this model take the form:

p(h2
m = 1|h3) = g

(
∑

l

W 3
mlh

3(a)

l +
∑

l

W 3
mlh

3(b)

l

)
(5.22)

p(h3
l = 1|h2) = g

(
∑

m

W 3
mlh

2
m

)
. (5.23)

For the intermediate RBM we simply double the weights. The conditional distributions take the form:

p(h1
j = 1|h2) = g

(
2
∑

m

W 2
jmh2

m

)
(5.24)

p(h2
m = 1|h1) = g


2
∑

j

W 2
jmh1

j


 . (5.25)

When these three modules are composed to form a single system, the total input coming into the
first and second hidden layers is halved, which leads to the following conditional distribution overh1

andh2:

p(h1
j = 1|v,h2) = g

(
∑

i

W 1
ijvi +

∑

m

W 2
jmh2

m

)
, (5.26)

p(h2
m = 1|h1,h3) = g



∑

j

W 2
jmh1

j +
∑

l

W 3
mlh

3
l


 . (5.27)

The conditional distributions overv andh3 remain the same as defined by Eqs. 5.21, 5.23.
Observe that the conditional distributions defined by the composed model are exactly the same con-

ditional distributions defined by the DBM (Eqs. 5.15, 5.16, 5.17, 5.18). Therefore greedily pretraining
the stack of modified RBM’s leads to an undirected model with symmetric weights – a Deep Boltzmann
Machine. We note that the modification only needs to be used for the first and the last RBM’s in the
stack. For all the intermediate RBM’s we simply halve their weights in both directions when composing
them to form a Deep Boltzmann Machine.

CHAPTER 5. DEEP BOLTZMANN MACHINES 59

Greedily pretraining the weights of a DBM in this way serves two purposes. First, it initializes the
weights to reasonable values. Second, it ensures that thereis a fast way of performing approximate
inference by a single upward pass through the stack of modified RBM’s. Given an input vector, each
layer of hidden units can be activated in a single deterministic bottom-up pass by doubling the bottom-
up input to compensate for the lack of top-down feedback, except for the very top layer, which does not
have a top-down input. This fast approximate inference is used to initialize the mean-field, which then
converges much faster than the mean-field with random initialization.

5.3.2 Evaluating DBM’s

In chapter 4 we showed that a Monte Carlo based method, Annealed Importance Sampling (AIS), can
be used to efficiently estimate the partition function of an RBM. In this section we show how AIS can
be used to estimate the partition functions of Deep Boltzmann Machines. Together with variational
inference this will allow us obtain good estimates of the lower bound on the log-probability of the train
and test data.

Using the special layer-by-layer structure of DBM’s, we canderive an efficient AIS scheme for
estimating the model’s partition function. Let us considera three-hidden-layer Boltzmann machine (see
Fig. 5.3, right panel) whose energy is defined as:

E(v,h1,h2,h3; θ) = −v⊤W 1h1 − h1⊤W 2h2 − h2⊤W 3h3. (5.28)

By explicitly summing out the1st and the3rd layer hidden units{h1,h3}, we can easily evaluate
an unnormalized probabilityP ∗(v,h2; θ). We can therefore run AIS on a much smaller state space
x = {v,h2} with h1 andh3 analytically summed out. The sequence of intermediate distributions,
parameterized byβ, is defined as follows:

Pk(v,h2; θ) =
∑

h1,h3

Pk(v,h1,h2,h3; θ)

=
1

Zk

∏

j

(
1 + eβk(

P

i viW
1
ij+

P

m h2
mW 2

jm)
)∏

l

(
1 + eβk(

P

m h2
mW 3

ml)
)

.

We gradually changeβk (the inverse temperature) from 0 to 1, annealing from a simple “uniform” model
to the final complex model. Using Eqs. 5.15, 5.16, 5.17, 5.18,it is straightforward to derive a Gibbs
transition operator that leavesPk(v,h2; θ) invariant:

p(h1
j = 1|v,h2) = g

(
βk

(
∑

i

W 1
ijvi +

∑

m

W 2
jmh2

m

))
, (5.29)

p(h2
m = 1|h1,h3) = g


βk



∑

j

W 2
jmh1

j +
∑

l

W 3
mlh

3
l




 , (5.30)

p(h3
l = 1|h2) = g

(
βk

∑

m

W 3
mlh

2
m

)
, (5.31)

p(vi = 1|h1) = g


βk

∑

j

W 1
ijh

1
j


 . (5.32)

Once we obtain an estimate of the global partition functionẐ, we can estimate, for a given test case

CHAPTER 5. DEEP BOLTZMANN MACHINES 60

v

h1

h2

W1

W2

...

v v v v

2W1 W1

W2 W2

Q(h1)

Q(h2)

y y

Fine-tune Q(h2)

W2 W1

W2

W3
Mean-Field Updates

Figure 5.4:Left: A two-hidden-layer Boltzmann machine.Right: After learning, DBM is used to initialize a
multilayer neural network. The marginals of approximate posteriorq(h2

j = 1|v) are used as additional inputs.
The network is fine-tuned by backpropagation.

v∗, the variational lower bound of Eq. 5.11:

log P (v∗; θ) ≥ −
∑

h

Q(h;µ)E(v∗,h; θ) +H(Q)− logZ(θ)

≈ −
∑

h

Q(h;µ)E(v∗,h; θ) +H(Q)− log Ẑ,

where we definedh = {h1,h2,h3}. For each test vector under consideration, this lower boundis
maximized with respect to the variational parametersµ using the mean-field update equations.

Furthermore, by explicitly summing out the states of the hidden units{h2,h3}, we can obtain a
tighter variational lower bound on the log-probability of the test data. Of course, we can also adopt
AIS to estimateP ∗(v) =

∑
h1,h2,h3 P ∗(v,h1,h2,h3), and together with an estimate of the global

partition function we can actually estimate the true log-probability of the test data. This however, would
be computationally very expensive, since we would need to perform a separate AIS run for each test
case. As an alternative, we could adopt a variation of the Chib-style estimator, proposed by Murray and
Salakhutdinov [2009]. In the case of Deep Boltzmann Machines, where the posterior over the hidden
units tends to be unimodal, their proposed Chib-style estimator can provide good estimates oflog P ∗(v)
in a reasonable amount of computer time.

When learning a Deep Boltzmann Machine with more than two hidden layers, and no within-layer
connections, we can explicitly sum out either odd or even layers. This will result in a better estimate of
the model’s partition function and tighter lower bounds on the log-probability of the test data.

5.3.3 Discriminative Fine-tuning of DBM’s

After learning, the stochastic activities of the binary features in each layer can be replaced by determin-
istic, real-valued probabilities, and a Deep Boltzmann Machine can be used to initialize a multilayer
neural network in the following way. For each input vectorv, the mean-field inference is used to ob-
tain an approximate posterior distributionQ(h2|v). The marginalsq(h2

j = 1|v) of this approximate
posterior, together with the data, are used to create an “augmented” input for this deep multilayer neu-
ral network as shown in Fig. 5.4. Standard backpropagation of error derivatives can then be used to
discriminatively fine-tune the model.

The unusual representation of the input is a by-product of converting a DBM into a deterministic
neural network. In general, the gradient-based fine-tuningmay choose to ignoreQ(h2|v), i.e. drive

CHAPTER 5. DEEP BOLTZMANN MACHINES 61

the1st layer connectionsW 2 to zero, which will result in a standard neural network. Conversely, the
network may choose to ignore the input by driving the1st layer weightsW 1 to zero, and make its
predictions based on only the approximate posterior. However, the network typically makes use of the
entire augmented input for making predictions.

5.4 Experimental Results

In our experiments we used the MNIST and NORB datasets. To speed-up learning, we subdivided
datasets into mini-batches, each containing 100 cases, andupdated the weights after each mini-batch.
The number of sample particles, used for approximating the model’s expected sufficient statistics, was
also set to 100. For the stochastic approximation algorithm, we always used 5 Gibbs updates. Each
model was trained using 300,000 weight updates. The initiallearning rate was set 0.005 and was de-
creased as 10/(2000+t). For discriminative fine-tuning of DBM’s we used the method of conjugate
gradients. Details of pretraining and fine-tuning, along with details of Matlab code that we used for
learning and fine-tuning Deep Boltzmann Machines, can be found in Appendix A.

MNIST

The MNIST digit dataset contains 60,000 training and 10,000test images of ten handwritten digits
(0 to 9), with 28×28 pixels. In our first experiment we trained a fully connected “flat” BM on the
MNIST dataset. The model had 500 hidden units and 784 visibleunits. To estimate the model’s partition
function we used 20,000βk spaced uniformly from 0 to 1. Results are shown in table 5.1. The lower
bound on the average test log-probability was−84.67 per test case, which is slightly better compared to
the lower bound of−85.97, achieved by a carefully trained two-hidden-layer Deep Belief Network (see
section 4.4).

In our second experiment, we trained two Deep Boltzmann Machines: one with two hidden layers
(500 and 1000 hidden units), and the other with three hidden layers (500,500, and 1000 hidden units),
as shown in Fig. 5.6. To estimate the model’s partition function, we also used 20,000 intermediate
distributions spaced uniformly from 0 to 1. Table 5.1 shows that the estimates of the lower bound on
the average test log-probability were−84.62 and−85.18 for the 2- and 3-layer Boltzmann machines
respectively.

Observe that the two DBM’s that contain over 0.9 and 1.15 million parameters do not appear to suf-
fer much from overfitting. The difference between the estimates of the training and test log-probabilities
was about 1 nat. Figure 5.5 further shows samples generated from all three models by randomly initializ-
ing all binary states and running the Gibbs sampler for 100,000 steps. Certainly, all samples look like the
real handwritten digits. We also emphasize that without greedy pretraining, we could not successfully
learn good DBM models of MNIST digits.

To estimate how loose the variational bound is, we randomly sampled 100 test cases, 10 of each
class, and ran AIS to estimate the true test log-probability2 for the 2-layer Boltzmann machine. The
estimate of the variational bound was -83.35 per test case, whereas the estimate of the true test log-
probability was -82.86. The difference of about 0.5 nats shows that the bound is rather tight.

Finally, after discriminative fine-tuning, the two-hidden-layer BM achieves an error rate of 0.95% on
the full MNIST test set. This is, to our knowledge, the best published result on the permutation-invariant
version of the MNIST task. The 3-layer BM gives a slightly worse error rate of 1.01%. The flat BM,
on the other hand, gives considerably worse error rate of 1.27%. This is compared to 1.4% achieved
by SVM’s (Decoste and Schölkopf [2002]), 1.6% achieved by randomly initialized backprop, 1.2%

2Note that computationally, this is equivalent to estimating 100 partition functions.

CHAPTER 5. DEEP BOLTZMANN MACHINES 62

Training samples Flat BM 2-layer BM 3-layer BM

Figure 5.5:Random samples from the training set, and samples generatedfrom three Boltzmann machines by
running the Gibbs sampler for 100,000 steps. The images shown are theprobabilitiesof the binary visible units
given the binary states of the hidden units

4000 units

4000 units

4000 units

Preprocessed
transformation

Stereo pair

Gaussian visible units
(raw pixel data)

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM

3-layer BM 3-layer BM

Figure 5.6:Left: The architectures of two Deep Boltzmann Machines used in MNIST experiments.Right: The
architecture of Deep Boltzmann Machine used in NORB experiments.

achieved by the Deep Belief Network, described in (Hinton etal. [2006], Hinton and Salakhutdinov
[2006]), and 0.97% obtained by using a combination of discriminative and generative fine-tuning on the
same DBN (Hinton [2007]).

To test discriminative performance of DBM’s when the numberof labeled examples is small, we
randomly sampled 1%, 5%, and 10% of the handwritten digits ineach class and treated them as labeled
data. Table 5.2 shows that after discriminative fine-tuning, a two-hidden-layer BM achieves error rates of
4.82%, 2.72%, and 2.46%. Deep Boltzmann Machines clearly outperform regularized nonlinear NCA,
discussed in section 3.4, as well as linear NCA, an autoencoder, and K-nearest neighbours, particularly
when the number of labeled examples is only 600.

NORB

Results on MNIST show that Deep Boltzmann Machines can significantly outperform many other mod-
els on the well-studied but relatively simple task of handwritten digit recognition. In this section we
present results on NORB, which is considerably more difficult dataset than MNIST. NORB (LeCun
et al. [2004]) contains images of 50 different 3D toy objectswith 10 objects in each of five generic
classes: cars, trucks, planes, animals, and humans. Each object is captured from different viewpoints

CHAPTER 5. DEEP BOLTZMANN MACHINES 63

Table 5.1:Results of estimating partition functions of BM models, along with the estimates of lower bound on
the average training and test log-probabilities. For all BM’s we used 20,000 intermediate distributions. Results
were averaged over 100 AIS runs.

Estimates Avg. log-prob.

log Ẑ log (Ẑ ± σ̂) Test Train

Flat BM 198.29 198.17, 198.40 −84.67 −84.35
2-layer BM 356.18 356.06, 356.29 −84.62 −83.61
3-layer BM 456.57 456.34, 456.75 −85.10 −84.49

Table 5.2:Classification error rates on MNIST test set when only a smallfraction of labeled data is available.

Two-Layer Regularized Linear Autoencoder KNN
DBM Nonlinear NCA NCA

1% (600) 4.82% 8.81% 19.37% 9.62% 13.74%
5% (3000) 2.72% 3.24% 7.23% 5.18% 7.19%
10% (6000) 2.46% 2.58% 4.89% 4.46% 5.87%
100% (60000) 0.95% 1.00% 2.45% 2.41% 3.09%

and under various lighting conditions. The training set contains 24,300 stereo image pairs of 25 objects,
5 per class, while the test set contains 24,300 stereo pairs of the remaining, different 25 objects. The
goal is to classify each previously unseen object into its generic class. From the training data, 4,300
were set aside for validation.

Each image has 96×96 pixels with integer greyscale values in the range [0,255]. To speed-up
experiments, we reduced the dimensionality by using a foveal representation of each image in a stereo
pair. The central 64×64 portion of an image is kept at its original resolution. Theremaining 16 pixel-
wide ring around it is compressed by replacing non-overlapping square blocks of pixels in the ring with
a single scalar given by the average pixel-value of a block. We split the ring into four smaller ones:
the outermost ring consists of 8×8 blocks, followed by a ring of 4×4 blocks, and finally two innermost
rings of 2×2 blocks. The resulting dimensionality of each training vector, representing a stereo pair,
was2 × 4488 = 8976. A random sample from the training data used in our experiments is shown in
Fig. 5.7, left panel3.

To model raw pixel data, we use an RBM with Gaussian visible and binary hidden units. Gaussian
RBM’s have been previously successfully applied for modeling greyscale images, such as images of
faces (see subsection 3.2.1). However, learning an RBM withGaussian units can be slow, particularly
when the input dimensionality is quite large. Here we followthe approach of Nair and Hinton [2009] by
first learning a Gaussian RBM and then treating the the activities of its hidden layer as “preprocessed”
data. Effectively, the learned low-level RBM acts as a preprocessor that converts greyscale pixels into a
binary representation, which we then use for learning a DeepBoltzmann Machine.

The number of hidden units for the preprocessing RBM was set to 4000 and the model was trained
using Contrastive Divergence learning for 500 epochs. We then trained a two-hidden-layer DBM with
each layer containing 4000 hidden units, as shown in Fig. 5.6, right panel. Note that the entire model
was trained in a completely unsupervised way. After the subsequent discriminative fine-tuning, the
“unrolled” DBM achieves a misclassification error rate of 10.8% on the full test set. This is compared

3We thank Vinod Nair for sharing his code for blurring and translating NORB images.

CHAPTER 5. DEEP BOLTZMANN MACHINES 64

Training Samples Generated Samples

Figure 5.7: Random samples from the training set, and samples generatedfrom a three-hidden-layer Deep
Boltzmann Machine by running the Gibbs sampler for 10,000 steps.

to 11.6% achieved by SVM’s (Bengio and LeCun [2007]), 22.5% achieved by logistic regression, and
18.4% achieved by the K-nearest neighbours (LeCun et al. [2004]).

To show that DBM’s can benefit from additionalunlabeledtraining data, we augmented the training
data with additional unlabeled data by applying simple pixel translations, creating a total of 1,166,400
training instances. After learning a good generative model, the discriminative fine-tuning (using only
the 24,300 labeled training examples without any translation) reduces the misclassification error down
to 7.2%. Figure 5.7 shows samples generated from the model byrunning prolonged Gibbs sampling.
Note that the model was able to capture a lot of regularities in this high-dimensional, richly structured
data, including different object classes, various viewpoints and lighting conditions.

Surprisingly, even though the Deep Boltzmann Machine contains about 68 million parameters, it
significantly outperforms many of the competing models. Clearly, unsupervised learning helps general-
ization because it ensures that most of the information in the model parameters comes from modeling
the input data. The very limited information in the labels isused only to slightly adjust the layers of
features already discovered by the Deep Boltzmann Machine.

5.5 Discussion

We have presented a new learning algorithm for training DeepBoltzmann Machines that combines vari-
ational learning and MCMC and showed that it can be used to successfully learn good generative models
of MNIST digits and NORB 3D objects. The new algorithm readily extends to learning Boltzmann ma-
chines with real-valued, count, or tabular data. We furtherintroduced a greedy layer-by-layer learning
algorithm that can be used to quickly initialize the parameters of DBM’s to sensible values. This greedy
initialization strategy allowed us to successfully learn agood generative model of NORB 3D objects,
even though the model contained about 68 million parameters. We also showed how Annealed Impor-
tance Sampling, along with variational inference, can be used to estimate a variational lower bound on
the log-probability that a Boltzmann machine with multiplehidden layers assigns to test data. This al-
lowed us to directly assess the performance of Deep Boltzmann Machines as generative models of data.

CHAPTER 5. DEEP BOLTZMANN MACHINES 65

Finally, we showed that the discriminatively fine-tuned Deep Boltzmann Machines perform well on the
MNIST digit and NORB 3D object recognition tasks.

Chapter 6

Conclusions

6.1 Summary of Contributions

The aim of the thesis was to demonstrate that learning deep generative models that contain many layers
of latent variables and millions of parameters can be carried out efficiently, and that the learned high-
level feature representations can be successfully appliedin a wide spectrum of application domains,
including visual object recognition, information retrieval, classification and regression tasks, as well as
nonlinear dimensionality reduction. Many of the ideas presented in this thesis are based on the following
three crucial principles behind learning deep generative models: First, multiple layers of representation
can be greedily learned one layer at a time. Second, the greedy learning is carried out in a completely
unsupervised way. Third, a separate fine-tuning stage can beused to further improve either generative
or discriminative performance of the final model.

The first part of the thesis focused on analysis and applications of a particular family of deep gener-
ative models, called Deep Belief Networks (DBN’s), and their building modules Restricted Boltzmann
Machines (RBM’s). In chapter 2 we provided a detailed overview of RBM’s and DBN’s, along with the
greedy learning algorithms for DBN’s. In chapter 3 we discussed various applications of Deep Belief
Networks. In particular, we first showed that these deep hierarchical models can be used to learn use-
ful feature representations from large amounts of high-dimensional, highly-structured unlabeled input
data. The learned high-level representations capture a lotof structure in the unlabeled input, which is
useful for subsequent discrimination or regression tasks,even though these tasks are unknown when
the deep model is being trained. We then demonstrated how thegreedy learning of multiple layers of
representation can be used to initialize deep nonlinear autoencoders. This allowed deep autoencoders
to learn low-dimensional codes that work much better than principal components analysis as a tool to
reduce the dimensionality of data. We further explored the idea of using the deep autoencoders to learn
“semantic” binary codes that allowed us to perform very fastand accurate information retrieval. Finally,
we discussed how the unsupervised greedy learning algorithm can be used to pretrain and fine-tune a
deep encoder network in order to learn a similarity metric over the input space, which greatly facilitates
nearest-neighbor classification.

Chapter 4 focused on evaluating generalization performance of Deep Belief Networks as density
models. Indeed, assessing the generalization performanceof DBN’s plays an important role in model
selection and controlling model complexity. For many specific tasks, such as information retrieval or
classification, performance of DBN’s can be directly evaluated, as we demonstrated in chapter 3. More
broadly, however, the ability of DBN’s to generalize can be evaluated by computing the probability of
held-out input vectors, which is independent of any specificapplication. Computing this probability
exactly is intractable, since it requires enumeration overan exponential number of terms. In chapter 4

66

CHAPTER 6. CONCLUSIONS 67

we showed how a Monte Carlo based method, Annealed Importance Sampling, along with approximate
inference, can be used to estimate a lower bound on the log-probability that a DBN model with multiple
hidden layers assigns to the test data. This allowed us to measure the generalization performance of
Deep Belief Networks as density models and to compare them toother probabilistic models, such as
plain mixture models.

In the second part of the thesis we developed a new learning algorithm for a different type of hierar-
chical probabilistic model called Deep Boltzmann Machine (DBM). Like Deep Belief Networks, DBM’s
contain many layers of latent variables. High-level representations can be built from large amounts of
unlabeled sensory inputs and the limited labeled data can then be used to only slightly adjust the model
parameters for a specific task at hand. Unlike existing models with deep architectures, the approximate
inference procedure, in addition to a bottom-up pass, can incorporate top-down feedback, which allows
Deep Boltzmann Machines to better propagate uncertainty about ambiguous inputs.

Approximate inference in DBM’s can be performed using variational approaches, such as mean-
field. Learning can then be carried out by applying a stochastic approximation procedure that uses
Markov chain Monte Carlo (MCMC) to approximate a model’s expected sufficient statistics, which is
needed for maximum likelihood learning. This unusual combination of variational methods and MCMC
is essential for creating a fast learning algorithm for DeepBoltzmann Machines. The new algorithm
readily extends to learning Boltzmann machines with real-valued, count, or tabular data. Finally, results
on the MNIST and NORB datasets show that Deep Boltzmann Machines can learn good generative
models and perform well on handwritten digit and visual object recognition tasks. In fact, we found
that after discriminative fine-tuning, a two-hidden-layerDeep Boltzmann Machine produces the best
published result on the permutation-invariant version of the MNIST task. It significantly outperforms
logistic regression and support vector machines, and is similar to the best published result for Deep
Belief Networks.

6.2 Future Directions

There are several potential extensions and applications ofthe ideas presented in this thesis, particularly
related to learning Deep Boltzmann Machines.

Better Learning Algorithms for Deep Boltzmann Machines. The success of the Boltzmann machine
learning algorithm heavily relies on the ability of the Markov chain to explore the highly multi-
modal energy landscape. Particularly towards the end of learning, as the learning rate becomes
small, the Markov chain used to approximate model’s expected sufficient statistics tends to mix
very poorly. Hence the need for Markov chain sampling methods that can better explore distribu-
tions with many isolated modes (Salakhutdinov [2010]). Indeed, the transition operators used in
the stochastic approximation algorithm do not necessarilyneed to be simple Gibbs or Metropolis-
Hastings updates. Other valid MCMC operators, such as thosebased on tempered transitions
(Neal [1996]) or parallel tempering (Geyer [1991], Swendsen and Wang [1986], Earl and Deem
[2005]), may significantly improve model performance.

Semi-Supervised Learning with DBM’s. In many practical learning domains, there is a large supply
of high-dimensional unlabeled data and very limited labeled data. Applications such as informa-
tion retrieval and machine vision are examples where large amounts of unlabeled data is readily
available. In chapter 5, we only considered unsupervised learning of Deep Boltzmann Machines,
followed by deterministic discriminative fine-tuning. However, the general Boltzmann machine
framework should allow us to readily extend the proposed learning algorithm to semi-supervised
setting. Treating units with missing labels as “additionalhidden units”, variational inference can

CHAPTER 6. CONCLUSIONS 68

be used to effectively “fill in” the missing label information. Learning can then proceed as if
there were no missing labels. Similar reasoning can be applied to learning Boltzmann machines
when parts of input vectors are missing (at random). Although our initial experiments seem to
be encouraging, more theoretical analysis and empirical work needs to be done to determine the
effectiveness of such a semi-supervised learning procedure.

Extracting Structure from Temporal Data using DBM’s. Modeling complex nonlinear dynamics of
high-dimensional time series data, such as video sequences, is an active area of research in ma-
chine learning. Many of the existing time series models, such as linear dynamical systems (LDS),
switching LDS, hidden Markov models (HMM’s), factorial HMM’s, and product of HMM’s, have
been widely used in practice. However, these models are verylimited in the types of structure
they can model. We believe that multiple layers of distributed representation should work better
for modeling temporal structure. One could therefore builda stack of Deep Boltzmann Machines
linked together through time. These models could potentially not only model nonlinear dynamics,
but also make multimodal predictions and handle missing inputs.

Large Scale Object Recognition and Information Retrieval. As we have stated before, both Deep
Boltzmann Machines and Deep Belief Networks have the potential to learn layers of feature de-
tectors that become progressively more complex, which is believed to be a promising way to solve
object recognition problems. However, at present, most of the existing object recognition systems
achieve state-of-the-art results using shallow architectures or deep hand coded methods like SIFT
(Lowe [1999]), and include many hand-crafted features, which requires considerable human input
and parameter tweaking. It is therefore necessary to apply and evaluate predictive performance
of DBM’s and DBN’s on large scale object recognition tasks, including, for example, benchmark
datasets such as the PASCAL dataset. Similarly, given the recent success of Deep Belief Networks
on image and text retrieval tasks (Torralba et al. [2008], Salakhutdinov and Hinton [2007a]), it
will be beneficial to also evaluate the retrieval accuracy ofDeep Boltzmann Machines.

We have outlined several potential research directions. However, research on deep learning is very
new and there are many broad open questions to consider. To name a few: Can we develop better
optimization or approximation techniques that would allowus to learn deep models more efficiently
without significant human intervention? Can we develop computer systems that are more adaptive, and
capable of extracting distributed representations that can better generalize to unknown future tasks. How
can we make deep models be more robust to dealing with highly ambiguous or missing sensory inputs?
We believe that answering many of those questions will allowus to build more intelligent machines.

Bibliography

A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. P. Xing. Training hierarchical feed-forward visual recognition
models using transfer learning from pseudo tasks.European Conference on Computer Vision, 2008.

A. Andoni and P. Indyk. Near-optimal hashing algorithms forapproximate nearest neighbor in high
dimensions. InFOCS, pages 459–468. IEEE Computer Society, 2006.

J. Benedetti. On the nonparametric estimation of regression functions.Journal of the Royal Statistical
Society series B, 39:248–253, 1977.

Y. Bengio. Learning deep architectures for AI.Foundations and Trends in Machine Learning, 2009.

Y. Bengio and Y. LeCun. Scaling learning algorithms towardsAI. In L. Bottou, O. Chapelle, D. DeCoste,
and J. Weston, editors,Large-Scale Kernel Machines. MIT Press, 2007.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In
Bernhard Schölkopf, John C. Platt, and Thomas Hoffman, editors,Advances in Neural Information
Processing Systems, pages 153–160. MIT Press, 2007.

D. Bertsimas and J. Tsitsiklis. Simulated annealing.STATSCI: Statistical Science: A Review Journal of
the Institute of Mathematical Statistics, 8, 1993.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

M. A. Carreira-Perpinan and G. E. Hinton. On contrastive divergence learning. In10th Int. Workshop
on Artificial Intelligence and Statistics (AISTATS’2005), 2005.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, IT-13(1):21–7, January 1967.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-
stable distributions. InCOMPGEOM: Annual ACM Symposium on Computational Geometry, 2004.

D. Decoste and B. Schölkopf. Training invariant support vector machines.Machine Learning, 46(1/3):
161, 2002.

S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent
semantic analysis.Journal of the American Society of Information Science, 41(6):391–407, 1990.

D. DeMers and G. W. Cottrell. Nonlinear dimensionality reduction. In Cowan Hanson and Giles,
editors, Advances in Neural Information Processing Systems 5, pages 580–587, San Mateo, CA,
1993. Morgan Kaufmann.

69

BIBLIOGRAPHY 70

D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications, and new perspectives.Phys.
Chem., 7(3910), 2005.

C. Galland. Learning in deterministic Boltzmann machine networks. InPhD Thesis, 1991.

P. Gehler, A. Holub, and M. Welling. The Rate Adapting Poisson (RAP) model for information retrieval
and object recognition. InProceedings of the 23rd International Conference on Machine Learning,
2006.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images.IEEE Trans. Pattern Analysis and Machine Intelligence, 6(6):721–741, November 1984.

C. J. Geyer. Markov chain Monte Carlo maximum likelihood. InComputing Science and Statistics,
pages 156–163, 1991.

A. Globerson and T. S. Jaakkola. Approximate inference using conditional entropy decompositions. In
11th International Workshop on AI and Statistics (AISTATS’2007), 2007.

A. Globerson and S. T. Roweis. Metric learning by collapsingclasses. InAdvances in Neural Informa-
tion Processing Systems, 2005.

J. Goldberger, S. T. Roweis, G. E. Hinton, and R. R. Salakhutdinov. Neighbourhood components anal-
ysis. InAdvances in Neural Information Processing Systems, 2004.

R. Hadsell, A. Erkan, P. Sermanet, M. Scoffier, U. Muller, andY. LeCun. Deep belief net learning in a
long-range vision system for autonomous off-road driving.In IROS, pages 628–633. IEEE, 2008.

R. Hecht-Nielsen. Replicator neural networks for universal optimal source coding.Science, 269:1860–
1863, 1995.

G. E. Hinton. To recognize shapes, first learn to generate images.Computational Neuroscience: Theo-
retical Insights into Brain Function., 2007.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.Neural Computation,
14(8):1711–1800, 2002.

G. E. Hinton and V. Nair. Inferring motor programs from images of handwritten digits. InAdvances in
Neural Information Processing Systems. MIT Press, 2006.

G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. In Advances in Neural Information
Processing Systems, pages 833–840. MIT Press, 2002.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504 – 507, 2006.

G. E. Hinton and T. Sejnowski. Optimal perceptual inference. In IEEE conference on Computer Vision
and Pattern Recognition, 1983.

G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length and Helmholtz free energy.
In Advances in Neural Information Processing Systems, volume 6, pages 3–10, 1994.

G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets.Neural
Computation, 18(7):1527–1554, 2006.

BIBLIOGRAPHY 71

T. Hofmann. Probabilistic latent semantic analysis. InProceedings of the 15th Conference on Uncer-
tainty in AI, pages 289–296, San Fransisco, California, 1999. Morgan Kaufmann.

C. Jarzynski. A nonequilibrium equality for free energy differences. Physical Review Letters, 78:
2690–2693, 1997.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. Anintroduction to variational methods for
graphical models. InMachine Learning, volume 37, pages 183–233, 1999.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimizationby simulated annealing.Science, 220:
671–680, 1983.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for training deep neural
networks.Journal of Machine Learning Research, 10:1–40, 2009.

F. Lauer, C. Y. Suen, and G. Bloch. A trainable feature extractor for handwritten digit recognition.
Pattern Recognition, 40(6):1816–1824, 2007.

N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. InAdvances in
Neural Information Processing Systems, pages 329–336. MIT Press, 2004.

N. D. Lawrence and M. I. Jordan. Semi-supervised learning via Gaussian processes. InAdvances in
Neural Information Processing Systems, 2004.

N. D. Lawrence and B. Schölkopf. Estimating a kernel Fisherdiscriminant in the presence of label
noise. InProc. 18th International Conf. on Machine Learning, pages 306–313. Morgan Kaufmann,
San Francisco, CA, 2001.

Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance
to pose and lighting. InCVPR (2), pages 97–104, 2004.

T. S. Lee, D. Mumford, R. Romero, and V. Lamme. The role of the primary visual cortex in higher level
vision. Vision research, 38:2429–2454, 1998.

N. LeRoux and Y. Bengio. Representational power of restricted Boltzmann machines and deep belief
networks.Neural Computation, 2008.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text categorization
research.Journal of Machine Learning Research, 5:361–397, 2004.

D. G. Lowe. Object recognition from local scale-invariant features. InICCV, pages 1150–1157, 1999.

D. J.C. MacKay.Information Theory, Inference, and Learning Algorithms. Cambridge University Press,
September 2003.

R. Memisevic and G. E. Hinton. Unsupervised learning of image transformation.IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2007.

T. P. Minka. Expectation propagation for approximate Bayesian inference. In Jack Breese and Daphne
Koller, editors,UAI, pages 362–369, San Francisco, CA, 2001. Morgan Kaufmann Publishers.

I. Murray and R. R. Salakhutdinov. Evaluating probabilities under high-dimensional latent variable
models. InAdvances in Neural Information Processing Systems, volume 21, 2009.

BIBLIOGRAPHY 72

V. Nair and G. E. Hinton. Implicit mixtures of restricted Boltzmann machines. InAdvances in Neural
Information Processing Systems, volume 21, 2009.

R. M. Neal. Estimating ratios of normalizing constants using linked importance sampling. Technical
Report 0511, Department of Statistics, University of Toronto, 2005.

R. M. Neal. Annealed importance sampling.Statistics and Computing, 11:125–139, 2001.

R. M. Neal. Sampling from multimodal distributions using tempered transitions.Statistics and Com-
puting, 6:353–366, 1996.

R. M. Neal. Connectionist learning of belief networks.Artif. Intell, 56(1):71–113, 1992.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-
TR-93-1, Department of Computer Science, University of Toronto, September 1993.

R. M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian regression and
classification. Technical Report no. 9702. Department of Statistics, University of Toronto, 1997.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse and other
variants. In M. I. Jordan, editor,Learning in Graphical Models, pages 355–368. Kluwer Academic
Press, 1998.

S. Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of Markov random
fields. InAdvances in Neural Information Processing Systems, Cambridge, MA, 2008. MIT Press.

D. Plaut and G. E. Hinton. Learning sets of filters using back-propagation. Computer Speech and
Language, 2:35–61, 1987.

M. A. Ranzato and M. Szummer. Semi-supervised learning of compact document representations with
deep networks. InProceedings of the International Conference on Machine Learning, volume 25,
pages 792 – 799, 2008.

M. A. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hier-
archies with applications to object recognition.IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

M. A. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks.Advances
in Neural Information Processing Systems, 2008.

C. E. Rasmussen. Evaluation of Gaussian processes and othermethods for non-linear regression. In
PhD Thesis, 1996.

C. E. Rasmussen and C. K. I. Williams.Gaussian Processes for Machine Learning. The MIT Press,
2006.

H. Robbins and S. Monro. A stochastic approximation method.Ann. Math. Stat., 22:400–407, 1951.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.Science,
290:2323–2326, 2000.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors.
Nature, 323:533–536, 1986.

BIBLIOGRAPHY 73

R. R. Salakhutdinov. Learning and evaluating Boltzmann machines. Technical Report UTML TR 2008-
002, Department of Computer Science, University of Toronto, 2008.

R. R. Salakhutdinov. Learning in markov random fields using tempered transitions. InAdvances in
Neural Information Processing Systems, volume 22, 2010.

R. R. Salakhutdinov and G. E. Hinton. Using deep belief nets to learn covariance kernels for Gaussian
processes. InAdvances in Neural Information Processing Systems, volume 20, 2008.

R. R. Salakhutdinov and G. E. Hinton. Replicated softmax: anundirected topic model. InAdvances in
Neural Information Processing Systems, volume 22, 2010.

R. R. Salakhutdinov and G. E. Hinton. Semantic Hashing. InSIGIR workshop on Information Retrieval
and applications of Graphical Models, 2007a.

R. R. Salakhutdinov and G. E. Hinton. Learning a nonlinear embedding by preserving class neigh-
bourhood structure. InProceedings of the International Conference on Artificial Intelligence and
Statistics, volume 11, 2007b.

R. R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. InProceedings of the International
Conference on Artificial Intelligence and Statistics, volume 12, 2009a.

R. R. Salakhutdinov and G. E. Hinton. Semantic Hashing.International Journal of Approximate Rea-
soning, 50:969–978, 2009b.

R. R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. InProceedings
of the International Conference on Machine Learning, volume 25, pages 872 – 879, 2008.

R. R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for collaborative
filtering. In Zoubin Ghahramani, editor,Proceedings of the International Conference on Machine
Learning, volume 24, pages 791–798. ACM, 2007.

G. Salton. Developments in automatic text retrieval.Science, 253, 1991.

G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.Information Process-
ing and Management, 24(5):513–523, 1988.

F. Samaria and F. Fallside. Face identification and feature extraction using hidden markov models.
In G. Vernazza, editor,Image Processing: Theory and Applications, pages 295–298. Elsevier, June
1993.

M. W. Seeger. Covariance kernels from Bayesian generative models. In Thomas G. Dietterich, Suzanna
Becker, and Zoubin Ghahramani, editors,Advances in Neural Information Processing Systems, pages
905–912. MIT Press, 2001.

M. W. Seeger. Gaussian processes for machine learning.International Journal Neural Syst, 14(2):
69–106, 2004.

T. Serre, A. Oliva, and T. A. Poggio. A feedforward architecture accounts for rapid categorization.
Proceedings of the National Academy of Sciences, 104:6424–6429, 2007.

J. Skilling. Nested sampling.Bayesian inference and maximum entropy methods in science and engi-
neering, AIP Conference Proceedings, 735:395–405, 2004.

BIBLIOGRAPHY 74

P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In D. E.
Rumelhart and J. L. McClelland, editors,Parallel Distributed Processing, volume 1, chapter 6, pages
194–281. MIT Press, Cambridge, 1986.

I. Sutskever and G. E. Hinton. Learning multilevel distributed representations for high-dimensional
sequences. Technical Report UTML TR 2006-003, Dept. of Computer Science, University of Toronto,
2006.

R. H. Swendsen and J. S. Wang. Replica Monte Carlo simulationof spin-glasses.Physical Review
Letters, 57(21):2607–2609, 1986.

G. Taylor, G. E. Hinton, and S. T. Roweis. Modeling human motion using binary latent variables. In
Advances in Neural Information Processing Systems. MIT Press, 2006.

J. A. Tenenbaum, V. J. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction.Science, 290:2319–2323, 2000.

G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8:257–277, 1992.

T. Tieleman. Training restricted Boltzmann machines usingapproximations to the likelihood gradient.
In Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2008). ACM,
2008.

A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008.

L. van der Maaten and G. E. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, 2009.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features with
denoising autoencoders. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors,
Proceedings of the Twenty-Fifth International Conference, volume 307, pages 1096–1103, 2008.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference.
Technical report, Department of Statistics, University ofCalifornia, Berkeley, 2003.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new class of upper bounds on the log partition
function. IEEE Transactions on Information Theory, 51(7):2313–2335, 2005.

K. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest neighbor
classification. InAdvances in Neural Information Processing Systems, 2005.

M. Welling and G. E. Hinton. A new learning algorithm for meanfield Boltzmann machines.Lecture
Notes in Computer Science, 2415, 2002.

M. Welling and Y. W. Teh. Approximate inference in Boltzmannmachines.Artificial Intelligence, 143
(1):19–50, 2003.

M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums with an application
to information retrieval. InAdvances in Neural Information Processing Systems, pages 1481–1488,
Cambridge, MA, 2005. MIT Press.

BIBLIOGRAPHY 75

E. Xing, R. Yan, and A. Hauptmann. Mining associated text andimages with dual-wing harmoniums.
In Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI-2005), 2005.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized
belief propagation algorithms.IEEE Transactions on Information Theory, 51(7):2282–2312, 2005.

L. Younes. On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity
rates, March 17 2000.

L. Younes. Parameter inference for imperfectly observed Gibbsian fields. Probability Theory Rel.
Fields, 82:625–645, 1989.

A. L. Yuille. The convergence of contrastive divergences. In Advances in Neural Information Processing
Systems, 2004.

S. Zhu and X. Liu. Learning in Gibbsian fields: How accurate and how fast can it be.IEEE Trans. on
Pattern Analysis and Machine Intelligence, 24(7):1001–1006, 2002.

Appendix A

Appendix

A.1 Details of the Datasets

Synthetic Curves Dataset The synthetic curves dataset contains 28×28 images of “curves” that are
generated from three randomly chosen 2-dimensional points(see Fig. A.1, left panel). For this dataset,
the true intrinsic dimensionality is known, and the relationship between the pixel intensities and the
six numbers used to generate them is highly non-linear. The training and test data contained 20,000
and 10,000 images respectively. To generate the synthetic curves we constrained thex coordinate of
each point to be at least2 greater than thex coordinate of the previous point. We also constrained all
coordinates to lie in the range[2, 26]. The three points define a cubic spline which is “inked” to produce
the 28×28 pixel images. The details of the inking procedure are described in Hinton and Nair [2006]
and the Matlab code for generating synthetic curves is available at http://www.cs.toronto.edu/∼hinton.

MNIST Dataset The MNIST digit data set contains 60,000 training and 10,000test 28×28 images
of ten handwritten digits (0 to 9). Out of 60,000 training images, 10,000 were used for validation. The
original pixel intensities were normalized to lie in the interval [0, 1]. The normalized pixel intensities
tend to take on extreme values, and were therefore modeled much better by a standard binary RBM.
Random samples from the training set are shown in Fig. A.1, right panel. The dataset is available at
http://yann.lecun.com/exdb/mnist/index.html.

Olivetti Face Dataset The Olivetti face dataset (Samaria and Fallside [1993]) from which we obtained
the face patches contains ten 64×64 images of each of forty different people, shown in Fig. A.2. For the
experiments used in section 3.1, we constructed a dataset of13,000 25×25 images by rotating (−90◦

to +90◦), cropping, and subsampling the original 400 images. The dataset was then subdivided into
12,000 training images, which contained the first 30 people,and 1,000 test images, which contained the
remaining 10 people. For the experiments used in section 3.2, we constructed a much larger dataset of
165,600 25×25 images by rotating (−90◦ to +90◦), cropping, and subsampling as well as scaling (1.4
to 1.8) the original 400 images. The dataset was then subdivided into 124,200 training images, which
contained the first 30 people, and 41,400 test images, which contained the remaining 10 people. In all
of our experiments, the intensities in the cropped images were shifted so that every pixel had zero mean
and the entire dataset was then scaled by a single number to make the average pixel variance be1. The
Olivetti face dataset is available at http://www.cs.toronto.edu/ roweis/data.html.

20-Newsgroups Dataset The 20-newsgroups corpus contains 18,845 postings taken from the Usenet
newsgroup collection. The corpus is partitioned fairly evenly into 20 different newsgroups, each corre-

76

APPENDIX A. A PPENDIX 77

Synthetic Curves MNIST Digits

Figure A.1:Left: Random training samples from the synthetic curves dataset.Right: Random training samples
from the MNIST dataset.

Olivetti Face Dataset

Figure A.2:The Olivetti face dataset showing a random sample of each of forty different people.

sponding to a separate topic. The data was split by date into 11,314 training and 7,531 test articles, so the
training and test sets were separated in time. The training set was further randomly split into 8,314 train-
ing and 3,000 validation documents. Newsgroups such as soc.religion.christian and talk.religion.misc
are very closely related to each other, while newsgroups such as comp.graphics and rec.sport.hockey
are very different. We further preprocessed the data by removing common stopwords, stemming, and
then only considering the 2000 most frequently used words inthe training dataset. As a result, each
posting was represented as a vector containing 2000 word counts. No other preprocessing was done.
The dataset is available at http://people.csail.mit.edu/jrennie/20Newsgroups (20news-bydate.tar.gz). It
has already been organized by date.

Reuters Corpus Volume I (RCV1-v2) Reuters Corpus Volume I (RCV1-v2) (Lewis et al. [2004]) is
an archive of 804,414 newswire stories that have been manually categorized into 103 topics. The corpus
covers four major groups: corporate/industrial, economics, government/social, and markets. Sample
topics include Energy Markets, Accounts/Earnings, Government Borrowings, Disasters and Accidents,
Interbank Markets, Legal/Judicial, Production/Services, etc. The topic classes form a tree which is
typically of depth 3. For this dataset, we define the relevance of one document to another to be the
fraction of the topic labels that agree on the two paths from the root to the two documents. The data was
randomly split into 402,207 training and 402,207 test articles. The training set was further randomly
split into 302,207 training and 100,000 validation documents. The available data was already in the

APPENDIX A. A PPENDIX 78

NORB Dataset

Training Objects Testing Objects

Figure A.3:Top: Random training samples from each of five generic object categories.Bottom: 25 training vs.
25 testing objects. Note that the training objects are quitedifferent from the testing objects.

preprocessed format, where common stopwords were removed and all documents were stemmed. We
again only consider the 2000 most frequently used words in the training dataset. The dataset is available
at http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004rcv1v2 README.htm.

NORB Dataset NORB (LeCun et al. [2004]) contains images of 50 different 3Dtoy objects with 10
objects in each of five generic classes: cars, trucks, planes, animals, and humans, shown in Fig. A.3,
top panel. Each object is captured from 162 viewpoints (9 elevations, 18 azimuth) and under 6 lighting
conditions. The training set contains 24,300 stereo image pairs of 25 objects, 5 per class, while the test
set contains 24,300 stereo pairs of the remaining, different 25 objects. Figure A.3, bottom panel, shows
25 training and 25 test objects. The goal is to classify each previously unseen object into its generic
class. From the training data, 4,300 were set aside for validation. The dataset is available at
http://www.cs.nyu.edu/∼ylclab/data/norb-v1.0/

APPENDIX A. A PPENDIX 79

A.2 Details of Training

Details of the pretraining: To speed up the pretraining of each RBM, we subdivided all datasets
into mini-batches, each containing 100 data vectors and updated the weights after each mini-batch. For
datasets that are not divisible by the size of a minibatch, the remaining data vectors were included in
the last minibatch. For all datasets, each hidden layer was pretrained for 50 passes (epochs) through
the entire training set. The weights were updated using a learning rate of 0.1, momentum of 0.9, and a
weight decay of0.0002×weight×learning rate. The weights were initialized with small random values
sampled from a zero-mean normal distribution with standarddeviation 0.01. When modeling real-
valued Gaussian visible units, e.g. in the case of modeling Olivetti face patches, pretraining the first
layer of features typically requires a much smaller learning rate to avoid oscillations. The learning rate
was set to 0.001 and pretraining proceeded for 200 epochs.

During the pretraining stage, the visible units of standardbinary RBM had real-valued activities,
which were in the range[0, 1]. When training higher-level RBM’s, the visible units were set to the
activationprobabilitiesof the hidden units in the lower-level RBM, but the hidden units of every RBM
had stochastic binary values.

Details of the fine-tuning: For the fine-tuning, we used the method of conjugate gradients on larger
minibatches containing 1000 data vectors. We used Carl Rasmussen’s “minimize” code, available at
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize. Three line searches were performed
for each mini-batch in each epoch. To determine an adequate number of epochs and to check for
overfitting, we fine-tuned each model on a fraction of the training data and tested its performance on the
remaining validation set. We then repeated the fine-tuning on the entire training set.

For many of the experiments presented in this thesis, we tried various values of the learning rate,
momentum, and weight-decay parameters and we also tried training the RBM’s for more epochs. We
did not observe any significant differences in the final results after the fine-tuning. This suggests that
the precise weights found by the greedy pretraining do not matter as long as it finds a good region from
which to start the fine-tuning.

A.3 Details of Matlab code

Deep Autoencoders.The Matlab code for pretraining a stack of RBM’s using Contrastive Divergence
(CD1) and fine-tuning deep autoencoders is available at
http://www.cs.toronto.edu/∼rsalakhu/software/.

Estimating Partition Functions of RBM’s. The Matlab code for estimating partition functions of RBM’s
using Annealed Importance Sampling is available at
http://www.cs.toronto.edu/∼rsalakhu/software/.

Pretraining and Learning Deep Boltzmann Machines.The Matlab code includes: pretraining a mod-
ified stack of RBM’s, the new learning algorithm that combines mean-field inference along with
stochastic approximation algorithm, and discriminative fine-tuning of Deep Boltzmann Machines.
The code is available at: http://www.cs.toronto.edu/∼rsalakhu/software/.

