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2009

Building intelligent systems that are capable of extragtimh-level representations from high-dimensional
sensory data lies at the core of solving many Al related taisk$uding object recognition, speech
perception, and language understanding. Theoretical adgical arguments strongly suggest that
building such systems requires models with deep architestthat involve many layers of nonlinear
processing.

The aim of the thesis is to demonstrate that deep generatidelsithat contain many layers of latent
variables and millions of parameters can be learned efflgjeand that the learned high-level feature
representations can be successfully applied in a widerspedf application domains, including visual
object recognition, information retrieval, and classifica and regression tasks. In addition, similar
methods can be used for nonlinear dimensionality reduction

The first part of the thesis focuses on analysis and apmitaibf probabilistic generative models
called Deep Belief Networks. We show that these deep hieicGatcmodels can learn useful feature
representations from a large supply of unlabeled sensprtsn The learned high-level representations
capture a lot of structure in the input data, which is usafulsubsequent problem-specific tasks, such
as classification, regression or information retrievakrethough these tasks are unknown when the
generative model is being trained.

In the second part of the thesis, we introduce a new learrdgwyithm for a different type of hier-
archical probabilistic model, which we call a Deep Boltzmariachine. Like Deep Belief Networks,
Deep Boltzmann Machines have the potential of learningmaterepresentations that become increas-
ingly complex at higher layers, which is a promising way ofvBw object and speech recognition
problems. Unlike Deep Belief Networks and many existing eiedavith deep architectures, the approx-
imate inference procedure, in addition to a fast bottom-agspcan incorporate top-down feedback.
This allows Deep Boltzmann Machines to better propagatenmiaty about ambiguous inputs.
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Chapter 1

Introduction

Building intelligent systems that have the potential ofrasting high-level representations from rich
sensory input lies at the core of solving many Al related gasikcluding visual object recognition,
speech perception, and language understanding. Thedratid biological arguments strongly suggest
that building such systems requires deep architecturesdeilmthat are composed of several layers of
nonlinear processing.

Many existing machine learning algorithms use “shallonchatectures, including neural networks
with only one hidden layer, kernel regression, supportaregtachines, and many others. Theoretical
results show that the internal representations learnedibly systems are necessarily simple and are
incapable of extracting some types of complex structurenfrich sensory input (Bengio and LeCun
[2007], Bengio [2009]). Training these systems also rexgularge amounts of labeled training data.
By contrast, it appears that, for example, object recogmith the visual cortex uses many layers of
nonlinear processing and requires very little labeledtifbee et al. [1998]). Therefore developing new
and efficient learning algorithms for models with deep degttures, that can also make efficient use of
a large supply of unlabeled sensory input, is of crucial ingue.

Multilayer neural networks are perhaps the best examplesooels with deep architectures. Back-
propagation (Rumelhart et al. [1986]) was the first learrahgprithm for these deep networks that
could learn multiple layers of representation. Howeverdiditional to requiring labeled data, back-
propagation does not work well in practice when training gisdhat contain more than a few layers
(DeMers and Cottrell [1993], Hecht-Nielsen [1995], Tesa[i992], Bengio et al. [2007], Larochelle
et al. [2009]). In general, since models with deep architest are composed of several layers of param-
eterized nonlinear modules, the associated loss functimnalmost always non-convex. The presence
of many bad local optima or plateaus in the loss function realeep models far more difficult to opti-
mize. Local gradient-based optimization algorithms, sakbackpropagation, that start at some random
initial configuration, often get trapped in a poor local amtim, particularly when training models with
more than two or three layers. By contrast, models with ehalirchitectures (e.g. support vector
machines) generally use convex loss functions, which gHyiallows one to carry out parameter op-
timization efficiently in these models. The appeal of coityeRas steered most of machine learning
research into developing learning algorithms that can beassolving convex optimization problems.

Recently, Hinton et al. [2006] introduced a moderately,fastsupervised learning algorithm for
deep generative models called Deep Belief Networks (DBN&skey feature of this algorithm is its
greedy layer-by-layer training that can be repeated sktigras in order to efficiently learn a deep, hi-
erarchical probabilistic model. The new learning algarithas excited many researchers in the machine
learning community, primarily because of the followingdércrucial characteristics:

1. The greedy layer-by-layer learning algorithm can find adyset of model parameters fairly
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quickly, even for models that contain many layers of noraiitees and millions of parameters.

2. The learning algorithm can make efficient use of very lages of unlabeled data, and so the
model can be pretrained in completely unsupervised fashitie very limited labeled data can
then be used to only slightly fine-tune the model for a spetzBk at hand using standard gradient-
based optimization.

3. There is an efficient way of performing approximate inficse which makes the values of the
latent variables in the deepest layer easy to infer.

The strategy of layer-wise unsupervised training alloisieht training of deep networks and gives
promising results for many challenging learning probleMany variants of this greedy algorithm have
been successfully applied not only for classification tggkaton et al. [2006], Bengio et al. [2007],
Larochelle et al. [2009]), but also regression tasks (Saltinov and Hinton [2008]), visual object
recognition (Ranzato et al. [2007, 2008], Bengio and LeCa00}], Ahmed et al. [2008]), dimen-
sionality reduction (Hinton and Salakhutdinov [2006], &dlutdinov and Hinton [2007b]), information
retrieval (Ranzato and Szummer [2008], Torralba et al. $08alakhutdinov and Hinton [2007a]),
modeling image patches (Osindero and Hinton [2008]), etitrg optical flow (Memisevic and Hinton
[2007]), and robotics (Hadsell et al. [2008]). Research auefs with deep architectures is still at an
early stage. Much of the current thesis will focus on analgsid applications, as well as developing
new learning algorithms for deep hierarchical generatioelefs.

The thesis has two main parts, which can be read almost indepdy. In the first part, we will
primarily concentrate on analysis and applications of DRelgef Networks. First, we will address the
qguestion of how well Deep Belief Networks perform in vari@gplications, including dimensionality
reduction, information retrieval, regression and clasaiion tasks, particularly when dealing with a
large supply of high-dimensional, richly structured umkgd input and very limited amount of labeled
training data. Second, we will address the problem of asggg®neralization performance of Deep
Belief Networks as density models, which will allow us to naty compare DBN'’s to other probabilistic
models, but also perform model selection and complexityrobn

In the second part of the thesis, we will introduce a new liegralgorithm for a different type of
hierarchical probabilistic model, which we call a Deep Bolann Machine (DBM). Deep Boltzmann
Machines, like Deep Belief Networks, have the potentiabafhing internal representations that become
progressively complex at higher layers. High-level représtions can be built from a large supply of
unlabeled sensory inputs and the very limited labeled datatlten be used to only slightly adjust the
model for a problem-specific task. Second, unlike Deep B&letworks and many existing models
with deep architectures (Larochelle et al. [2009], Bengid BeCun [2007], Ahmed et al. [2008]), the
approximate inference procedure, in addition to a bottgnpass, can incorporate top-down feedback,
allowing Deep Boltzmann Machines to better propagate saicgy about ambiguous inputs. We will
show that DBM'’s can learn good generative models and perfeethon handwritten digit and visual
object recognition tasks.

1.1 Contributions of This Thesis

The most significant research contributions in this thess a

1. We show how the feature representations that a Deep Bdigiork extracts from a large supply
of unlabeled data can be used to learn a good covariancel Kerree Gaussian process. If the
input data is high-dimensional and highly-structured, ass&an kernel applied to the top layer
of extracted features in the DBN works much better than dairkernel applied to the raw input,
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especially if the DBN is fine-tuned by backpropagating geati obtained from the Gaussian
process.

2. We introduce an efficient way of initializing the weighfdeep autoencoders based on the greedy
learning algorithm for Deep Belief Networks. This allowsegeautoencoder networks to learn
low-dimensional codes that work much better than princggahponent analysis as a tool to
reduce the dimensionality of data.

3. We demonstrate how deep autoencoders can learn to mameotaiinto “semantic” binary
codes. By using learned binary codes as memory addressesaniearn eéSemantic Address
Space so a document can be mapped to a memory address in such aavaystmall hamming-
ball around that memory address contains semanticallylaidocuments. We call this model
“Semantic Hashing” and show that it allows us to perform viast and accurate information
retrieval.

4. We show how to efficiently pretrain and fine-tune a deepineal transformation from the input
space to a low-dimensional feature space in which K-near@ghbour classification performs
well.

5. We show how a Monte Carlo based algorithm, Annealed Inapog Sampling, combined with
approximate inference, can be used to estimate a lower boutite log-probability that a Deep
Belief Network with multiple hidden layers assigns to thsttdata. This allows us to directly
assess generalization performance of Deep Belief Netvawkiensity models.

6. Finally, we introduce a new learning algorithm for Bolnm machines that combines varia-
tional techniques and Markov chain Monte Carlo. The newrdlym readily extends to learning
Boltzmann machines with real-valued, count, or tabulaa.dat/e further introduce a modified
greedy layer-by-layer pretraining algorithm that willall us to quickly find a good set of model
parameters for Deep Boltzmann Machines.

1.2 Summary of Remaining Chapters

Chapter 2: Deep Belief Networks.In this chapter we provide a brief technical overview of Restd
Boltzmann Machines (RBM’s), that form component module®eép Belief Networks, as well
as generalizations of RBM’s to modeling real-valued andchtadata. We then review the greedy
learning algorithm for Deep Belief Networks.

Chapter 3: Learning Feature Hierarchies with Deep Belief Néworks. This chapter presents several
ideas based on greedily learning a hierarchy of features figh-dimensional, highly-structured
sensory input. We first show how unlabeled data and a DeepfBéitwork can be used learn a
good covariance kernel for a Gaussian process. We then shwwhle greedy learning algorithm
can be used to make nonlinear autoencoders work consigdratier than widely used methods,
such as principal component analysis and singular valuerdpgsition. We also demonstrate
that these deep autoencoders can be used to discover bagmaftic” codes that allow fast and
accurate information retrieval. Finally, we show how totpam and fine-tune a deep nonlinear
network to learn a similarity metric over the input space thailitates nearest-neighbor classifi-
cation. Some of this material appeared in Hinton and Saldkioy [2006], Salakhutdinov and
Hinton [2007a,b, 2008, 2009b, 2010], and Goldberger, Rewinton and Salakhutdinov [2004].
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Chapter 4: Evaluating Deep Belief Networks as Density Model. In this chapter we show how a
Monte Carlo method, Annealed Importance Sampling (AlIS), lsa used to efficiently estimate
the partition function of an RBM. We further show how an AlSimsitor, along with approxi-
mate inference, can be used to estimate a lower bound ondharddability that a Deep Belief
Network assigns to the test data. Some of this material apgea Salakhutdinov [2008] and
Salakhutdinov and Murray [2008].

Chapter 5: Deep Boltzmann Machines.This chapter presents a new learning algorithms for a differ
ent type of hierarchical probabilistic model: a Deep Boliam Machine (DBM). Approximate
inference can be performed using variational approaches, & mean-field. Learning can then
be carried out by applying a stochastic approximation ptocethat uses Markov chain Monte
Carlo (MCMC) to approximate a model's expected sufficieatistics, which is needed for max-
imum likelihood learning. The MCMC based approximationgadure provides nice asymptotic
convergence guarantees and belongs to the general clggsrokenation algorithms of Robbins—
Monro type. We show that this unusual combination of vasizl methods and MCMC is essen-
tial for creating a fast learning algorithm for Deep BoltamaMachines. Some of this material
appeared in Salakhutdinov [2008, 2010] and Salakhutdinovtiinton [2009a].

Chapter 6: Conclusions.In this chapter we provide a brief summary of our contribugi@nd discuss
possible future research directions.



Chapter 2

Deep Belief Networks

Deep Belief Networks (DBN's) are probabilistic generatimedels that contain many layers of hidden
variables, in which each layer captures high-order caicela between the activities of hidden features
in the layer below. The top two layers of the DBN form an unclied bipartite graph with the lower
layers forming a directed sigmoid belief network, as showhig. 2.3. Hinton et al. [2006] introduced
a fast, unsupervised learning algorithm for these deeparksywhich we review in this chapter. A
key feature of this algorithm is its greedy layer-by-layegiriing that can be repeated several times to
learn a deep, hierarchical model. The learning procedsi® @lovides an efficient way of performing
approximate inference, which only requires a single bottgmpass to infer the values of the top-level
hidden variables.

The main building block of a DBN is a bipartite undirected grcal model called the Restricted
Boltzmann Machine (RBM). RBM’s, and their generalizatidgnsexponential family models (Welling
et al. [2005]), have been successfully applied in collatiediltering (Salakhutdinov et al. [2007]),
information and image retrieval (Gehler et al. [2006]), &ingde series modeling (Taylor et al. [2006],
Sutskever and Hinton [2006]). In this chapter we provideieftbechnical overview of RBM’s, general-
izations of RBM's to modeling real-valued and count datal e greedy learning algorithm for Deep
Belief Networks.

2.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine is a particular type of Markandom field that has a two-layer archi-
tecture (Smolensky [1986]), in which the visible, binargdtastic unitss € {0,1}” are connected to
hidden binary stochastic units€ {0, 1}/, as shown in Fig. 2.1. The energy of the sthteh} is:

E(v,h;f) = —v' Wh—-b'v—-a'h
D F D F
= —ZZWijvihj—Zbivi—Zajhj, (21)
i=1 j=1 1=1 j=1

wheref = {W, b, a} are the model parameterd’;; represents the symmetric interaction term between
visible uniti and hidden unit; b; anda; are bias terms. The joint distribution over the visible and
hidden units is defined by:

P(v,h:0) = %exp(—E(v,h; 0), 2.2)
Z(0) = Y exp(—E(v,h;0)). (2.3)
v h
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Figure 2.1:Restricted Boltzmann Machine. The top layer representstoref stochastic binary units and
the bottom layer represents a vector of stochastic binaiiplei variables/.

Z(0) is known as the partition function or normalizing constdartie probability that the model assigns
to a visible vectow is:

1
P(v;0) = —— exp (—E(v,h;0)). (2.4)
(vi0) = Zgy 2 exp (~B(v.bs0)
Due to the special bipartite structure of RBM's, the hiddeiisican be explicitly marginalized out:

P(v;0) = % Z exp (VTWh +b'v+ aTh>
h

F D
1 T
= Z(@) eXp(b V) H Z exp <ajhj + ; W/ijvihj>

J=1 h;e{0,1}
1 F D
= Z0) exp(b'v) H (1 + exp (aj + Z I/Vij’ui>> . (2.5)
j=1 i=1

The conditional distributions over hidden uritsnd visible vector can be easily derived from Eq. 2.2
and are given by logistic functions:

Phlv;0) = [[p(hilv), P(vih;0) = []p(vilh), (2.6)
7 7
plhj=1v) =g (Z Wijvi + aj) ; (2.7)
plvi =1h) = g | > Wijh; +b; |, (2.8)

J

whereg(xz) = 1/(1+exp(—=z)) is the logistic function. The derivative of the log-liketibd with respect
to the model parametefscan be obtained from Eqg. 2.4:

0log P(v;0)

oW = Ep.. [VhT] — EPyoda [VhT]v (2.9)
610%3(‘/;9) = EPdata [h] - EPIVIodel [h]7 (210)
M = Erjia [V] — EPyoda [V] (2.11)

b
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Ep,...[-] denotes an expectation with respect to the data distritbiRigy. (h, v; 6) = P(h|v; 0) Pyata(V),
With Paaea(v) = % >, 0(v — v,,) representing the empirical distribution, ang,E,,[-] is an expec-
tation with respect to the distribution defined by the modsljn Eq. 2.2. Exact maximum likelihood
learning in this model is intractable because exact contiputaf the expectation g, [-] takes time
that is exponential imin{ D, F'}, i.e the number of visible or hidden units. In practice, téag is done
by following an approximation to the gradient of a differemjective function, called the “Contrastive
Divergence” (CD) (Hinton [2002]):

AW = a (Epdm vh'] - Ep, [th]) , (2.12)

whereq is the learning rate anBy represents a distribution defined by running a Gibbs chaiitialized

at the data, fofl” full steps. The special bipartite structure of RBM’s alldiws quite an efficient Gibbs
sampler that alternates between sampling the states oidtierhunits independently given the states of
the visible units, and vise versa (see EqQ. 2.6). Seffing oo recovers maximum likelihood learning.
In many application domains, however, the CD learning Witk 1 (or CD1) has been shown to work
quite well (Hinton [2002], Welling et al. [2005], Larochelkt al. [2009]).

2.2 A Greedy Learning Algorithm for Deep Belief Networks

The ideas underlying the greedy learning algorithm for D8H#e actually rather simple. Consider
learning a DBN with two layers of hidden unifh!, h%}. We will also assume that the number of
the 2°4 layer hidden units is the same as the number of visible usés Fig. 2.2, right panel). The
top two layers of the DBN form an undirected bipartite graph RBM) and the lower layers form a
directed sigmoid belief network. The joint distributionesw, h', andh? defined by this model takes
the following form':

P(v,h',h?%;0) = P(vih!; W) P(h!' h? W?), (2.13)

whered = {W!, W?2} are the model parameteB(v|h'; W) is the directed sigmoid belief network,
andP(h', h?; W?2) is the joint distribution defined by the second layer RBM:

P(v|h'; W Hp vilhs W, plo;=1hY W =g ( Wf]hjl) . (214)

P(h',h%: W?) = exp (thWQhQ). (2.15)

1
Z(W?)

The greedy strategy relies on the following key observatiGonsider a two-hidden-layer DBN with
tied parameter§V’2 = W' . Then this DBN’s joint distributionP (v, h'; ) = > n2 P(v,hl h%0)

is identical to the RBM's joint distributionP(v, h'; W), Indeed, it is easy to see from Fig. 2.2
that both P(h!; W) and P(v|h!; W!) are the same for both models. To be more precise, using

1We will omit the bias terms for clarity of presentation.
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Figure 2.2:Left: Restricted Boltzmann MachindRight: A two-hidden-layer Deep Belief Network with tied

weightsiW2=W1". The joint distributionP (v, h'; W) defined by this DBN is identical to the joint distribution
P(v,h'; W) defined by an RBM.

Egs. 2.13, 2.14, 2.15 and the fact e —W'', we obtain the DBN's joint distribution:

P(v,h';0) = P(v[n'; W) x Y " P(h',h?* W?)
h2

Hp(’UZ‘|h1; Wl) X ﬁ H (1 + exp (Z Wﬁh}) )

e (w5, Wh)

ex 2pl
1:1 14 exp (Z] Wéh]l) X Z(W2) H (1 + exp (ZJ: Wﬂhj))
= % H (exp (vi Zijh;)) [sinceW? = Wk, (W) = Z(W?)]

i

1 1 1
= mexp (%: ‘/Vijvihj) , (2.16)

which is identical to the joint distribution defined by an RREK. 2.2).

The greedy learning algorithm uses a stack of RBM's and masas follows. We first train the
bottom RBM with parameter’!, as described in section 2.1. We then initialize 2h€ layer weights
to W?2 = WlT, which ensures that the two-hidden-layer DBN is at leastoaglgas our original RBM.
We can now improve the DBN's fit to the training data by untyargl refiningi2.

For any approximating distributio (h'|v), the log-likelihood of the two-hidden-layer DBN model
has the following variational lower bound, where the stai®sare analytically summed out:

log P(vi0) = 3 Q)| o P(v. )| + H(@(b! V)
hi
= ZQ(hl\v)[logP(hl;WQ) +log P(vh'; Wh | + H(Q(h'|v)), (2.17)
hl
whereH(-) is the entropy functional. We sé€)(h'|v) = P(hl|v; W) defined by the bottom RBM

(Eq. 2.6). Initially, wheniv2 =TW'", Q is the DBN's true factorial posterior ovér!, in which case
the bound is tight. The strategy of greedy learning algorith to freeze the parameter vecid' and
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Deep Belief Network

Figure 2.3:Left: Greedy learning a stack of RBM'’s in which the samples fromdler-level RBM are used as
the data for training the next RBNRight: The corresponding Deep Belief Network.

Algorithm 1 Recursive Greedy Learning Procedure for the DBN.

1: Fit parameter$¥! of the 15! layer RBM to data.

2: Freeze the parameter vectdr' and use samplds! from Q(h'|v) = P(ht|v, W) as the data for
training the next layer of binary features with an RBM.

3: Freeze the parametei¥? that define the2®! layer of features and use the samples from
Q(h%|h!') = P(h?h!, W?2) as the data for training t&< layer of binary features.

4. Proceed recursively for the next layers.

attempt to learn a better model fét(h'; W?2) by maximizing the variational lower bound of Eq. 2.17
with respect td¥2. Maximizing this bound with frozefl’! amounts to maximizing:

> Q(h'v)log P(h'; W?), (2.18)
hl

which is equivalent to maximum likelihood training of tb&! layer RBM with vectorsh! drawn from
Q(h'|v) as data. When presented with a datasefVofraining input vectors, the"® layer RBM,
P(h'; W?), will learn a better model of the “aggregated” posteriorrawé&, which is simply the mix-
ture of factorial posteriors for all the training cases:y_,, P(h'|v,;W?). Note that any increase in
the variational lower bound, as a result of changi#g, will result in an increase of the DBN’s data
likelihood?

This idea can be extended to training ti€ layer RBM on vectorsh? drawn from the second

RBM. By initializing W3 =1W2", we are guaranteed to improve the lower bound on the logjHixed,

2Improving the variational bound by changiiig® from the value it initially had when the second hidden layaswreated
increases the log-likelihood because the bound is injtigdjht. Further changes tB/2 that increase the variational bound
further are not guaranteed to increase the log-likelihagthér, but they are guaranteed to keep it above the valuadit h
whenW? was created. When learning deeper layers, the variatianaid does not start off being tight so even the initial
improvement in the bound when the deepest weights are firdified is not guaranteed to increase the log-likelihood.
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Gibbs chain

o ()w~amwp) )t~ aniy)
() 12~ P w) () w~ammy [ () n2~amy)
o s () v ~amy) () ni~amiy)
O-rw O of

Figure 2.4: Left: Generating a sample from the Deep Belief NetwoiRight: Generating a sample from
approximate pos;terlo@(h1 h2 h3|v) vs. generating a sample from fully factorized approximatseterior
Q(h'[v)Q(h*|V)Q(h*|v).

Algorithm 2 Modified Recursive Greedy Learning Procedure for the DBN.

1: Fit parameter$¥! of the 15! layer RBM to data.

2. Freeze the parameter vectdt' and use samplds' from Q(h'|v) = P(h'|v, W) as the data for
training the next layer of binary features with an RBM.

3: Freeze the parameterig? that define the"? layer of features and use the samgiégrom Q (h?|v)
as the data for training tr&#< layer of binary features.

4. Proceed recursively for the next layers.

although changing’3 to improve the bound can decrease the actual log-likelihdbis greedy, layer-
by-layer training can be repeated several times to learrep,dderarchical model. The procedure is
summarized in Algorithm 1.

After training a DBN with L. layers, the model’'s joint distribution and its approximatesterior
distribution are given by:

P(v,h!, ... h’) = P(v|h!)...P(h!72|h" ) P(hl~1, nt),
Q(h',...h'v) = Q(h'[v)Q(h*h")..Q(h"h").

To generate an approximate sample from the Deep Belief Nkfwi@ can run a prolonged alternating
Gibbs sampler (Eq. 2.6) to generate an approximate sahfpté from P(h’~! h'), defined by the
top-level RBM, followed by a “top-down” pass through theraigid belief network by stochastically
activating each lower layer in turn (see Fig. 2.4, left pangd get an exact sample from the approximate
posterior distributiony), we can simply perform a “bottom-up” pass by stochasticallfivating each
higher layer in turn. The marginal distribution of the tegwé! hidden units of our approximate posterior
Q(hL|v) will be non-factorial and, in general, could be multimodafiowever, for many practical
applications (e.g. information retrieval) having an esplform for Q(h”|v), which allows efficient
approximate inference, can be of crucial importance. Omssipte alternative is to choose the following
fully factorized approximating distributio@:

L
Q(h',.. hilv) = H Q(h!|v), (2.19)
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where we define:

QM'[v) = [[ahjlv), q(h}=1]v) = <ZW$~U¢+@}>, and (2.20)

Qn'|v) = Hq hklv), =1v) =g <Z g(ht =1v) + > (2.21)

whereg(z) = 1/(1 + exp(—z)) andl = 2, .., L. The factorial posteriof)(h’|v) can be obtained
by simply replacing the stochastic hidden units in bottoyeta with real-valued probabilities, and
then performing a single deterministic bottom-up pass mpmieq(h]@ = 1]v). This fully factorized
approximation also suggests a modified greedy learningitign summarized in Algorithm 2. In this
algorithm the samples, used for training higher-level RBMre instead sampled from a fully factorized
approximate posteriaf). It is important to observe that the modified algoritbimes not guaranteto
improve the lower bound on the log-probability of the tramidata. Nonetheless, this is the actual
algorithm commonly used in practice (Taylor et al. [2006intdn and Salakhutdinov [2006], Torralba
et al. [2008], Bengio [2009]), and we will use it in the nexagplter of this thesis. The modified algorithm
performs well, particularly when a fully factorized is used to perform approximate inference in the
final model. Details of Matlab implementation of the modifgr@edy learning algorithm can be found
in Appendix A.

In practice, however, many of the assumptions that we haveake in order to guarantee the
improvement of the lower bound on the data likelihood ardawéa. In particular, the assumption that
learning higher-level RBM’s can be carried out using maximiikelihood (see Eq. 2.18) is clearly
violated. Furthermore, when adding a new lajewe typically do not initializeW! = W'=1", which
would force the number of hidden units of the new RBM to be #hme as the number of the visible
units of the lower level RBN. In chapter 4 of this thesis, we will address a problem of ustihg
generalization performance of Deep Belief Networks as itiemsodels, which will allow us to do
model selection and complexity control.

2.3 Generalizing RBM’s to Modeling Real-valued and Count Déa

Welling et al. [2005] introduced a class of two-layer undiesl graphical models that generalize RBM'’s
to exponential family distributions. In the remaining paftthis section, we will review two specific
models: Gaussian RBM and Replicated Softmax model (Satdktav and Hinton [2010]). These mod-
els will allow us to model real-valued data (e.g. image peggtand count data (e.g. word-count vectors
of documents), when learning DBN'’s. Other extensions ihelexponential or truncated exponential
RBM’s (Bengio et al. [2007]), and Poisson RBM’s (Gehler ef2006])

Gaussian RBM'’s

Consider modeling visible real-valued unitsc R” and leth € {0, 1} be binary stochastic hidden
units. The energy of the stafer, h} of the Gaussian RBM is defined as follows:

2

E(v,h;0) Z ZZW”h Zaj i (2.22)

i=1 9 i=1 j=1

3Although if the number of hidden units per layer does not éase, it easy to show (Hinton et al. [2006]) that adding each
new layer guarantees to increase a lower bound on the datihtikd, provided higher-level RBM’s are trained by maximu
likelihood.
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Training Samples

- e | SRR

Learned Receptive Fields

Figure 2.5: Random subsets of the learned receptive fieldsft: The binary RBM trained on the MNIST
dataset (resolution is 288). Right: The Gaussian RBM trained on the NORB dataset (resolutiosi98).
Each square displays the incoming weights from all the igsilnits into one hidden unit. White encodes a
positive weight and black encodes a negative weight on thie ¢ -3 to 3.

whered = {W, a, b, c%} are the model parameters. The marginal distribution ovewisible vectorw
takes form:

exp (—E(v,h;0))
. 2.2
=2 S e (B, ) @29
From Eq. 2.22, it is straightforward to derive the followiognditional distributions:

(m —b; — o; Z]- thZ-j)z

1
’U,L- = X h = e — 3 224
p( h) o P 2072 (2.24)
"
plhj =1lv) =g (bj + VVijﬁ) 7 (2.25)
. 7

whereg(z) = 1/(1 + exp(—=)) is the logistic function. Observe that conditioned on tlaest of the
hidden units (Eq. 2.24), each visible unit is modeled by asS@n distribution, whose mean is shifted
by the weighted combination of the hidden unit activatiofite derivative of the log-likelihood with
respect tdV takes form:

0log P(v;0) 1 1
oWy, Eraa ;ivihj — EPyoaa U—i%‘hj -

As described in section 2.1, learning of the model pararsgiecluding the variance?, can be carried
out using Contrastive Divergence. In practice, howevetgiad of learning2, one would typically use
a fixed, predetermined value fof (Nair and Hinton [2009], Hinton and Salakhutdinov [2006]).
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Latent Topics

Observed Softmax Visibles Multinomial Visible

Figure 2.6: The Replicated Softmax model. The top layer represents mvhcof stochastic, binary topic
features and the bottom layer consists of softmax visiblesuw. All visible units share the same set of weights,
connecting them to the binary hidden uniteft and Middle: Two members of a Replicated Softmax family for
documents containing two and three wor&sght: A different interpretation of the Replicated Softmax mqdel
in which M softmax units with identical weights are replaced by a singlltinomial unit which is samplegi/
times.

To see what a single RBM module can learn, Fig. 2.5 shows ararstibset of parametelg, also
known as receptive fields, learned by a standard binary araliastan RBM using CD1. Observe that
both RBM’s learn highly localized receptive fields.

Modeling Word Counts with a Family of Replicated Softmax Models

Consider an undirected graphical model that consists oVisitde layer and one hidden layer as shown
in Fig. 2.6. This model is a type of Restricted Boltzmann Maelin which the visible units that are
usually binary have been replaced by “softmax” units thatltave one of a number of different states.
Letv € {1,..., K} be a vector of visible units that takes on values in some elisalphabet, and let
h € {0,1}¥ be binary stochastic hidden topic features. Mebe aK x D observed indicator matrix
with v = 1 if visible unit i takes on valué. The energy of the statgV, h} is defined as follows:

D F K

D K F
E(V.h) = =) > Whhjof =) > "ofof =) " hyb;, (2.26)
j=1

i=1 j=1 k=1 i=1 k=1

whereW is a symmetric interaction term between visible urthat takes on valug, and hidden unit
4, bF is the bias of unit that takes on valué, anda; is the bias of hidden unif. The conditional
distributions are given by softmax and logistic functions:
exp (bF + S0 hyWE
pvf =1h) = — P QZHFJ ) - (2.27)
D g1 €XP (of + > i—1 thij)

D K
p(hy =1V) = g(aj+Zvavv,»’;>. (2.28)

i=1 k=1

Now suppose that for each document we create a separate RBMsvinany softmax units as there
are words in the document. Assuming we can ignore the ordéreofvords, all of these softmax units
can share the same set of weights. Consider a document titatrel/ words. In this case, we define
the energy of the stateV, h} to be:

F K K
E(V,h) = =) > Wihiot = > "0" — MY hjb;, (2.29)
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wherei* = S°M ¥ denotes the count for tHé" word. The bias terms of the hidden units are scaled up
by the length of the document. This scaling is crucial anovalhidden units to behave sensibly when
dealing with documents of different lengths. We also not tising M softmax units with identical
weights is equivalent to having one multinomial unit whisksampledV/ times, as shown in Fig. 2.6.

The derivative of the log-likelihood with respect to paraensiV takes form:

O0log P(V;0) & &
—— = Ep,.. |0"h;| —Ep 0"h;| .
k data J Model J
o 71 41
The weights can now be shared by the whole family of diffeRBM'’s that are created for documents
of different lengths. We call this the “Replicated Softmambdel ]. Learning can be performed using
Contrastive Divergence.



Chapter 3

Learning Feature Hierarchies with Deep
Belief Networks

This chapter presents several ideas based on greedilyrigarhierarchy of features from high-dimensional,
richly structured sensory input. Through extensive erogirevaluations we will attempt to address the
qguestion of how well Deep Belief Networks perform in vari@plication domains. All of the presented
ideas will exploit the following two key properties of DBN'Eirst, they can be learned efficiently from
large amounts of unlabeled data. Second, they can be diratiuely fine-tuned using the standard
backpropagation algorithm.

In section 3.1 we show how a Deep Belief Network can be usectract useful feature repre-
sentations that would allow us to learn a good covariancedkdor a Gaussian process. In particular,
if the input data is high-dimensional and highly-structyra Gaussian kernel applied to the top layer
of extracted features in the DBN works much better than alairkernel applied to the raw input. In
sections 3.2 and 3.3 we show how the greedy learning algorihn be used to make nonlinear au-
toencoders work considerably better compared to widelg msethods, such as principal component
analysis (PCA) and singular value decomposition (SVD). émtdemonstrate that these deep autoen-
coders can be used to discover binary “semantic” codesltbatfast and accurate information retrieval.
Finally, in section 3.4 we show how the DBN framework, usiagtially labeled data, can also be used
to efficiently learn a nonlinear transformation from theuhppace to a low-dimensional feature space
in which K-nearest neighbour classification performs well.

3.1 Learning Features for Discrimination and Regression

Many real-world applications are characterized by highahsional, highly-structured data with a large
supply of unlabeled data and a very limited amount of label@. Applications such as information
retrieval and machine vision are examples where unlabedta id readily available. Many models,
including logistic regression, Gaussian processes, amp@u\Vector Machines, are discriminative
models by nature, and within the standard regression osifitzion scenario, unlabeled data is of
no use. Given a set ofi.d. labeled input vectorX; = {x,}"_, and their associated target labels
{yn})_, € R for regression ofy,}N_, € {—1,1} for classification, discriminative methods model
p(yn|x,) directly. Unless some assumptions are made about the yimgdedistribution of the input
dataX = [X;, X,], unlabeled dataX,, cannot be used. Many researchers have tried to use urdabele
data by incorporating a model 6f(X). For classification tasks, Lawrence and Scholkopf [2004dleh
P(X) as amixtured, p(zn|y,)p(yn) and then infep(y,|z,), Seeger [2001] attempts to learn a co-
variance kernel for a Gaussian process base® @), and Lawrence and Jordan [2004] assume that

15
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the decision boundaries should occur in regions where tteeddasity,P(X), is low. When faced with
high-dimensional, highly-structured data, however, nohthe existing approaches have proved to be
particularly successful.

To make use of unlabeled data, we propose to first learn a DBdehwf P(X) in an entirely
unsupervised way using the fast, greedy learning algorittiroduced in section 2.2. We then use this
deep generative model to initialize a multilayer, nonlin@appingF (x; W), parameterized b, with
F : X — Z mapping the input vectors X into a feature spacB. The top-level features produced by
this mapping typically allow for a rather accurate recamdion of the input and tend to capture a lot of
the higher-order structure in the input data. We can now fisertininative model to the labeled data
using the top-level features of the DBN model as inputs.dPerénce can be further improved by using
backpropagation through the DBN to discriminatively fined the model parameters.

While greedily pretrained DBN'’s can be used to provide inpettors for many discriminative
methods, including logistic regression, SVM’s (Vapnik §89, Lauer et al. [2007]), and kernel regres-
sion (Benedetti [1977]), in this section we will concengrain using a Deep Belief Network to learn a
covariance kernel for a Gaussian process. In particulashee that the parametel® of the covari-
ance kernel can be fine-tuned using the labeled data by marmthe log probability of the labels with
respect toV'.

3.1.1 Gaussian Processes for Regression and Binary Clagsation

Gaussian processes (GP’s) are a widely used method for Bay@anlinear non-parametric regression
and classification (Rasmussen and Williams [2006], Se&f¥4], Neal [1997], Rasmussen [1996]).
GP’s are based on defining a covariance function that enqumutesknowledge of the smoothness of
the underlying process that is being modeled. Because iffiebility and computational simplicity,
GP’s have been successfully used in many areas of machimenga

Let us consider the following regression task. We are givelataset ofV i.i.d. labeled input
vectorsX; = {x,}_, and their corresponding real-valued targets- {y,}’__,. We are interested in
the following probabilistic regression model:

yn = f(xn) +€, €~N(0,0%), (3.1)

where N (i, 0%) denotes a Gaussian distribution with meamnd variancer?. A Gaussian process
regression places a zero-mean GP prior over the underlgiiegtl functionf we are modeling, so that
a-priori f|X; ~ N (0, K), wheref = [f(x1), ..., f(x,,)]" andK is the covariance matrix, whose entries
are specified by the covariance functifi}; = K (x;,x;). The covariance function encodes our prior
notion of the smoothness 6f or the prior assumption that if two input vectors are simélecording to
some distance measure, their labels should be highly atecel In this work we will use the spherical
Gaussian kernel, parameterized{ey, 3}:

%(Xi - Xj)T(XZ' - Xj)> . (32)

Integrating out the function valuds the marginal log-likelihood takes form:

K;j = aexp (—

N 1 1
L = log P(y|X;;6) = —510g27r - 510g|K + o021 — EyT(K + oI ty, (3.3)

which can then be maximized with respect to the paraméters«, 3, 0}. Given a new test point*,
a prediction is obtained by conditioning on the observea daidf. The distribution of the predicted
valuey™ atx* takes the form:

YIX XLyl ~ N (KT (K + 0Dy b -k T (K 0D 7K +0?), (34)
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Figure 3.1:Left: Pretraining consists of learning a stack of RBMRight: After pretraining, the RBM's are
used to initialize a covariance function of the Gaussiar@ss, which is then fine-tuned by backpropagation.

wherek™ = K (x*,x*) andk* = K (x*,X;) is the N x 1 vector of the covariances evaluated between
all training and a test point.

For a binary classification task, we similarly place a zeram@&P prior over the values of an under-
lying latent functionf, which are then passed through the logistic function) = 1/(1+exp(—=x)) to
define a priop(y, = 1|x,,) = g(f(x,)). Given a new test point*, inference is done by first obtaining
the distribution overf* = f(x*):

p(Fla", Xp,y:6) = / P, X0, £50) P(£1X1, y; 0)df, (3.5)

which is then used to produce a probabilistic prediction:

p(y" =1x", Xy, y;0) = /g(f*)p(f*lx*7Xz,y; 0)df*. (3.6)

The non-Gaussian likelihood makes the integral in Eq. 3dydinally intractable. In our experiments,
we approximate the non-Gaussian postef¢f|X;, y; 6) with a Gaussian one using expectation prop-
agation (Minka [2001]). For more thorough reviews and immatation details refer to Rasmussen and
Williams [2006], Seeger [2004], and Neal [1997].

3.1.2 Learning the Covariance Function for a Gaussian Pross

Using the layer-by-layer learning algorithm of section, 2v2 first learn a stack of RBM's. After learn-
ing is complete, the stochastic activities of the binarytsim each layer are replaced by deterministic,
real-valued probabilities and the DBN is used to initialzmultilayer, nonlinear mapping (x; W) as
shown in Fig. 3.1. This learning is treated agratraining stage that captures a lot of the higher-order
structure in the input data and is used to define a Gaussiamiaoge function, parameterized fy, 4}
andW:

K;; = aexp <——(F(xi; W) — F(x;; W) | (F(xi; W) — F(x;; W))>. (3.7)

The covariance kernel is initialized in an entirely unsypsd way. We can now maximize the marginal
log-likelihood of Eq. 3.3 with respect to the parametershef tovariance kerndly, 5, W} and obser-
vation noises?, using the labeled training data (Rasmussen and Williafd8dR, Lawrence [2004]).
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Figure 3.2:Top A: Randomly sampled examples of the training and test d&ittom B: The same sample of
the training and test images but with rectangular occlission

The partial derivatives of the marginal log-likelihood witspect to the parameters takes the form:

g—HLi = %tr <<Ky1nyKy1 _ K;l) %[;y> ’ (3.8)
whereK, = K +0*I andf = {«, 3, W, 0?}. Using the chain rule, the gradieff’, /OW is computed
using standard backpropagation algorithm. It is necessargympute the inverse @f,, so each gradient
evaluation hag)(N?3) complexity whereN is the number of the labeled training cases. However,
when learning the stack of Restricted Boltzmann Machinasdhe composed to form the initial DBN,
each gradient evaluation scales linearly in time and spditethhe number of unlabeled training cases.
Therefore the pretraining stage can make efficient use gflaege sets of unlabeled data to build high-
level features. The small amount of labeled data can therséed 1 only slightly refine those features.

3.1.3 Experimental results

We present several experimental results on three publicjyiadle datasets: the MNIST dataset, the
Olivetti face dataset, and the Reuters (RCV1-v2) datasat. figst task is to extract the orientation of
a face from a gray-level image of a large patch of the face. swend task is to discriminate between
images of odd digits and images of even digits. The third ias$& discriminate between two different
classes of newswire story based on the vector of word conrgadh story.

In all of experiments, when training higher-level RBM’sgthisible units were set to the activa-
tion probabilities of the hidden units in the lower-level RBbut the hidden units of every RBM had
stochastic binary values. For the fine-tuning stage, we tisechethod of conjugate gradients. Details
of pretraining and fine-tuning, along with the detailed diggion of the used datasets, can be found in
Appendix A.

Extracting the Orientation of a Face Patch

The Olivetti face dataset contains tenx@4 images of each of forty different people. We constructed
a dataset of 13,000 285 images by rotating{90° to +90°), cropping, and subsampling the original
400 images. The intensities in the cropped images were tiagedao have zero mean and the entire
dataset was then scaled by a single number to make the avyarafj@ariance be. The dataset was
then subdivided into 12,000 training images, which comtdithe first 30 people, and 1,000 test images,
which contained the remaining 10 people. 1,000 randomlypgaaiiface patches from the training set
were assigned an orientation label. The remaining 11,@00itg images were used as unlabeled data.
We also made a more difficult version of the task by occludiag pf each face patch with randomly
chosen rectangles. Figure 3.2 shows randomly sampled égsuinpm the training and test data.

For training on the Olivetti face patches we used the 78441D0-1000 architecture shown in
Fig. 3.1. When pretraining the first layer, the real-valueetlpintensities were modeled by a Gaussian
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Training | GPstandard | GP-DBNgreedy | GP-DBNfine GPpca
labels Sph. ARD | Sph. ARD Sph.  ARD | Sph. ARD
A | 100 22.24 28.57 | 17.94 18.37 15.28 15.01 | 18.13(10) 16.47(10)
500 17.25 18.16 | 12.71 8.96 7.25 6.84 14.75 (20) 10.53 (80)
1000 16.33 16.36 | 11.22 8.77 6.42 6.31 | 14.86(20) 10.00 (160)
B | 100 26.94 28.32 | 23.15 19.42 19.75 18.59 | 25.91 (10) 19.27(20)
500 20.20 21.06 | 15.16 11.01 10.56 10.12 | 17.67 (10) 14.11(20)
1000 19.20 1798 | 14.15 10.43 9.13 9.23 16.26 (10) 11.55(80)

Table 3.1:Performance results on the face-orientation regressgkn fhe root mean squared error (RMSE) on
the test set is shown for each method using a spherical Gawlssinel and a Gaussian kernel with ARD hyper-
parametersBy row: A) Non-occluded face data, B) Occluded face data. For thec@®model, the number of
principal components that performs best on the test dateisrsin parenthesis.
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Figure 3.3:Left: A scatter plot of the two most relevant features, with eadhtgeplaced by the corresponding
input test image. For better visualization, overlappedgesaare not showrRight: The histogram plots of the
learned ARD hyper-parametdrs; (3.

RBM with unit variance. The remaining RBM'’s in the stack usegistic units. The entire training set
of 12,000 unlabeled images was used for greedy, layerymr-kzaining of a Deep Belief Network. The
model contained about 2.8 million parameters, which maynsegcessive for 12,000 training cases.
However, each training case involves modeling 625 realealpixels rather than just a single real-
valued target label.

After the DBN has been pretrained on the unlabeled data, a GiRinwas fitted to the labeled
data using the top-level features of the DBN model as inpW¥e. call this modelGP-DBNgreedy.
GP-DBNgreedy can be further fine-tuned by maximizing thegimat log probability of the labels with
respect tdl using backpropagation algorithm. We call this mo@é&1-DBNfine. For comparison, we
fitted a GP model that used the pixel intensities of only thelked images as its inputs. We call this
modelGPstandard. We also used PChto reduce the dimensionality of the labeled images and fitted
several different GP models using the projections onto tisé+fi principal components as the input.

Principal components were extracted using all 12,000itrgioases.
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Train GPstandard GP-DBNgreedy GP-DBNfine GPpca
labels| Sph. ARD | Sph. ARD | Sph. ARD | Sph. ARD

100 0.0884 0.1087 | 0.0528 0.0597 | 0.0501 0.0599 | 0.0785 (10) 0.0920 (10)
500 0.0222 0.0541 | 0.0100 0.0161 | 0.0055 0.0104 | 0.0160 (40) 0.0235 (20)
1000 | 0.0129 0.0385 | 0.0058 0.0059 | 0.0050 0.0100 | 0.0091 (40) 0.0127 (40)

Table 3.2:Performance results on discriminating odd vs. even didgissification task, using the area under the
ROC (AUROC) metric. For each method we show 1-AUROC on thesiets An AUROC of 0.5 corresponds to
the classifier that makes random predictions. All method®wréed using both a spherical Gaussian kernel and
a Gaussian kernel with ARD hyper-parameters. For the GPpakeinthe number of principal components that
performs best on the test data is shown in parenthesis.

Since we are only interested in a lower bound on the errorisfrtiodel, we simply use the value of
that performs best on thtestdata. We call this modebPpca Table 3.1 shows the root mean squared
error (RMSE) of the predicted face orientations using altfiypes of GP models with varying amounts
of labeled data. The results show that both GP-DBNgreedyGidDBNfine significantly outperform
regular GP and GPpca models. Indeed, GP-DBNfine with onlyldld€led training cases outperforms
GPstandard with 1000 labeled training cases.

To test the robustness of our approach to noise in the inpubalethe same dataset and created
artificial rectangular occlusions (see Fig. 3.2, panel B umber of rectangles per image was drawn
from a Poisson withh = 2. The top-left location, length and width of each rectangéswampled from
a uniform [0,25]. The pixel intensity of each occluding eeajle was set to the mean pixel intensity
of the entire image. Table 3.1 shows that the performancdl ofi@dels degrades, but their relative
performances remain the same. GP-DBNfine on occluded dat#l imuch better than GPstandard on
non-occluded data.

We have also experimented with using a Gaussian kernel wRb Ayper-parameters (Rasmussen
and Williams [2006]), which is a common practice when thauingectors are high-dimensional:

K;j = aexp <—%(Xi —x;) ' D(x; — Xj)), (3.9)

whereD is the diagonal matrix witD;; = 1/4;, so that the covariance function has a separate
length-scale parameter for each dimension. ARD hyperpeigrs were optimized by maximizing
the marginal log-likelihood of Eqg. 3.3. Table 3.1 shows tARD hyper-parameters do not improve
GPstandard, but they do slightly improve GP-DBNfine and teyngly improve GP-DBNgreedy and
GPpca when there are 500 or 1000 labeled training cases.

The histogram plot ofog 5 in Fig. 3.3 reveals that there are a few extracted featurgsatie very
relevant (small5) to our prediction task. The same figure, left panel, showsa#ter plot of the two
most relevant features of GP-DBNgreedy model, with eachtgeplaced by the corresponding input
test image. Clearly, these two features carry a lot of infiiom about the orientation of the face. We
suspect that the GP-DBNfine model does not benefit as muchtirerARD hyper-parameters because
the fine-tuning stage is already capable of turning down thigites of irrelevant top-level features.

Discriminating between Images of Odd and Even Digits

The MNIST digit dataset contains 60,000 training and 10,30 28<28 images of ten handwritten

digits (0 to 9). 1000 randomly sampled training images wategorized into an even or an odd class.
The remaining 59,000 training images were used as unlalleliad As in the previous experiment, we
used the 784-1000-1000-1000 architecture with the eriaibhg set of 60,000 unlabeled digits used
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Number of labeled GPstandard GP-DBNgreedy GP-DBNfine
cases (50% in each class)

100 0.1295 0.1180 0.0995

500 0.0875 0.0793 0.0609

1000 0.0645 0.0580 0.0458

Table 3.3:Performance results using the area under the ROC (AUROG)aoetthe text classification task. For
each method we show 1-AUROC on the test set.

for greedily pretraining the DBN model. Table 3.2 shows theaainder the ROC curve for discriminat-
ing between odd and even digits. GP-DBNfine and GP-DBNgreedform considerably better than
GPstandard both with and without ARD hyper-parameters.

Classifying News Stories

The Reuters RCV1-v2 dataset is an archive of 804,414 newsiories. The corpus covers four major
groups: Corporate/Industrial, Economics, Governmeritboand Markets. The data was randomly
split into 802,414 training and 2000 test articles. The$escontains 500 articles of each major group.
The available data was already in a convenient, preproddsseat, where common stopwords were
removed and all the remaining words were stemmed. We onlyernad of the 2000 most frequently
used word stems in the training data. As a result, each dauwes represented as a vector containing
2000 word counts. No other preprocessing was done.

For the text classification task we used a 2000-1000-1000 Hdchitecture. The entire unlabeled
training set of 802,414 articles was used for learning a itaylir generative model of the text docu-
ments. The bottom layer of the DBN was trained using a Reglit&oftmax model (see section 2.3).
Table 3.3 shows the area under the ROC curve for classifyomments belonging to the Corpo-
rate/Industrial vs. Economics groups. As expected, GP-fdi#éNand GP-DBNgreedy work better
than GPstandard. The results of binary discrimination betwother pairs of document classes are very
similar to the results presented in table 3.3. Our experimesing a Gaussian kernel with ARD hyper-
parameters did not show any significant improvements. BExiaguithe histograms of the length-scale
parameterss, we found that most of the input word-counts as well as moshefextracted features
were relevant to the classification task.

3.1.4 Discussion

We have shown how to greedily pretrain and discriminatifglg-tune a covariance kernel for a Gaus-
sian process. For high-dimensional, highly-structurguiiinthis is a very effective way to make use of
large unlabeled datasets, especially when labeled trpatdta is scarce. The performance of pretrained
and fine-tuned GP models further reveals that the learnddlbigl feature representations capture a lot
of structure in the unlabeled input data, which is usefubkidrsequent classification or regression tasks,
even though these tasks are unknown when the deep generatiled is being trained.

The same framework can also be used to discover useful lowertiional representations of high-
dimensional data, which can be used for exploratory datlysisapreprocessing, and data visualization.
We explore this idea in the next section.

3.2 Nonlinear Dimensionality Reduction

Scientists working with large amounts of high-dimensiodala are constantly facing the problem of
dimensionality reduction: how to discover low-dimensiosiaucture from high-dimensional observa-
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Figure 3.4: Pretraining consists of learning a stack of Restricted Z80étnn Machines each having only one
layer of feature detectors. The learned feature activatidone RBM are used as the “data” for training the next
RBM in the stack. After the pretraining, the RBM’s are “udeal” to create a deep autoencoder, which is then
fine-tuned using backpropagation of error derivatives.

tions. There exist a variety of dimensionality reductiotht@ques, which can be broadly classified into:
linear methods, such as principal component analysis (P@jinear mappings, such as autoencoders
(Plaut and Hinton [1987], DeMers and Cottrell [1993]), andximity based methods, such as Local
Linear Embedding (Roweis and Saul [2000]).

Most of the existing algorithms suffer from various drawkedf the data lie on an embedded low-
dimensional nonlinear manifold, then linear methods, ebeugh computationally efficient, cannot
recover this structure as well as their nonlinear countésp®&roximity based methods are more power-
ful, but their computational cost scales quadraticallyhvifite number of observations, so they generally
cannot be applied to very large high-dimensional datadéislinear mapping algorithms, such as au-
toencoders, are generally painfully slow to train, and aom@ to getting stuck in local minima.

3.2.1 Pretraining Autoencoders

The standard way to train autoencoders is to use backpropaga reduce the reconstruction error.
As we show, it is generally very difficult to optimize nonlareautoencoders that have multiple hidden
layers with hundreds of thousands of parameters (DeMer<atigell [1993], Hecht-Nielsen [1995],
Larochelle et al. [2009]). This is perhaps the main reason this potentially powerful dimensionality
reduction algorithm has not found its applications in gract Instead, we will use the greedy learning
algorithm to pretrain autoencoders, by learning a stackBi¥IR, as shown in Fig. 3.4. The key idea
is that the greedy learning algorithm can quickly find partrsethat already produce a good data
reconstruction model.

After the pretraining stage, which is similar to the constien defined in subsection 3.1.2, the
stochastic activities of the binary features in each layereplaced by deterministic, real-valued proba-
bilities and the model is “unrolled” to produce encoder aadatler networks. Initially both the encoder
and decoder networks share the same set of weights. Thd §jlobauning stage then slightly refines
the weights for optimal reconstruction by using backprapi@eg of error derivatives through the whole
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Figure 3.5:Left Panel (by row): a) Random samples of curves from the test datdgegconstructions produced

by the 6-dimensional deep autoencodgreconstructions by “logistic PCA’ usinggcomponentsg) reconstruc-
tions by logistic ance) standard PCA usin@g8 components. The average squared error per image for the last
four rows is1.44, 7.64, 2.45, 5.90. Right panel (by row): a) A random MNIST test image from each class;

b) reconstructions by the 30-dimensional autoencagjgeconstructions by 30-dimensional logistic PCA and d)
standard PCA. The average squared errors for the last thneeare3.00, 8.01, and13.87.

autoencoder.

3.2.2 Experimental results

In all our experiments, when pretraining deep autoencodeestop level RBM was a Gaussian RBM,
as described in section 2.3, but with visible and hiddensusititched. So the hidden units of the top
level RBM were modeled by a unit variance Gaussian disiobytwhose mean was determined by
the weighted combination of the binary visible units. THiewed the low-dimensional codes to make
good use of continuous variables and facilitated compasiseith PCA. Description of the datasets,
along with details of software that we used for pretrainingl éine-tuning deep autoencoders, can be
found in Appendix A.

Synthetic curves dataset

To evaluate the two-stage learning procedure, we first usgghtinetic curves dataset that contains
28%x28 images of “curves”, generated from three randomly chdseimensional points. For this
dataset, the true intrinsic dimensionality of data is sk, the relationship between the pixel intensities
and the six numbers used to generate them is highly nonlifiéee pixel intensities were normalized
to lie in the intervall0, 1] (see Fig. 3.5, left panel). The intensities had a tendenaydstly take on
extreme values, and therefore were modeled in the first layex standard binary RBM. During the
fine-tuning stage, we minimized the cross-entropy error:

E = =) pilogpi—y (1 —pi)log(l—p), (3.10)

wherep; is the intensity of pixet andp; is the intensity of its reconstruction.

We used a deep autoencoder that consisted of an encodenystis lof size (28 28)-400-200-100-
50-25-6 and a symmetric decoder. This is probably much debpe is necessary for this task, but
one of the points of this experiment was to demonstrate tleatould train very deep networks. The
6 units in the code layer were linear and all the other uniteevi@gistic. The autoencoder was trained
on 20,000 images and tested on 10,000 new images. Figurb@\s shat the autoencoder was able to
discover the nonlinear mapping between 784 pixel image amélthumbers that allow almost perfect
reconstruction. PCA, on the other hand, gives consideraflge results. Figure 3.5 also compares
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Figure 3.6: The average squared reconstruction error per test imagegdfime-tuning on the curves train-
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a shallower 784-108-6 autoencoder that has about the samigemwf parameters. Both autoencoders were pre-
trained.
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Figure 3.7:By row: a) Random samples from the test databgteconstructions by the 30-dimensional autoen-
coder; anct) reconstructions by 30-dimensional PCA. The average squarers are 126 and 135.

our deep nonlinear autoencoder to a shallow linear autakmcwhich we call logistic PCA, where the
linear code units are directly connected to both the inpatsthe logistic output units.

Figure 3.6, left panel, shows performance of pretrainedrandomly initialized deep autoencoders
on the curves dataset. Note that without pretraining, thep drutoencoder gets stuck at poor local
optimum. It always reconstructs the average of the traimiatp, even after prolonged fine-tuning.
Shallow autoencoders can learn without pretraining, batraining greatly reduces the total training
time. Figure 3.6, right panel, further reveals that whenrtimber of parameters is the same, a deep
autoencoder produces a slightly lower reconstructionr@mdest data than a shallow autoencoder.

MNIST and Olivetti datasets

We used a (2828)-1000-500-250-30 autoencoder to extract 30-dimeasioodes of the handwritten
digits in the MNIST training set. Similar to the curves datasll units were logistic except for the 30
linear units in the code layer. After fine-tuning on all 6@afaining images using cross-entropy error,
the autoencoder was tested on 10,000 new images. Figurb®\s shat the deep autoencoder captures
the structure of the data much better than logistic PCA, ihiic turn, is much better than standard
PCA. Figure 3.8 also shows that a two-dimensional autoesrcpobduces a much better visualization
of the data compared to the first two principal components@A P

We then used a (2625)-2000-1000-500-30 autoencoder with linear input utotsliscover 30-
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Figure 3.9:Precision-Recall curves for the Reuters RCV1-v2 datade¢rva query document from the test set
is used to retrieve other test set documents, averaged b¥4€2a207 possible queries.

dimensional codes for grey-level image patches that wergedefrom the Olivetti face dataset. A
dataset of 165,600 285 images was created by randomly rotatirgd@° to +90°), scaling (1.4 to
1.8), cropping, and subsampling the original 400 imageg. ddtaset was then subdivided into 124,200
training images, which contained the first thirty people] 4t,400 test images, which contained the re-
maining ten people. Figure 3.5, bottom panel, shows that#&0-dimensional autoencoder produces
much better reconstructions than 30-dimensional PCA.

Reuters Corpus

We can also use autoencoders to discover low-dimensiodakdhat would allow for fast document re-
trieval. We performed a set of experiments on Reuters RC¥dataset that contains 804,414 newswire
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Figure 3.10:Left: The codes produced by the 2-dimensional L&4ght: The codes produced by a 2000-500-
250-125-2 autoencoder.

stories, manually categorized into 103 topics. The dataspisrandomly into 402,212 training and
402,212 test documents. We trained a 2000-500-250-125+ti@@coder, where each document was
represented as a vector containing 2000 most frequentty weeds in the training dataset. When pre-
training the first layer, the word-count vectors were maztkby the Replicated Softmax model. For the
fine-tuning stage, we divided the count vector by the numbeoods, so that it represented a probabil-
ity distribution across words, and then used the crosspyterror function with a softmax at the output
layer. Figure 3.9 shows that when we use the cosine of thes d&glveen two codes to measure sim-
ilarity, the autoencoder significantly outperforms Lat8eimantics Analysis (LSA) (Deerwester et al.
[1990]), a well-known document retrieval method based ogwar value decomposition. Even prior
to fine-tuning, the autoencoder outperforms LSA. Figur® 3utther shows that the two-dimensional
codes produced an autoencoder are much better organizagaced to the codes produced by LSA.

3.2.3 Discussion

Together with pretraining, nonlinear autoencoders canerg gffective for nonlinear dimensionality
reduction. Unlike non-parametric methods, such as LLE (&swnd Saul [2000]), ISOMAP (Tenen-
baum et al. [2000]), or t-SNE (van der Maaten and Hinton [2)08utoencoders provide mappings
in both directions between the data and code spaces. Thegisame applied to very large datasets,
because both the pretraining and fine-tuning scale linéatlyne and space with the number of training
cases. In the next section we show how a network with multgylers and with hundreds of thousands
of parameters can be trained to discover “semantic” binades, so that similar input vectors will have
similar binary codewords. This, in turn, will allow us to yequickly and accurately retrieve a set of
documents that are similar to a given query document.
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3.3 Document Retrieval

One of the most popular and widely used algorithms for rétige documents that are similar to a
qguery document is TF-IDF (Salton and Buckley [1988], Sa[tt¥91]), which measures the similarity
between documents by comparing their word-count vectore sSimilarity metric weights each word
by both its frequency in the query document (Term Frequeang)the logarithm of the reciprocal of its
frequency in the whole set of documents (Inverse Documesguency). TF-IDF, however, has several
major limitations: it computes document similarity didgdah the word-count space, and it assumes that
the counts of different words provide independent evidericmilarity.

To remedy these drawbacks, numerous models for capturimglilmensional, latent representa-
tions have been proposed and successfully applied in theidoofi information retrieval. A simple
and widely-used method is Latent Semantic Analysis (LSA9€vester et al. [1990]), which extracts
low-dimensional semantic structure using SVD decompmsitd get a low-rank approximation of the
word-document co-occurrence matrix. This allows documetnieval to be based on “semantic” con-
tent rather than just on individually weighted words. LSAwever, is very restricted in the types of
semantic content it can capture because it is a linear mgsloatican only capture pairwise correlations
between words. A probabilistic version of LSA (pLSA) wasaauced by Hofmann [1999], using the
assumption that each word is modeled as a sample from a dot@wmecific multinomial mixture of
word distributions. A proper generative model at the leallacuments, Latent Dirichlet Allocation,
was introduced by Blei et al. [2003].

These probabilistic models can be viewed as graphical mad&Vhich hidden topic variables have
directed connections to variables that represent woraisou heir major drawback is that exact infer-
ence is intractable due to explaining away, so they havestortréo slow or inaccurate approximations
to compute the posterior distribution over topics. This esait difficult to fit the models to data. Also,
as Welling et al. [2005] point out, fast inference is impattéor information retrieval. To achieve this,
they introduce a class of two-layer undirected graphicatlei®that generalize Restricted Boltzmann
Machines (RBM’s) to exponential family distributions. Fhallows them to model non-binary data
and to use non-binary latent variables. Maximum likelihdearning is intractable in these models,
but learning can still be performed by using Contrastiveedgence (Hinton [2002]). Several further
developments of these undirected models (Gehler et al6]200ng et al. [2005]) show that they are
competitive in terms of retrieval accuracy with their diest counterparts.

All of the above models, however, have several importantdiions. First, there are limitations on
the types of structure that can be represented efficiently gingle layer of hidden variables. We have
already seen in section 3.2 that a network with many hiddgeréaand with hundreds of thousands of
parameters can discover latent representations that wock tmetter for information retrieval. Second,
many of the existing retrieval algorithms are based on cdimgwa similarity measure between a query
document and other documents in the collection. The siityiler computed either directly in the word
space or in a low-dimensional latent space. Typically, Higdr the size of document collection, the
longer it will take to search for relevant documents.

3.3.1 Semantic Hashing

Using the two-stage learning procedure, introduced ini@e@.2, we can build an autoencoder that
learns to map documents into “semantic” binary codes. Wetloisl model Semantic Hashing. By
using learned binary codes as memory addresses, we cativefietearn asemantic address space
so a document can be mapped to a memory address in such a waystmall hamming-ball around
that memory address contains semantically similar doctsnes shown in Fig. 3.11, left panel. This
representation will allow us to retrieve a short-list of serically similar documents on very large
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Figure 3.11:Left: A schematic representation of Semantic HashiRgght: The distribution of the activities
of the 128 code units on the 20-newsgroups training datarbefiod after fine-tuning with backpropagation and
deterministic noise.

document sets in time independent of the number of documéaihis short-list can then be given to a
slower but more precise retrieval method, such as TF-IDF.

Making the codes binary

During the pretraining stage, the bottom layer RBM is treinsing a Replicated Softmax model, while
the remaining RBM’s in the stack use logistic units. Durihg fine-tuning, we want to find codes that
are good at reconstructing the data but are as close to basgrgssible. To make the codes binary, we
add Gaussian noise to the bottom-up input received by eatd woif. Let us assume that the output
of the decoder network is not very sensitive to small changdake output of a code unit. Then the
best way to communicate information in the presence of addésk is to make the bottom-up input
received by a code unit be either very large and negative rgrlaege and positive. Figure 3.11, right
panel, shows that this is what the fine-tuning does.

To prevent the added Gaussian noise from messing up thegatejgradient fine-tuning, we used
“deterministic noise” with mean zero and standard dewmsa#o chosen by cross-validation. For each
training case, the sampled noise values are fixed in advarmte@not change during training. After
fine-tuning, the codes were thresholded to produce binatg gectors. The asymmetry betwegeand
1 in the energy function of an RBM causes the unthresholde@<tal have many more values near
0 than nearl, so we used a threshold 6fl. We also experimented with various values for the noise
variance and the threshold. Our results are fairly robustat@ations in these parameters and also to
variations in the number of layers and the number of unitathdayer.

3.3.2 Experimental Results

To evaluate performance of our model on an informationeedlitask we use Precision-Recall curves,
where we define:

Number of retrieved relevant documents

Recall =
Total number of all relevant documents

Number of retrieved relevant documents

Precision= g
Total number of retrieved documents

2\We tried other ways of encouraging the code units to be bjsash as penalizing the entropy
—plogp — (1 — p)log (1 — p) for each code unit, but Gaussian noise worked better.
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Figure 3.12:A 2-dimensional embedding of the 128-bit codes using stetihaeighbor embedding for the 20-
newsgroups data (left panel) and the Reuters RCV1-v2 cdrigid panel). See in color for better visualization.

To decide whether a retrieved document is relevant to theygimcument, we simply look to see
if they have the same class label. This is the only time thatthss labels are used. Results of Gehler
et al. [2006] show that pLSA and LDA models do not generallipetform LSA and TF-IDF. Therefore
for comparison we only used LSA and TF-IDF as benchmark nusth&or LSA each word count;,
was replaced biog(1 + ¢;) before the SVD decomposition, which slightly improved periance. For
both these methods we used the cosine of the angle betweemtiars as a measure of their similarity.

Description of the Text Corpora

We present experimental results for document retrievahortéxt datasets: 20-newsgroups and Reuters
RCV1-v2. The 20-newsgroups corpus contains 18,845 pastaigen from the Usenet newsgroup col-
lection. The corpus is partitioned fairly evenly into 20felient newsgroups, each corresponding to a
separate topic. The data was split by date into 11,314 trgiand 7,531 test articles, so the training
and test sets were separated in time. The training set wefuandomly split into 8,314 training and
3,000 validation documents. We only considered the 200G freguently used words in the training
dataset. As a result, each posting was represented as a&ectaining 2000 word counts.

The Reuters RCV1-v2 corpus, which we used in two previoutiases; is an archive of 804,414
newswire stories that have been manually categorized BBotdpics. Sample topics are displayed in
Fig. 3.12. The data was randomly split into 402,207 trairémgl 402,207 test articles. The training
set was further randomly split into 302,207 training and,000 validation documents. We only used
the 2000 most frequently used words in the training datalskire detailed description of these two
document corpora can be found in Appendix A.

Results using 128-bit codes

For both datasets we used a 2000-500-500-128 architecfarsee whether the learned 128-bit codes
preserve class information, we used stochastic neighbdredding (Hinton and Roweis [2002]) to
visualize the 128-bit codes of all the documents from 5 andpuwsate classes. Figure 3.12 shows that
for both datasets the 128-bit codes preserve the clas$ustwa the documents.



CHAPTER 3. LEARNING FEATURE HIERARCHIES WITH DEEP BELIEF NETWORKS 30

20-newsgroups

T 90 T

T T T T T T
—k— Fine-tuned 128-bit codes -H-1SA 128

80 - B-LSA128

801 = ©~TF-IDF il
Binarized LSA 128 TF-IDF using 128-bit
701 70 codes for prefiltering |

Precision (%)
Precision (%)

| | | | | | | | | | | | | | | | | |
0.4 0.8 16 3.2 6.4 128 256 51.2 100 0.4 0.8 16 3.2 6.4 128 256 512 100
Recall (%) Recall (%)

Figure 3.13:Precision-Recall curves for the 20-newsgroups datasetwalguery document from the test set is
used to retrieve other test set documents, averaged ov&ball possible queries.

Reuters RCV1-v2

T T T
-B-LSA128

-©-TF-IDF 1

N TF-IDF using 128-bit

(-} codes for prefiltering

T T T T T
—k— Fine—tuned 128-bit codes

50+ - B-1SA128 B 501

N
=)
T
N
o
T

w
=]
T

30

Precision (%)

N
o
Precision (%)

N
=]
T

101 10

| | | | | | | | | | | | | | | | | | | | | |
01 02 04 08 16 32 64 128 256 512 100 01 02 04 08 16 32 64 128 256 51.2 100
Recall (%) Recall (%)

Figure 3.14:Precision-Recall curves for the Reuters RCV1-v2 datasetyva query document from the test set
is used to retrieve other test set documents, averaged Ib¥€2s207 possible queries.

In addition to requiring very little memory, binary codedoal very fast search because fast bit
counting routine® can be used to compute the Hamming distance between twoyliodes. On a
3GHz Intel Xeon running C, for example, it only takes 3.6 mdtonds to search through 1 million
documents using 128-bit codes. The same search takes Tseouolhds for 128-dimensional LSA.

Figures 3.13 and 3.14, left panels, show that the learneebit2®des are better at document re-
trieval than the 128 real-values produced by LSA. We alsmtthresholding the 128 real-values pro-
duced by LSA to get binary codes. The thresholds were setas@#th of the 128 components was a
0 for half of the training set and a 1 for the other half. Theulssof Fig. 3.13 reveal that binarizing
LSA significantly reduces its performance. This is hardlgpsiging since LSA has not been optimized
to make the binary codes perform well.

TF-IDF was slightly more accurate than our 128-bit codesmwigdrieving the top few documents
in either dataset. If, however, we use the 128-bit codes é¢sgbect the top 100 documents for the
20-newsgroups data or the top 1000 for the Reuters data, hemdré-rank these preselected docu-
ments using TF-IDF, we get better accuracy than runningOfdlone on the whole document set (see

3Code is available at http://www-db.stanford.edmanku/bitcount/bitcount. html
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Figure 3.15: Left: Precision-Recall curves for the Reuters RCV1-v2 dataskgma query document from
the test set is used to retrieve other test set documentggackover all 402,207 possible queridgight: A
2-dimensional embedding of the 20-bit codes using stothasighbor embedding for the Reuters RCV1-v2
corpus.

Figs. 3.13 and 3.14, right panels). This means that somewemis that TF-IDF would have considered
a very good match to the query document have been correatijnaked by using the 128-bit codes as
a filter.

Results using 20-bit codes

Using 20-bit codes, we also checked whether our learningeohare could discover a way to model
similarity of count-vectors by similarity of 20-bit codewds that was good enough to allow high pre-
cision and retrieval for our set of 402,207 test documentserAearning to assign 20-bit addresses to
the training documents, we compute the 20-bit address ¢f test document and place a pointer to the
document at its addre$s.

For the 402,207 test documents, a 20-bit address spaceaydessity of about 0.4 documents per
address. For a given query document, we compute its 20-tiead and then retrieve all of the docu-
ments stored in a hamming ball of radius 4 (ab®1f6 x 0.4 = 2500 documents) without performing
any search at all. Figure 3.15 shows that neither precisiometall is lost by restricting TF-IDF to this
fixed, preselected set.

Using a simple implementation of Semantic Hashing in C késaabout 0.5 milliseconds to create
the short-list of about 3000 semantically similar docuraghamming-ball of radius 4) and about 0.01
seconds to retrieve the top few matches from that shortiistg TF-IDF. Locality Sensitive Hashing
(LSH) (Datar et al. [2004], Andoni and Indyk [2006]) takesoab0.5 seconds to perform the same
search using H.SH 0.1 software, provided by Alexandr Andoni and Piotr lkdylso, LSH is an ap-
proximation to nearest-neighbor matching in the word-¢@pace, so it cannot be expected to perform
better than TF-IDF and it generally performs slightly wordeéigure 3.15 shows that using Seman-
tic Hashing as a filter, in addition to being much faster, ests higher accuracy than either LSH or
TF-IDF applied to the whole document set.

We can also use a two-stage filtering procedure by first vitigedocuments using 20-bit addresses
in a hamming ball of larger radius 6 (about 24317 documefit®r these down to 1000 using 128-

“We actually start with a pointer taull at all addresses and then replace it by a one-dimensiotasi tiait contains pointers
to all the documents that have that address.
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bit codes, and then apply TF-IDF. This two-stage methodexelsi higher precision and better recall
compared to a single stage Semantic Hashing as shown in.Efgy. 3

Semantic Hashing for Large Document Collections

For a billion documents, a 30-bit address space gives atgiesfsabout 1 document per address and
Semantic Hashing only requires a few Gigabytes of memorindJs hamming-ball of radius 5 around
the address of a query document, we can create a long “stibdfiabout 175,000 similar documents
with no search at all. The items in the long shortlist coulduréher filtered using, for example, 128-bit
binary codes produced by an autoencoder. Using stochaatigegt descent, scaling up the learning to
a billion training cases would not be particularly difficulhdeed, Semantic Hashing has already been
scaled up and successfully applied to large image retriagb that use 13 million images downloaded
from the web (Torralba et al. [2008]).

3.3.3 Discussion

By treating the learned binary codes as memory addressesamiind semantically similar documents
in a time that is independent of the size of the document ciidle. Our results show that using using
Semantic Hashing as a filter for TF-IDF, we can achieve higiecision and recall than TF-IDF or
Locality Sensitive Hashing applied to the whole documetiection.

One additional way to improve model performance is to reigdathe code space using label in-
formation when it is available. This can be accomplisheddygihg the codes for data points of the
same label to lie close to each other in the code space, wéaats lto the idea of supervised learning of
nonlinear mappings.

3.4 Learning Nonlinear Mappings that Preserve Class Neighturhood
Structure

Learning a similarity measure or distance metric over tpafiispaceX is an important task in machine
learning. A good similarity measure can provide insighbihbw high-dimensional data is organized
and it can significantly improve the performance of alganghlike K-nearest neighbours (KNN) that
are based on computing distances (Cover and Hart [1967]).

For any given distance metriD (e.g. Euclidean) we can measure similarity between twotinpu
vectorsx;, x; € X by computingD[F (x;; W), F(x;; W)], whereF' (x; W) is a functionF' : X — Z
mapping the input vectors iX into a feature spacg&. As noted by Globerson and Roweis [2005],
learning a similarity measure is closely related to the |gnwbof feature extraction, since for any fixed
D, any feature extraction algorithm can be thought of as Iegra similarity metric. Previous work
studied the case whel is Euclidean distance anil(x; W) is a simple linear projectiod’(x; W) =
Wx. The Euclidean distance in the feature space is then the IBfattzis distance in the input space:

DIF(x;), F(xj)] = (xi—%;)" WW (x; — x;). (3.11)

Linear discriminant analysis (LDA) learns the matiiX that minimizes the ratio of within-class
distances to between-class distances. Goldberger et0#l4]2earned the linear transformation that
optimized the performance of KNN in the resulting featuracgp This differs from LDA because it
allows two members of the same class to be far apart in thareapace as long as each member of
the class is close to K other class members. Globerson an@iR@@005] learned the matri¥” such
that the input vectors from the same class mapped to a tighterl They showed that their method
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approximates the local covariance structure of the datasandt based on a Gaussian assumption as
opposed to LDA that uses the global covariance structureniWeger et al. [2005] also learnéd with

the twin goals of making the K-nearest neighbours belongestime class and making examples from
different classes be separated by a large margin. Theyadeden achieving a test error rate of 1.3%
on the MNIST dataset.

A linear transformation has a limited number of parametasiacannot model higher-order cor-
relations between the original data dimensions. As showsestions 3.2 and 3.3, using a nonlinear
transformation functior¥'(x; W), we can discover low-dimensional representations thakwauch
better than existing linear methods provided the datadarde enough to allow the parameters to be
estimated. Using greedy unsupervised learning algorithencan train a multilayer, nonlinear encoder
network that transforms the input data vectanto a low-dimensional feature representatio(x; ).
After the initial pretraining, the parameters can be fingetli by performing gradient descent in the
Neighbourhood Component Analysis (NCA) objective functimtroduced by Goldberger et al. [2004].
The learning results in a nonlinear transformation of thputrspace that has been optimized to make
KNN perform well in the low-dimensional feature space.

3.4.1 Learning Nonlinear NCA

We are given a set oV labeled training case&;, ¢;), i = 1,2,..., N, wherex; € RP, and¢; €
{1,2,...,C}. For each training vecto;, define the probability that poirtselects one of its neighbours
j in the transformed feature space as:

eXp (_d?j)
bij = — 2N
Zz;ﬁi exp ( dzz)

We focus on the Euclidean distance metric:

pii = 0. (3.12)

dij = || F(xs; W) = F(x;; W) |,

and F'(-; W) is a multilayer neural network parameterized by the weigittar177. In the NCA model,
the probability that point belongs to clasg depends on the relative proximity of all other data points
that belong to clask:

p(CZ‘ = /{) = Z pz‘j. (313)
Jici=Fk

The NCA objective is to maximize the expected number of athyeclassified points on the training
data:

N
Onca = Y. Y. pij. (3.14)
=1 j:c;=c;

One could alternatively maximize the sum of the log prolitidd of correct classification:

N
O =) log| > |- (3.15)
1=1

jici=cj

When F'(x; W) = Wx is constrained to be a linear transformation, we get line@ANGoldberger
et al. [2004]). WhenF'(x; V) is defined by a multilayer, nonlinear neural network, we cgpi@e a
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Figure 3.16:Top right: The 2-dimensional codes produced by nonlinear NCA on the $M\tkst data using a
784-500-500-2000-2 encod@3ottom: The 2-dimensional codes produced by linear NCA, Linear izsioant
Analysis, and PCA.

much richer class of transformations by backpropagatiegdirivatives of the objective functions in
Eq. 3.14 or 3.15 with respect to parameter vedlorthrough the layers of the encoder network. In
our experiments, the NCA objectiv@nca of Eq. 3.14 worked slightly better thab;,o. We suspect
that this is becaus@nca is more robust to handling outlier§lyr,, on the other hand, would strongly
penalize configurations where a point in the feature spaes dot lie close to any other member of its
class.

Denoted;; = F(x;; W)—F(x;; W), then the derivatives @y 4 with respect to parameter vector
W for thes*® training case are:

90xcA _ 90xca  OF(xi; W)
ow OF (x;; W) oW 7
where
_90ner ol S oy = Spede | | 42| S pidi =SS by | peid]
OF (x;; W) . J I . . 7 A K
jici=c; zF#1 jicj=c; z#£1 \g:Cz=Cq
and% is computed using standard backpropagation.
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setis used to retrieve other test set documents, averagedlby,531 possible querieRight: The 2-dimensional
codes produced by nonlinear NCA on test dataset using 2006680-2 encoder.

3.4.2 Experimental Results

In this section we present experimental results for the MN#d 20-newsgroup datasets. For the
MNIST dataset, we pretrained a 288-500-500-2000-30 architecture. The 30 code units wasati
and the remaining hidden units were logistic. Figure 3.1@shthat Nonlinear NCA, after 50 epochs
of fine-tuning, achieves an error rate of 1.08%, 1.00%, 1,0866 1.01% using 1, 3, 5, and 7 near-
est neighbours. This is compared to the best reported etes {without using any domain-specific
knowledge) of 1.6% for randomly initialized backpropagatiand 1.4% for Support Vector Machines
(Decoste and Scholkopf [2002]). Linear methods such asafitNCA or PCA are much worse than
nonlinear NCA. Figure 3.16, right panel, shows the 2-din@red codes produced by nonlinear NCA
compared to linear NCA, Linear Discriminant Analysis, arci®

For the 20-newsgroups dataset we used 2000-500-500-1@eatare. The 10 code units were
linear and the remaining hidden units were logistic. Figife& shows that Nonlinear NCA significantly
outperforms other standard methods that use labeled deltaasuNCA and LDA, and other methods
that do not use labeled data such as Latent Semantic AnélySh), and a deep autoencoder of the
same architecture. Clearly, additional labeled data cgmdwe model performance.

3.4.3 Regularized Nonlinear NCA

The NCA objective, which encourages codes to lie close teratbhdes belonging to the same class, can
be combined with the autoencoder objective function (sge3-18, left panel) to maximize:

C = AOnca + (1= A)(-E), (3.16)

whereOncay is defined in Eq. 3.14E is the reconstruction error, andis a trade-off parameter. When
the derivative of the reconstruction erferis backpropagated through the autoencoder, it is combined,
at the code level, with the derivatives Okca.

This setting is particularly useful for semi-supervisedrieng tasks. Consider having a set/gf
labeled training datéx;, ¢;), where as beforg; € R”, andc; € {1,2, ...,C}, and a set ofV,, unlabeled
training datax,,. Let N = N; + N,. The overall objective to maximize can be written as:

N; N

O = )\N%Z > op+( —)\)%Z(—E”), (3.17)

=1 j|Cl:Cj n=1
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Figure 3.18:KNN on the MNIST test set when only a small fraction of cladsela is available. Linear NCA
and KNN in pixel space do not take advantage of the unlabed& d

whereE™ is the reconstruction error for the input data vect6r For the MNIST dataset we use the
Cross-entropy error:

EP = = allogd) — > (1 —af)log(l — V), (3.18)

%

wherez] € [0, 1] is the intensity of pixel for the training example:, andz] is the intensity of its
reconstruction.

When the number of labeled examples is small, regularizedimemr NCA performs better than
nonlinear NCA f = 1), which uses the unlabeled data for pretraining but igndrdaring the fine-
tuning. It also performs better than an autoencoder= 0), which ignores the labeled set. To test
the effect of the regularization when most of the data ishelked, we randomly sampled 1%, 5% and
10% of the handwritten digits in each class and treated trelabeeled data. The remaining digits were
treated as unlabeled data. Figure 3.18 reveals that regpdanonlinear NCA X = 0.99) outperforms
both nonlinear NCA X = 1) and an autoencodeh (= 0). The parametek was selected using cross-
validation from among the valu€$).5,0.9,0.99,0.999}. Even when the entire training set is labeled,
regularized NCA still performs slightly better. In Chapgewe will show that other deep models can
outperform regularized nonlinear NCA, even when the nunob&abeled examples is small.

Splitting codes into class-relevant and class-irrelevanparts

To allow accurate reconstruction of a digit image, the codesteontain information about aspects of
the image such as its orientation, slant, size and strok&rtess that are not relevant to its classifica-
tion. These irrelevant aspects necessarily contributeedeticlidean distance between codes and harm
classification. To reduce this unwanted effect, we usediB@aksional codes but only used the first
30 dimensions in the NCA objective function. The remainifigd@nensions were free to code all the
aspects of an image that do not affect its class label butgwertant for its reconstruction.

Figure 3.18, right panel, shows how the reconstructionfexctdd by changing the activity level of
a single code unit. Changing a unit among the first 30 chargeslass, while changing a unit among
the last 20 does not. With = 0.99 the split codes achieve an error rate of 1.00% 0.97% 0.98%80.9
using 1, 3, 5, and 7 nearest neighbours. We also computed\teeBor rate on the test set using only
the last 20 code units. It was 4.3%, clearly indicating thatdlass-relevant information is concentrated
in the first 30 units.
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(I1-X)«E

Figure 3.181 eft: The NCA objective functionis only applied to the first
30 code units, but all 50 units are used for image recongrudRight:
The top row shows the reconstructed images as we vary thatati of
code unit 25 from 1 to -23 with a stepsize of 4. The bottom roomsh
the reconstructed images as we vary code unit 42 from 1 to -23.

3.4.4 Discussion

Learning a similarity measure over the input space by ghegdéetraining and then fine-tuning a deep
nonlinear encoder network can greatly facilitate neanegghbor classification. Using the reconstruc-
tion error as a regularizer and split codes to suppress theite of class-irrelevant information in the
input, nonlinear NCA achieves an error rate of 1.00% on a lyidsed version of the MNIST hand-
written digit recognition task that does not use any donsgiecific knowledge. Furthermore, similar
to learning a covariance kernel for a Gaussian processetiwarized version of nonlinear NCA can
make good use of large amounts of unlabeled data, so théficlatisn accuracy is high even when the
amount of labeled training data is very limited.



Chapter 4

Evaluating Deep Belief Networks as
Density Models

Deep Belief Networks are generative models that containynfeayers of hidden variables. Efficient
greedy algorithms for learning and approximate inferenaeehallowed these models to be applied
successfully in many application domains, as we discussetiapter 3. The main building block of a
DBN is a bipartite undirected graphical model called a Retsl Boltzmann Machine (RBM). Due to
the presence of the partition function exact maximum Iik@bd learning in RBM’s is intractable, and
model selection and complexity control are difficult. Instishapter we show that a Monte Carlo based
method, Annealed Importance Sampling (AIS), can be useflitteatly estimate the partition function
of an RBM. We further show how an AIS estimator, along with rappmate inference, can be used to
estimate a lower bound on the log-probability that a DBN nhedth multiple hidden layers assigns to
thetest data This allows us to directly assess generalization perfaceaf Deep Belief Networks as
density models.

4.1 Introduction

Deep Belief Networks (DBN's), reviewed in chapter 2, arebatailistic generative models that contain
several layers of latent variables. The greedy learningrdlgn for DBN's proceeds by learning a
stack of undirected graphical models, called RestrictdtzBmnn Machines (RBM's). A key feature of
RBM’s is that inference in these models is easy. An unfortitienitation is that the probability of data
under the model is known only up to a computationally inttatd normalizing constant — the partition
function. A good estimate of the partition function woultbal us to assess generalization performance
of RBM’s and DBN’s as density models. Indeed, assessing émemlization performance plays an
important role in model selection and complexity contradr Fany specific tasks, such as information
retrieval or object recognition, performance of RBM’s anBNDs can be directly evaluated (Nair and
Hinton [2009], Bengio et al. [2007], Salakhutdinov and l8m{2009b]). More broadly, however, the
model’s generalization capability can be evaluated by ading the probability that the model assigns
to the previously unseen input vectors, which is independeany specific application.

There has been extensive research on obtaining deterimigigiroximations (Yedidia et al. [2005])
or deterministic upper bounds (Wainwright et al. [2005]pk&rson and Jaakkola [2007]) on the log-
partition function of arbitrary discrete Markov random digl(MRF's). These variational methods rely
critically on an ability to approximate the entropy of thedinected graphical model. However, for
densely connected MRF’s, such as RBM’s, these methods &kelyrto perform well (Salakhutdinov
[2008]). There have also been many developments in the ustoofe Carlo methods for estimating

38
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the partition function, including Annealed Importance $¢ing (AlS) (Neal [2001]), Nested Sampling
(Skilling [2004]), and many others (see e.g. Neal [1993])this chapter we show how one such method,
AIS, by taking advantage of the bipartite structure of an RBish be used to efficiently estimate its
partition function. We further show that this estimatograg with approximate inference, can be used to
estimate a lower bound on the log-probability that a DBN nh@dth multiple hidden layers assigns to
training or test data. This result will allow us to assesspiaiormance of DBN'’s as generative models
and to compare them to other probabilistic models, suchais plixture models.

4.2 Estimating Partition Functions

Suppose we have two distributions defined on some spfagith probability density function®4(x) =

P} (x)/Z4 and Pp(x) = Pj(x)/Zp, whereP*(-) denotes the unnormalized probability density. Let
Q4 andQp be the support sets dt4 and P respectively. One way of estimating the ratio of normal-
izing constants is to use a simple importance sampling (8i&hod. We use the following identity,
assuming tha@dp C Q4, i.e. P4(v) # 0 wheneverPg(v) # 0:

Pj(x)d P} P}

2B _ J Pp(x)dx / E(X)PA(x)dx _ EPA|: E(X)]

Za Za Pi(x) Pi(x)

Assuming we can draw independent samples fi@m an unbiased estimate of the ratio of partition
functions can be obtained by using a simple Monte Carlo aqpration:

M ; M
ZaA M;p:‘(x(i)) = M;w = T3S, (4.1)

wherex() ~ P4. If we chooseP,(x) to be a tractable distribution for which we can compgte
analytically, we obtain an unbiased estimate of the partifunctionZz. However, if P4 and Pp are
not close enough, the estimat®yg will be very poor. In high-dimensional spaces, the variaotan
estimatorrgig will be very large, or possibly infinite (see MacKay [2003hapter 29), unles®, is a
near-perfect approximation 16z.

4.2.1 Annealed Importance Sampling (AIS)

Suppose that we can define a sequence of intermediate pitybdisitributions: Py, ..., Pk, with Py =
P4 and Px = Pg, which satisfy the following conditions:

C1 Py(x) # 0 wheneverP;,(x) # 0.
C2 We must be able to easily evaluate the unnormalized pilipab; (x), Vx € X, k =0, ..., K.

C3 For eachk = 1, ..., K —1, we must be able to draw a samplegiven x using a Markov chain
transition operatof’j, (x’ — x) that leaves’; (x) invariant:

/Tk(x/Hx)Pk(x)dx = P.(x). (4.2)

C4 We must be able to draw (preferably independent) sampdes®,.
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Algorithm 3 Annealed Importance Sampling (AIS) run.
1: Selectf, with0 = Gy < 81 < ... < Bg = 1.

. Samplex; from Py = P,.

cfork=1: K —1do

Samplexy.t1 givenxy usingTy (Xg+1 < Xk ).

: end for

: Setwars = [Ty Py (xx)/ Py (%)

o uh wWwN

The transition operatorg;, (x’ <+ x) represent the probability or probability density of traiasiing from
statex to x’. Constructing a suitable sequence of intermediate prbtyabistributions will depend on
the problem. One general way to define this sequence is to set:

Pi(x) oc Pi(x)' 7 Py(x), (4.3)

with0 = Gy < f1 < ... < Bk = 1 chosen by the user.

A single run of the AIS procedure is summarized in Algorithm I8ote that there is no need to
compute the normalizing constants of any intermediateilligions. After performingV/ runs of AIS,
the importance weightm( %s can be substituted into Eqg. 4.1 to obtain an estimate of tieeabpartition
functions:

ZB 1 i R
z, ~ MZU}QS = TAIS. (4.4)

It is shown in (Neal [2001, 2005]) that for sufficiently larggmber of intermediate distributions’,
the variance off,1s will be proportional tol/M K. ProvidedK is kept large, the total amount of
computation can be splitin any way between the number offimrediate distributiong’ and the number
of annealing rung/ without adversely affecting the accuracy of the estimadfsamples drawn from
p4 are independent, the AIS runs can be used to obtain the garirthe estimatéais:

. 1 i 32 R
Var (7a1s) = MVar (wf&s) ~ ST 52, (4.5)

wheres? is estimated simply from the sample variance of the impagameights.
The intuition behind AIS is the following. Consider the fmNing identity:
Zk 212 2k
2o 2021 Zg_1

(4.6)

Provided the two intermediate distributioRs and P, are close enough, a simple importance sampler
can be used to estimate each refig.,/ Zy:

Zk+1 ~ L P, (x*)
P x(l

where x ~ P,.

These ratios can then be used to estméfte ]_[K ! Z’“‘k“ The problem with this approach is that,
except forP,, we typically cannot easily draw exact samples from intetiaie distributionsP,. We
could resort to Markov chain methods, but then it is hard teemheine when the Markov chain has
converged to the desired distribution.

A remarkable fact shown by Neal [2001], Jarzynski [1997h&t the estimate of i / Z, will be ex-

actly unbiased if each ratiBy 1 / Zj, is estimated using/ = 1, and a new sample is obtained by using



CHAPTER 4. EVALUATING DEEPBELIEF NETWORKS ASDENSITY MODELS 41

Markov chain starting at the previous sample. The proofisffict relies on the observation that the AIS
procedure is just a simple importance sampling defined oextended state spacé=(x1, x2, ..., X ).
Indeed, AlIS starts by first sampling from distributiéh(x) and then applying a series of transition op-
eratorsTy, Ty, ..., Tx_1 that “move” the sample through the intermediate distrimsiP; (x) towards
the target distributiorPx (x). The probability of the resultant state sequeiites given by:

K-1
QX) = Ro(x1) [] Tr(xnsr—xx). (4.7)

k=1
We can viewQ(X) as a proposal distribution for the target distributi®(iX) on the extended spacé.
This target distribution is defined by the reverse AIS proced

K-
73( = PK XK H Xk<—Xk+1), (48)

whereT}, are the reverse transition operators:

Ty (x' —x) = Tjy(x—x) (4.9)

If Ty, is reversible theff}, is the same a},. Due to invariance of, with respect tdl, (EqQ. 4.2), the
reverse transition operators are valid transition prdhtiegs, which ensures that the marginal distribution
overxy in Eq. 4.8 is the correct distribution of intereBk (xx ). Denoting the unnormalized proposal
and target distributions a8*(X) = ZpQ(X) andP*(X) = ZxP(X), the importance weight can be
found using Eq. 4.1:

w = PX) _ ZkP(X) _ ZrPr(xk) [1E, ! T (¢ —xp41)
Q*(X) ZO Q(X) Z()Po(xl) H?:_ll Tk(xk+1 <—Xk)
_ Prer) T PG o Pelk)
= P ta) 1;[ ACTY S S (4.10)

which are the weights provided by the AIS algorithm. Obséhat the Markov transition operators do
not necessarily need to be ergodic. In particular, if we vierehoose dumb transition operators that
do nothing, 7 (x’ <+ x) = d(x' — x) for all k£, we recover the original simple importance sampling
procedure.

4.2.2 Ratios of Partition Functions of two RBM'’s

As discussed in section 2.1, a Restricted Boltzmann Madhasea two-layer architecture in which the
visible, binary stochastic units € {0, 1}” are connected to hidden binary stochastic umits {0, 1}*".
The energy of the statev, h} is:

E(v,h;0) = —vTWh—bTv—aTh

= _ZZWZﬂv’h vaz Za] P> (4.11)

=1 j=1
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wheref = {W,b,a} are the model parameters. The probability that the modé&jrasso a visible
vectorv is:

P(v;0) = Zexp E(v,h;0))

1 F D
= % exp(bTv) H (1 + exp <aj + Z Wijvi>> . (4.12)

j=1 =1

Suppose we have two RBM'’s with parameter valtigs= {IW4, b4, a4} anddp = {WB b5 aP}
that define probability distribution®4 and Pg over V € {0,1}”. Each RBM can have a different
number of hidden unita? € {0,1}¥4 andh? € {0,1}¥2. Using Eq. 4.12, we could define generic
AlS intermediate distributions on the state space- {v}, as defined in Eq. 4.3. However, sampling
from these intermediate distributions would be slower teampling from an RBM. Instead, we can
make use of the bipartite structure of an RBM by introducing following sequence of distributions
fork=0,.. K:

_ Biv) 1
Bu(v) = 25— = = %jexp(—mv,h)), (4.13)
where the energy function is given by:
E(v.h) = (1= B)E(v,h*04) + BE(v, 0" 60p), (4.14)

with0 = By < B < ... < fxg = 1 andh = {h4 hP}. Fori = 0, we haves, = 0 and so
Py = P4. Similarly, fori = K, we havePx = Pg. For the intermediate values &f we will have
some interpolation betwees and Pp.

Let us now define a Markov chain transition operdfp(v’ — v) that leaves’; (v) invariant. Using
Egs. 4.13, 4.14, it is straightforward to derive a Gibbs dam@he conditional distributions are given
by logistic functions:

p(hdt =1v) = g (1 — ) (Z Wil + aj‘)) , (4.15)
p(h? =1v) = (ﬁk (Z B + al )) (4.16)

pv,=1h) = g | (1B | D Win + v +ﬁkZW£hf+bB .41
J

whereg(z) = 1/(1 + exp(—z)). Givenv, Eqgs. 4.15, 4.16 are used to stochastically activate hidden
unitsh” andh®. Eq. 4.17 is then used to draw a new samglas shown in Fig. 4.1, left panel. Due to
the special structure of RBM'’s, the cost of summing hus linear in the number of hidden units. We
can therefore easily evaluate:

Pi(v)= Z e(lfﬁk)E(v,hA;gA)JrﬁkE(V’hB;@B)

hA hB

Fp
— e(l_ﬁk’)zi bf‘vi H (1 _|_ e(l*ﬁk)(zi Wi’?vi+a?)) X €'6k Zz bFUi (1 _|_ eﬁk(zz quvi‘i’af))

j=

s

H
Il
—

J
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Figure 4.1:Left: The Gibbs transition operatd, (v’ < v) leavesP(v) invariant when estimating the ratio of
partition functionsZz / Z 4. Right: Two-hidden-layer Deep Belief Network as a generative model

We will assume that the parameter values of each RBM sgti$fyt co, in which caseP(v) > 0
for all v € V. This will ensure that condition C1 of the AIS procedure iwa}s satisfied. We have
already shown that conditions C2 and C3 are satisfied. Fatitbtmm C4, we can run a Gibbs sampler
(Egs. 2.7, 2.8) to generate samples frBn These sample points will not be independent, but the AIS
estimator will still converge to the correct value, prowddeur Markov chain is ergodic (Neal [2001]).
However, assessing the accuracy of this estimator can tieuttifas it depends on both the variance of
the importance weights and on autocorrelations in the Gsabspler.

4.2.3 Estimating Partition Functions of RBM’s

In the previous section we showed that we can use AIS to obtaiestimate o£5/Z,4. Consider an
RBM with parameter vectat, = {0, b4, a“}, i.e. an RBM with a zero weight matrix. From Eq. 4.12,
we know:

Za=JJ+e) T+ (4.18)

J A
Moreover,

Py(v) = HpA(vi) = Hl/(l-l—e_bi),

so we can draw exact independent samples from this “bas&R&M. AIS in this case allows us to
obtain arunbiasedestimate of the partition functiofz. This approach closely resembles simulated an-
nealing (Kirkpatrick et al. [1983], Bertsimas and Tsit@K[1993]), since the intermediate distributions
of Eq. 4.13 take form:

exp (1=4) (v'b*
Zy,

)) Z exp (—BkE (V, h?; 93)).

hB
We gradually change;,, (the inverse temperature) from O to 1, annealing from a sfiphse-rate”
model to the final complex model.

Pk (V) =

4.3 Estimating Lower Bounds for DBN’s

Let us consider the Deep Belief Network with two layers ofd@d features shown in Fig. 4.1, right
panel. The model’s joint distribution is:

P(v,h!,h?) = P(v|h!) P(h? h'), (4.19)
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where P(v|h') is the sigmoid belief network (Eq. 2.8), ad{h', h?) is the joint distribution defined
by the second layer RBM. Note th&(v|h') is normalized.

By explicitly summing outh?, we can easily evaluate an unnormalized probabifity{v,h!) =
ZP(v,h'). Using the approximating factorial distributiap of Eq. 2.19, which we get as a byproduct
of the greedy learning procedure, and the variational Idweeind of Eq. 2.17, we obtain:

log ¥ P(v,h') > Y Q(h'|v) log P*(v,h') —log Z + H(Q(h'|v)) = B(v). (4.20)
h! h!
The entropy tern#(-) can be computed analytically, sin¢gis factorial. The partition functioif is
estimated by running AIS on the top-level RBM. And the expoh term can be estimated by a simple
Monte Carlo approximation:
M
h!|v)log P*(v,h!) ~ — Y log P*(v,h!®) 4.21
D QM v)log P'(v,R) ~ 7 3 Llog (v, ') (4.21)
whereh!® ~ Q(h'|v). The variance of this Monte Carlo estimator will be propmmtl to 1/A/
provided the variance dbg P*(v, hl(i)) is finite. In general, we will be interested in calculating th
lower bound averaged over the test set contailipgamples:

1 Nt Nt
- B(v"™
N, nzl (v")

%

M
1 1 YA 7 n >
3 2 |3 L ows (v 0 0) (@ )| < 10g 2
n=1 =1

= 75 —log Z = PBound. (4.22)

In this case the variance of the estimator induced by the &Gairlo approximation will asymptotically
scale ad /(N M). We will show in the experimental results section that theiaf M/ can be small
providedV; is large. The error of the overall estimatgy,,.q in EqQ. 4.22 will be mostly dominated by
the error in the estimate dig Z.

Estimating this lower bound for Deep Belief Networks with madayers is now straightforward.
Consider a DBN withZ, hidden layers. The model’s joint distribution and its apqmmate factorial
posterior distributior() are given by (see section 2.2):

P(v,hl, .. hi) = P(v|h!)..P(hi2nl~Y)P(hi~! hE),
Q(h',...h"v) = Q' [V)Q(L*|v)..Q(h"|v).

The estimate of the lower bound can now be obtained by usirsg £80, 4.22. Note that most of the
computation resources will be spent on estimating thetjmartiunction Z of the top level RBM.

4.4 Experimental Results

In our experiments we used the MNIST digit dataset, whichtaios 60,000 training and 10,000 test
images of ten handwritten digits (0 to 9), with 288 pixels. The dataset was binarized: each pixel
value was stochastically set to 1 in proportion to its pixeénsity. Samples from the training set are
shown in Fig. 4.2, middle left panel. Annealed importanga@ang requires us to specify, that define

a sequence of intermediate distributions. In all of our expents this sequence was chosen by quickly
running a few preliminary experiments and picking the spaaf 3 so as to minimize the variance of
the final importance weights. For the base-rate model ttsebiaf the hidden units® were set to zero
(see Eq. 4.18) and the biases of the visible ubitavere set by maximum likelihood, then smoothed to
ensure thaP(v) > 0,V v € V. In all experiments we obtained unbiased estimates afd its standard
deviationg using Egs. 4.4, 4.5. We also use natural logarithms, progidalues in nats. Details of the
Matlab code, used in experiments, can be found in Appendix A.
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The course of an AIS run for model CD25(500)

/Base—rateﬁ =0 B8 =0.5

CD3(500)

ﬂ*‘f”'ﬁ/‘@lﬁ?é‘fﬁﬁ

Figure 4.2:Top row: displays the course of 16 AIS runs for CD25(500) model bytisigfrom a simple base-
rate model and annealing to the final complex mod#ddle row: First two panels show random samples from
the training set and a mixture of Bernoullis model with 10thpmnents. The last 2 panels display random samples
generated from two RBM'sBottom row: Random samples generated from an RBM and three DBN models.

4.4.1 Estimating partition functions of RBM'’s

In our first experiment we trained three RBM’s on the MNISTitigThe first two RBM’s had 25 hidden
units and were learned using Contrastive Divergence (stibse2.1) with7'=1 and7'=3 respectively.
We call these models CD1(25) and CD3(25). The third RBM hatdi@@en units and was learned using
CD with T=1. For all three models we can calculate the exact valueepdrtition function simply
by summing out the 784 visible units for each configurationthef hiddens. For all three models we
used 5003, spaced uniformly from 0 to 0.5, 4,0Q). spaced uniformly from 0.5 to 0.9, and 10,000
spaced uniformly from 0.9 to 1.0, with a total of 14,500 imediate distributions.

Table 4.1 shows that AIS can rather quickly provide an atceugatimate of the partition function.
For all three models, using only 10 AIS runs, we were able taialgood estimates of partition functions
in just 20 seconds on a Pentium Xeon 3.00GHz machine. ForIn@iai(25), however, the variance of
the estimator was high, even with 100 AIS runs. Figure 43 rtov, further reveals that as the number
of annealing runs is increased, AIS can almost exactly mcthe true value of the partition function
across all three models.

We also directly estimated the ratio of normalizing constasf two RBM'’s that have different
numbers of hidden units: CD1(20) and CD1(25). This estimatuld be used to do complexity
control. In detail, using 100 AIS runs with uniform spacinfy1®,000 3, we obtainedog #a1s =
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Table 4.1:Results of estimating log-partition functions of RBM’s afpwith the estimates of the average training
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and test log-probabilities. For all models we used 14,5@rimediate distributions and 100 AIS runs.

True A i Estimates A Time Avg. Test log-prob.  Avg. Train log-prob.
logZ logZ log(Z+0) log (£ + 36) (mins)  true estimate true estimate
CD1(25) 255.41 256.52 255.00,257.10 0.0000,257.73 3.3 —151.57 —152.68 —152.35 —153.46
CD3(25) 307.47 307.63 307.44,307.79 306.91,308.05 3.3 —143.03 —143.20 —143.94 —144.11
CD1(20) 279.59 279.57 279.43,279.68 279.12,279.87 3.1 —164.52 —164.50 —164.89 —164.87
CD1(500) — 350.15 350.04, 350.25 349.77,350.42 10.4 — —125.53 — —122.86
CD3(500) — 280.09 279.99,280.17 279.76,280.33 10.4 — —105.50 — —102.81
CD25(500) —  451.28 451.19,451.37 450.97,451.52 10.4 —  —86.34 — —83.10
CD1(25) CD3(25) CD1(20)
259 - 310 282
O Estimated logZ ¢ Estimated logZ ¢ Estimated logZ
258 -x-True logz 300 -x-True logZ 281 -x-True logZ
3.3 min
27 33 min 308 280
w 256 20 sec 17 min 5.5 hrs o | #- % ______ $-ooe- P ® R S %_ _____ DS PUR ®
) SR S T ............ 3 9307 2279
= 255 = =
306 278
254
253 — 305 277
Large Variance
252 304 276
10 100 500 1000 10000 10 100 500 1000 10000 10 100 500 1000 10000
Number of AIS runs Number of AIS runs Number of AIS runs
CD1(500) CD3(500) CD25(500)
353 283 453,
352F 282 452
1.1 min .
351 10.4 min s2mn 1ame 174N 1 281 asal {) 3 L3 é
';-'7350— $ ¢ @ %1280 ‘i’ 13 ¢ é ’;-‘7
- - ~ 4501
349 279
348t ~ 278 449t
Large variance
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Number of AIS runs
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Figure 4.3:Est1mates of the log-partition functiohsg Z as we increase the number of annealing runs. The error
bars showog (£ + 35).

log (Zcpi(20)/ Z2cpi(2s)) = —24.49 with an error estimatéog (7a1s + 36) = (—24.19,-24.93). Each
sample from CD1(25) was generated by starting a Markov caigihe previous sample and running it
for 10,000 steps. Compared to the true value-B4.18, this result suggests that our estimates may have
a small systematic error due to the Markov chain failing ®t\dome modes.

Our second experiment consisted of training two more fgalisodels: CD1(500) and CD3(500).
We used exactly the same spacingdafas before and exactly the same base-rate model. Results are
shown in table 4.1, bottom row. For each model we were ablettavbat appears to be a rather accurate
estimate ofZ. Of course, we are relying on an empirical estimate of Al®susacy, which could
potentially be misleading. Nonetheless, Fig. 4.3, bottamgh, shows that as we increase the number of
annealing runs, the value of the estimator does not oseiledstically.

While performing these tests, we observed that ContraBlivergence learning witlf'=3 results in
a considerably better generative model than CD learninig T%4t1: the difference of 20 nats is striking!
Clearly, the widely used practice of CD1 learning is a ratbmor “substitute” for maximum likelihood
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Table 4.2:Results of estimating lower bounfis,..q (EQ. 4.22) on the average training and test log-probadsliti
for DBN's. On average, the total error of the estimator istghp 2 nats.

Estimates Avg. bound on log-prob.
logZ  log(Z =+ 36) Test +3std Train =+ 3std.

DBN-CD1(500)-CD1(2000)  277.33 275.90,277.90 —100.64 +0.77 —97.67 +0.30
DBN-CD3(500)-CD3(2000)  229.92 229.01,230.23 —98.29 £0.75 —94.86 -0.29
DBN-CD25(500)-CD25(2000) 466.70  465.86,467.35 —86.22 +£0.67 —82.47 +0.25

learning. Inspired by this result, we trained a model bytstgrwith T'=1, and gradually increasingf
to 25 during the course of CD learning, as suggested by CaReirpinan and Hinton [2005]. We call
this model CD25(500). Training this model was computatignrauch more demanding. However, the
estimate of the average test log-probability for this maedes about-86, which is 39 and 19 nats better
than the CD1(500) and CD3(500) models respectively. Figuzeshows samples generated from all
three models by randomly initializing binary states of thghte units and running the Gibbs sampler
for 100,000 steps. Certainly, samples generated by CDR5({66k much more like the real handwritten
digits, than either CD1(500) or CD3(500).

Using 10,0005, and 100 annealing runs, we also obtained an estimate of theatm of two
partition functionsrais = log Zcnas(s00)/ Zcnszo0) = 169.96. The estimates of the individual log-

partition functions weréog Zcpas(s00) = 451.28 andlog Zapa(son) = 280.09, in which case the log
ratio is451.28 —280.09 = 171.19. This is in agreement (to within three standard deviationi#) the
direct estimate of the ratid ;s =169.96.

For a simple comparison we also trained several mixture ofi@dlis models (see Fig. 4.2, middle
left panel) with 10, 100, and 500 components. The corredpgnaverage test log-probabilities were
—168.95, —142.63, and—137.64. The data generated from the mixture model with 100 comptsnen
looks better than either CD1(500) or CD3(500), although quantitative results reveal this is due to
overfitting. Restricted Boltzmann Machines give much highensity to test data.

4.4.2 Estimating lower bounds for DBN’s

We trained three Deep Belief Networks with two hidden laydrse first model, which we call DBN-
CD1(500)-CD1(2000), was greedily learned by freezing taemeter vector of the CD1(500) model
and fitting the2™? layer RBM with 2000 hidden units using CD witfi=1. Similarly, the other two
models, DBN-CD3(500)-CD3(2000) and DBN-CD25(500)-CZE[0), added 2000 hidden units on
top of CD3(500) and CD25(500), and were learned using CD WitB and7'=25 respectively. Training
the DBN's took roughly three times longer than the RBM's.

Table 4.2 shows the results. We used 15,000 intermediatigbdisons and 500 annealing runs to
estimate the partition function of th#&'d layer RBM, which took 2.3 hours. We further usad=5
samples from the approximating distributiep(h|v) to do a simple Monte Carlo approximation of
Eqg. 4.21. Settind/=100 did not make much difference. Table 4.2 also reportsthgirical error in the
estimate of the lower bounth,u,q. From Eq. 4.22, we have Vafgound) = Var (75)+Var(log Z), both
of which are shown in table 4.2. Note that the two-hidderetdyeep Belief Networks, DBN-CD1(500)-
CD1(2000) and DBN-CD3(500)-CD3(2000), significantly ceriorm their single layer counterparts:
CD1(500) and CD3(500). Adding a second layer for those twdetsimproves model performance by
at least 25 and 7 nats. Figure 4.2 also shows the dramat&atiife between samples generated by the
single layer RBM’s and corresponding two-hidden-layer D8N
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Table 4.3:Results of estimating lower bounds on the average testlogabilities for DBN’s. On average, the
total error of the estimator is abotit2 nats.

No 24 2" Jayer
1**layer layer CD1(500) CD3(500) CD25(500) CD1(2000) CD3(@00 CD25(2000)
DBN-CD1(500)- -125.53 -101.40 -97.54 -89.52 -100.64 -84.4 -87.13
DBN-CD3(500)- -105.50 -100.27 -95.21 -88.38 -101.62 -98.2 -88.92
DBN-CD25(500)- -86.34 -101.55 -98.38 -86.90 -98.57 -96.97 -86.22
DBN-CD1(2000)- -122.84 -134.81 -119.45 -90.50 -116.44 0-08 -92.53
DBN-CD3(2000)- -100.92 -112.81 -107.49 -89.48 -106.67 .F98 -91.25
DBN-CD25(2000)- -86.26 -121.83 -112.64 -89.96 -102.24 .897 -88.29

Surprisingly, the greedy learning of DBN’s does not appeauffer severely from overfitting. For
single layer models, the difference between the estimdtiesining and test log-probabilities was about
3 nats. For DBN’s, the corresponding difference in the et of the lower bounds was about 4 nats,
even though adding a second layer introduced over twice ag (waone million) new parameters.

The result of our experiments for DBN-CD25(500)-CD25(200wever, was very different. For
this model, on the test data we obtairiged,,,a = —86.22. This is comparable to the estimate-e$6.34
for the average test log-probability of the CD25(500) mo@#éarly, we cannot confidently assert that
the DBN is a better generative model compared to the cayefalined single layer RBM. This peculiar
result also supports previous claims that if the first levBMRalready models data well, adding extra
layers will not help (LeRoux and Bengio [2008], Hinton et[@D06]).

To estimate how loose the variational bound is, we randoratypded 50 test cases, 5 of each class,
and ran AIS for each test case to estimate the true test Ibgpildy. Computationally, this is equivalent
to estimating 50 additional partition functions. Our esttmof the variational bound was 87.05 per test
case. The estimate of the true test log probability was 8sR6wing that the bound is actually rather
tight.

To further examine the effect that CD learning has on pneitngi a stack of RBM'’s, we trained
additional 36 models. Table 4.3 shows results of estimatieglower bound on the average test log-
probabilities. These results support our two previous olasens. First, when training a lower-level
RBM with CD1 or CD3, adding an extra layer generally improwesdel performance. Second, when a
lower-level RBM already models data well, adding an extyataloes not help. Performance of models
DBN-CD1(2000)-CD1(500), DBN-CD3(2000)-CD3(500), and R&D25(2000)-CD25(500) further
reveals that decreasing the number of hidden units per tareactually hurt model performance.

As an additional test, instead of randomly initializing aaeters of th@"! layer RBM, we initial-
ized it by using the same parameters asitfidayer RBM but with hidden and visible units switched,
so that the2"d and 3™ layers contained 500 and 784 hidden units. This initialimaensures that the
distribution over the visible units defined by the two-hidden-layer DBN exactly the samas the
distribution overv defined by thels' layer RBM (see section 2.2). Therefore, after learning para
ters of the2"d layer RBM, the lower bound on the training data log-likebldoshould improve. After
carefully training the second level RBM, our estimate of lineer bound on the test log-probability
was —85.97. Once again, we cannot confidently claim that adding an dayer in this case yields
better generalization.

4.5 Discussion

As we discussed in chapter 2, under some strong assumpei@acts additional layer of a DBN increases
a lower bound on the log-probability of theining data, provided the number of hidden units per layer
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does not decrease. However, assessing generalizatiarmparfce of these generative models is quite
difficult, since computing the exact probability of a testtoe requires enumeration over an exponential
number of terms. In this chapter we developed an Annealedttapce Sampling procedure that takes
advantage of the bipartite structure of the RBM. This carvide a good estimate of the partition
function in a reasonable amount of computer time. Furtheemee showed that this estimator, along
with approximate inference, can be used to obtain an estiofdahe lower bound on the log-probability
of thetestdata. This allowed us to obtain some quantitative evalnaiidhe generalization performance
of these deep hierarchical models.

There are some disadvantages to using AIS. There is a nepddifysthes;, that define a sequence
of intermediate distributions. The number and the spacing,owill be problem dependent and will
affect the variance of the estimator. We also have to relyhenempirical estimate of AIS accuracy,
which could potentially be very misleading (Neal [2001, 2))0Even though AIS provides an unbiased
estimator ofZ, it may often give large underestimates and occasionally gven larger overestimates.
Soin practice, itis more likely to underestimate the trueeaf the partition function, which will result
in an overestimate of the log-probability. But these draskisashould not result in disfavoring the use
of AIS for RBM's and DBN’s: it is much better to have a slightipreliable estimate than no estimate at
all, or an extremely indirect estimate, such as discrinnegterformance (Hinton et al. [2006], Bengio
et al. [2007]). We also find Annealed Importance Sampling aitér stochastic methods attractive
because they can just as easily be applied to undirectedhigeypmodels that generalize RBM'’s and
DBN's to exponential family distributions. This will alloduture application to models of real-valued
data, such as image patches (Osindero and Hinton [2008}humt data (Gehler et al. [2006]).

Another alternative would be to employ deterministic apprations (Yedidia et al. [2005]) or de-
terministic upper bounds (Wainwright et al. [2005]) on thg-partition function. However, for densely
connected MRF’s, we would not expect these methods to wotk W&y own findings (Salakhutdi-
nov [2008]) show that these methods provide quite inacewgatimates of (or very loose upper bounds
on) the partition function, even for small RBM’s whémained on real datahat has many modes with
similar probabilities.



Chapter 5

Deep Boltzmann Machines

In this chapter we present a new learning algorithm for sedsifit type of hierarchical probabilistic
model: a Deep Boltzmann Machine (DBM). Unlike Deep Belietharks, a DBM is a type of Markov
random field, or undirected graphical model, where all cotiors between layers are undirected. Deep
Boltzmann Machines are interesting for several reasomst, like Deep Belief Networks, DBM'’s have
the potential of learning internal representations thabee increasingly complex at higher layers,
which is a promising way of solving object and speech redagnproblems. High-level representations
can be built from a large supply of unlabeled sensory inpuats the very limited labeled data can
then be used to only slightly fine-tune the model for a spet#fgk at hand. Second, unlike Deep
Belief Networks and many other models with deep architestifRanzato et al. [2007], Vincent et al.
[2008], Serre et al. [2007]), the approximate inferencecedure, in addition to a bottom-up pass, can
incorporate top-down feedback, allowing Deep Boltzmanrcivizes to better propagate uncertainty
about ambiguous inputs. This is perhaps the most importatitguishing characteristic of this model.
Finally, in the presence of enormous amounts of sensory ttaaentire model can be trained online,
processing one example at a time.

5.1 Introduction

The original learning algorithm for Boltzmann machinedraduced by Hinton and Sejnowski [1983],

used randomly initialized Markov chains in order to perfoapproximate inference to estimate the
model’s expected sufficient statistics. This learning ptwse, however, was too slow to be practical.
There have been many attempts in developing efficient legramd inference algorithms for Boltzmann
machines (see Welling and Hinton [2002], Welling and TelOE0Zhu and Liu [2002] and references

therein), but none of them have proven to be useful for laggde problems in machine learning.

In this chapter we present an efficient learning procedurtufty general Boltzmann machines. Ap-
proximate inference can be performed using variationat@ghes, such as mean-field. Learning can
then be carried out by applying a stochastic approximatimeeriure that uses Markov chain Monte
Carlo (MCMC) to approximate a model’'s expected sufficieatistics. The MCMC based approxi-
mation procedure provides nice asymptotic convergenceagtees and belongs to the general class
of approximation algorithms of Robbins—Monro type (Rolsband Monro [1951], Younes [1989]).
This unusual combination of variational methods and MCM@sdsential for creating a fast learning
algorithm for general Boltzmann machines, or, more gehemahdirected graphical models in the ex-
ponential family (Wainwright and Jordan [2003]). If the oc@ations between hidden units are restricted
in such a way that the hidden units form multiple layers, pdassible to modify the greedy learning
algorithm for Restricted Boltzmann Machines so that theyloa used to initialize the parameters of a

50
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Deep Boltzmann Machine before applying our new learninggaare. Finally, we present results on
the MNIST and NORB datasets showing that Boltzmann macHe®s good generative models and
perform well on handwritten digit and visual object recdigpm tasks.

5.2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically coupleatbhastic binary units. It contains a set
of visible unitsv € {0,1}”, and a set of hidden units € {0,1} (see Fig. 5.1, left panel), that
model complicated, higher-order correlations betweervisible units. The energy of the stafe, h}
is defined as:

E(v,h;0) = —%VTLV — %hTJh — v Wh, (5.1)

whered = {W,L,J} are the model parametérsW, L, J represent visible-to-hidden, visible-to-
visible, and hidden-to-hidden symmetric interaction terifihe diagonal elements éfand.J are set to
0. The probability that the model assigns to a visible veeta:

P*(v;0) 1

P(vi0) = 257 = gy 2. P ("B, hi0), (5.2)
h
Z(0) = Y ) exp(—E(v,h;0)), (5.3)
v h

where P* denotes unnormalized probability, agd6) is the partition function. Theonditional distri-
butions over hidden and visible units are given by:

p(hj =1v,h_j) =g (Z Wijvi + Z ijhj) ; (5.4)

i m#j

J ki

ploi=1h,v_) =g (Z Wijh; + ZLikvj) : (5.5)

whereg(z) = 1/(1 + exp(—=)) is the logistic function anet_; denotes a vectat but with z; omitted.
The parameter updates, originally derived by Hinton anai@e$ki [1983], that are needed to perform
gradient ascent in the log-likelihood can be obtained fram3=2:

AW = o (EPdata [VhT] - EPrnodel [VhT]> ’
AL = o (EPdata [VVT] - EPmodel [VvT]) Y

AJ = a(Ep,.[0h"] - Ep,,.,[bh']) |

odel
wherea is a learning rate. E . [] denotes an expectation with respect to the completed dsta di
tribution Pyata(h, v;0) = P(h|v;0)Piata(v), With Piata(v) = + >, 6(v — v,,) representing the
empirical distribution, and E__,.[] is an expectation with respect to the distribution definedHsy
model (Eq. 5.2). We will sometimes refer tgF,, [-] as thedata-dependent expectaticand Ep_
as themodel’s expectatian

odel H

1We have omitted the bias terms for clarity of presentation
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General Boltzmann Machine

Restricted Boltzmann Machine

Figure 5.1:Left: A general Boltzmann machine. The top layer represents @avetstochastic binary “hidden”
features and the bottom layer represents a vector of stiichasary “visible” variables.Right: A Restricted
Boltzmann Machine with no hidden-to-hidden and no visitdleAsible connections.

Exact maximum likelihood learning in this model is intrdata The exact computation of the data-
dependent expectation takes time that is exponential imtingber of hidden units, whereas the exact
computation of the model’s expectation takes time that j{goaential in the number of hidden and
visible units. Hinton and Sejnowski [1983] proposed an atgm that uses Gibbs sampling (Geman
and Geman [1984]) to approximate both expectations. Fdr iga@tion of learning, a separate Markov
chain is run for every training data vector to approximaje E[-], and an additional chain is run to
approximate iz__, [-]. The main problem with this learning algorithm is the timguieed to approach
the stationary distribution, especially when estimatimg thodel’s expectations, since the Gibbs chain
may need to explore a highly multimodal energy landscapés iShypical when modeling real-world
distributions, such as datasets of images, in which alnibst the possible images have extremely low
probability, but there are many very different images thatuo with quite similar probabilities.

Setting both/=0 andL=0 recovers the Restricted Boltzmann Machine (RBM) mod= (Sig. 5.1,
right panel). Although exact maximum likelihood learnimgRBM’s is still intractable, learning can
be carried out efficiently using Contrastive Divergence J@Binton [2002]). It was further observed
(Welling and Hinton [2002], Hinton [2002]) that for Contta® Divergence to perform well, it is im-
portant to obtain exact samples from the conditional distion P(h|v;6), which is intractable when
learning full Boltzmann machines.

5.2.1 A Stochastic Approximation Procedure for Estimatingthe Model's Expectations

Instead of using CD learning, it is possible to make use obelsistic approximation procedure (SAP)
that uses MCMC methods to stochastically approximate thaeltsoexpectations (Younes [1989, 2000],
Neal [1992], Yuille [2004], Tieleman [2008]). SAP belongsthe general class of well-studied stochas-
tic approximation algorithms of the Robbins—Monro typefes [1989], Robbins and Monro [1951]).
To be more precise, let us consider the following canonioahfof the exponential family associated
with the sufficient statistics vectdr:

P(x:6) — % exp (0T (x)). (5.6)

The derivative of the log-likelihood for an observatigg with respect to parameter vectbis:

0log P(x0;0)
06

The idea behind learning parameter ve@aising SAP is straightforward. Lét andx! be the current
parameters and the state. Thérandf’ are updated sequentially as follows:

= ®(x0) — Ep,pua[P(X)]. (5.7)

odel [
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Algorithm 4 Stochastic Approximation Algorithm.
1: Randomly initialized® and M sample particlegx®!, ....,x0M},
2: for t = 0 : T (number of iterations)do
3: for i =1: M (number of parallel Markov chainsjo

4 Samplex!*1 givenx’* using transition operatdfy: (x! T « x'?).
5. end for

6: Update:d'™! = 0" + oy |®(x0) — 77 M p(xttimy).

7:  Decreasey,.

8: end for

e Givenx!, a new statex’*! is sampled from the transition operaty: (x'*! « x!) that leaves
P(-;60%) invariant.

e Anew parametef’*! is then obtained by replacing the intractable model's etgtien Ep,___ [ (x)]
with ®(xt)

In practice, we typically maintain a set 81 sample points\? = {x>!, ...., %%}, which we will often
refer to as sample particles. In this case, the intractalol@elts expectation is replaced by the sample
average/m Z%:l ®(xt*+1™), The procedure is summarized in Algorithm 4.

The proof of convergence of these algorithms relies on thewong basic decomposition. First, the
gradient of the log-likelihood function takes the form:

B 0log P(x;0)

S0) a0

= ®(x¢) — Ep,_ ., [®(x)]. (5.8)

The parameter update rule then takes the following form:

9t+1 — 9t+at

| M
®(x0) — 77 > q’(itﬂ’m)] (5.9)
m=1

= 9t + OétS(et) + g

1 M
o0 200] — 7 3 @(f«t“m]

m=1

= 6t + OétS(et) + Qup€py1. (510)

The first term is the discretization of the ordinary diffeiehequationd = S(#). The algorithm is
therefore a perturbation of this discretization with thesederme. The proof then proceeds by showing
that the noise term is not too large.

Precise sufficient conditions that ensure almost sure cgermee to an asymptotically stable point
of § = S(0) are given in Younes [1989, 2000], Yuille [2004]. One necessandition requires the
learning rate to decrease with time, so thaf°, oz = oo and> ;2 a7 < oco. This condition can,
for example. be satisfied simply by setting = 1/(to + t). Other conditions ensure that the speed of
convergence of the Markov chain, governed by the transajmeratorTy, does not decrease too fast as
f tends to infinity, and that the noise teenin the update of Eq. 5.9 is bounded. Typically, in practice,
the sequenc®!| is bounded, and the Markov chain, governed by the transkésnel Ty, is ergodic.
Together with the condition on the learning rate, this eeswamost sure convergence of SAP to an
asymptotically stable point @f = S(6).

The intuition behind why this procedure works is the follogi As the learning rate becomes
sufficiently small compared with the mixing rate of the Markihain, this “persistent” chain will always
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stay very close to the stationary distribution, even if ibidy run for a few MCMC steps per parameter
update. Samples from the persistent chain will be highlyatated for successive parameter updates.
However, if the learning rate is sufficiently small, the ehaill mix before the parameters have changed
enough to significantly alter the value of the estimatorsTchnique for learning Boltzmann machines
was used by Neal [1992]. When applied to learning RBM's, &iighn [2008] further shows that this
stochastic approximation algorithm, also termed Persis€€entrastive Divergence, performs quite well
compared to Contrastive Divergence learning.

5.2.2 A Variational Approach to Estimating the Data-Depenent Expectations

In variational learning (Hinton and Zemel [1994], Neal anohtidn [1998], Jordan et al. [1999]), the
true posterior distribution over latent variabl&gh|v; 6) for each training vectow, is replaced by
an approximate posteri@p (h|v; ) and the parameters are updated to maximize the variatiowat |
bound on the log-likelihood:

log P(v;0) > > Q(h|v;p)log P(v,h;0) + H(Q)
h
— log P(v;6) — KL [Q(h}v; 1) | P(]v: 0)] (5.11)

whereH(-) is the entropy functional. Variational learning has theengroperty that in addition to
trying to maximize the log-likelihood of the training datgairies to find parameters that minimize the
Kullback-Leibler divergences between the approximating &ue posteriors. Using a naive mean-
field approach, we choose a fully factorized distributiononder to approximate the true posterior:
Q(h;u) = Hle q(h;), with g(h; = 1) = p; and F' is the number of hidden units. The lower bound on
the log-probability of the data takes the following form:

1 1
log P(v;0) > 3 Z Lijvivy + 3 Z Jjmbijpom + Z Wijvip; — log Z(6)
i,k 7,m 2]
+ ) [ujlog i + (1 — pj)log (1 — )]
j

The learning proceeds by first maximizing this lower bounthwespect to the variational parameters
1 for fixed 6, which results in the mean-field fixed-point equations:

pi—g | D Wiyvi+ > Jmittm | - (5.12)
i mzj

This is followed by applying SAP to update the model paranséteWWe emphasize that variational ap-
proximations cannot be used for approximating the expecmtwvith respect to the model distribution
in the Boltzmann machine learning rule, as attempted inaBdl[1991], because the minus sign would
cause variational learning to adjust the parameters soraaxonizehe divergence between the approx-
imating and true distributions. If, however, a Markov chainsed to estimate the model’s expectations,
variational learning can be applied for estimating the -dipendent expectations.

The choice of naive mean-field was deliberate. First, the@gence is usually fast, which greatly
facilitates learning. Second, for applications such asnterpretation of images or speech, we expect
the posterior over hidden statgs/en the datao have a single mode, so simple and fast variational
approximations such as mean-field should be adequate. dndeaking the true posterior unimodal
by sacrificing some log-likelihood could be advantageousafgsystem that will use the posterior to
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Algorithm 5 Boltzmann Machine Learning Procedure.
1: Given: a training set o binary data vectorév}?_,, andM, the number of samples.

n=1"

2: Randomly initialize parameter vecté? and M samples{v®! W%}, ... {¥0M hoM},
3: for t = 0to T (number of iterationsylo

4. [/ Variational Inference:
5. for each training exampte™, n = 1 to V do

6: Randomly initialize, and run mean-field updates until convergence:
Hj—g (ZZ Wigvi + 3z ijﬂm)-
7 Setu™ = pu.
:end for

9: /I Stochastic Approximation:

10: for each samplen = 1to M do )

11: Sample(vithm hithm) given (¥5™, ht™) by running a Gibbs sampler (Egs. 5.4, 5.5).
12:  end for

13: /[ Parameter Update:

14: Wt—l—l _ Wt + oy <% 27]:[:1 vn('un)—l— - % Z%zl {,t+1,m(f1t+1,m)—|—> .

N M T T
15: Jt+1 — Jt + oy (% anl Iun(lun)T _ % Zm:1 ht+1,m(ht+1,m)T> .

N M~ -
16: Lt+1 — It + oy <% Zn:l V"(V")T _ ﬁ 1 Vt+1’m(vt+1’m)T>.
17: Decreasext.
18: end for

control its actions. Having multiple alternative represgions of the same sensory input increases the
likelihood, but makes it far more difficult to associate aprpriate action with that sensory input. The
mean-field inference helps to eliminate this problem. Dwiearning, if the posterior given a training
input vector is multimodal, the mean-field inference wiltkoonto exactly one mode, and learning
will make that mode more probable. Our learning algorithrii thierefore tend to find regions in the
parameter space in which the true posterior is unimodal.

5.3 Deep Boltzmann Machines (DBM’s)

In general, we will rarely be interested in learning a complelly connected Boltzmann machine.
Instead, we will focus on learning Deep Boltzmann Machirse (Fig. 5.2, right panel). Unlike Deep
Belief Networks, a Deep Boltzmann Machine is a Markov randi@td, where all connections between
layers are undirected.

Consider a three-hidden-layer Boltzmann machine, as siowig. 5.2, right panel, with no within-
layer connections. The energy of the stiteh®, h?, h?} is defined as:

E(v,h',h% h3:0) = —v'W'h! — h!TW?h? —h?"W3h3, (5.13)

whered = {W1! W?2 W3} are the model parameters, representing visible-to-hiddaehhidden-to-
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Deep Belief Network Deep Boltzmann Machine

Figure 5.2:Left: Deep Belief Network, with the top two layers forming an uedied graph and the remaining
layers form a belief net with directed, top-down connediBight: Deep Boltzmann machine, with both visible-
to-hidden and hidden-to-hidden connections but with ndiwitayer connections.

hidden symmetric interaction terms. The probability timat tnodel assigns to a visible vectois:

1
P(vi0) = —— Y exp(—E(v,h',h%1%0)). (5.14)
2(0) h! h2 h3

The conditional distributions over the visible and the ¢heets of hidden units are given by logistic
functions:

p(h; = 1|v,h?) = g <Z Who; + wamha) : (5.15)
plhy, = 1h' 0% = g | S W2 hi+ > Wi |, (5.16)
J l
p(hi =1n?%) = g (Z W&h%) : (5.17)
m
ploi=1h") = g [ > Win; |. (5.18)
J

For approximate maximum likelihood learning, we could stiply the learning procedure for general
Boltzmann machines described above, but it would be ralber, particularly when the hidden units
form layers that become increasingly remote from the \@silohits. There is, however, a fast way to
initialize the model parameters to good values, which werilgs in the next section.

5.3.1 Greedy Layerwise Pretraining of DBM’s

In chapter 2 we reviewed a greedy, layer-by-layer unsupedviearning algorithm that consists of learn-
ing a stack of RBM’s one layer at a time. After greedy learnitigg whole stack can be viewed as a
single probabilistic model called a Deep Belief Network.r@isingly, this composite model 3ot a
Deep Boltzmann Machine. The top two layers form a Restri@etizmann Machine, but the lower
layers form adirectedsigmoid belief network (see Fig. 5.2, left panel).
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Pretraining

Deep Boltzmann Machine

RBM

Figure 5.3: Pretraining a DBM with three hidden layers consists of lesgra stack of RBM'’s that are then
composed to create a Deep Boltzmann Machine. The first ah@®REdgl’s in the stack need to be modified by
copying the visible or hidden units.

After learning the first RBM in the stack, the generative maada be written as:
P(vi6) = Y _ PL;WhHP(vh;wh, (5.19)

where P(ht; W) = Y P(h',v; W) is an implicit prior overh!. The second RBM in the stack
attempts to learn a better model ©8¢th'; 1W2) by maximizing the variational lower bound (see Eq. 2.17)
with respect td¥2. If initialized correctly, the2™ layer RBM P(h'; W?) will become a better model
of the aggregated posterior oudet, which is simply the mixture of factorial posteriors for ik training
casess >, P(hllv,; W) (see section 2.2). Since the&! layer RBM replaces>(h'; W) by a better
model, inferringP(h'; W, W?2) would be possible by taking a geometric average of the twoeisod
of h!, which could be approximated by usin@WW! bottom-up and/2W? top-down. But usingV'!
bottom-up and¥? top-down would effectively double the total input into thielden unitsh!, which
may cause saturation.

To initialize model parameters of a DBM, we propose greeyel-by-layer pretraining heuristic by
learning a stack of RBM’s, but with a small change that isadtrced to eliminate the doubling effect.
For the lower-level RBM, to compensate for the lack of topvddnput intoh!, we double the input
and tie the visible-to-hidden weights, as shown in Fig. E8,panel. In this modified RBM with tied
parameters, the conditional distributions over the hidaiesh visible states are defined as:

p(h;=1lv) = g <2ZWZ§w> , (5.20)
plv;=1ht) = ¢ (Z Wéh}) . (5.21)
J
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Algorithm 6 Greedy Pretraining Algorithm for a Deep Boltzmann Machin#hw.-layers.

1: Make two copies of the visible vector and tie the visibleatdeden weightsiv!. Fit W' of the
15t layer RBM to data.

2: FreezdV'! that defines the** layer of features, and use samplésrom P(h'|v,2W1) (Eq. 5.20)
as the data for training the next layer RBM with weight ve&r2.

3: FreezelW? that defines the"! layer of features and use the samptésfrom P(h?|h!,21W2) as
the data for training thg"® layer RBM with weight vecto1V/3.

4. Proceed recursively for the next laydrs- 1.

5. When learning the top-level RBM, double the number of hiddeits and tie the visible-to-hidden
weightsiV -,

6: Use the weight§ V!, W2, ..., W’} to compose a Deep Boltzmann Machine.

Contrastive Divergence learning works well and the modiR&M is good at reconstructing its training
data. Conversely, for the top-level RBM, to compensate fierlack of bottom-up input inth?, we
double the number of hidden units. The conditional distidms for this model take the form:

p(h2, = 1|0®) = ¢ <Z W3+ W,iﬂ?‘“) (5.22)
l l
p(hi =1h?) =g (Z W&hﬁ) : (5.23)
For the intermediate RBM we simply double the weights. Thaeddttonal distributions take the form:
p(h} =1/h?) = ¢ (2 > W]?mh;> (5.24)
p(h}, =1h") = g [ 2> W7 ki | . (5.25)
J

When these three modules are composed to form a single sytertotal input coming into the
first and second hidden layers is halved, which leads to th@img conditional distribution oveh'!
andh?:

p(h; =1lv,h%) = g (Z Wikvi +> mehfn> , (5.26)
7 m

p(h2, =1h! h%) = ¢ (Z W2, h +nglh?) . (5.27)
j l

J

The conditional distributions ovar andh?® remain the same as defined by Egs. 5.21, 5.23.

Observe that the conditional distributions defined by theposed model are exactly the same con-
ditional distributions defined by the DBM (Egs. 5.15, 5.18,% 5.18). Therefore greedily pretraining
the stack of modified RBM's leads to an undirected model wythrmetric weights — a Deep Boltzmann
Machine. We note that the modification only needs to be usethéfirst and the last RBM’s in the
stack. For all the intermediate RBM's we simply halve the@ights in both directions when composing
them to form a Deep Boltzmann Machine.
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Greedily pretraining the weights of a DBM in this way servee purposes. First, it initializes the
weights to reasonable values. Second, it ensures that itharéast way of performing approximate
inference by a single upward pass through the stack of mddRi&M’s. Given an input vector, each
layer of hidden units can be activated in a single determigni®ttom-up pass by doubling the bottom-
up input to compensate for the lack of top-down feedbackeeixior the very top layer, which does not
have a top-down input. This fast approximate inference éslus initialize the mean-field, which then
converges much faster than the mean-field with random liaéigon.

5.3.2 Evaluating DBM'’s

In chapter 4 we showed that a Monte Carlo based method, Aeshémiportance Sampling (AIS), can
be used to efficiently estimate the partition function of @M In this section we show how AIS can
be used to estimate the partition functions of Deep Boltzmigiachines. Together with variational
inference this will allow us obtain good estimates of thedolwound on the log-probability of the train
and test data.

Using the special layer-by-layer structure of DBM's, we aierive an efficient AIS scheme for
estimating the model’s partition function. Let us considéhree-hidden-layer Boltzmann machine (see
Fig. 5.3, right panel) whose energy is defined as:

E(v,h',h? b 0) = —v ' Wih! —h!"Ww2n? — k2" w3n3. (5.28)

By explicitly summing out thelst and the3™ layer hidden units{h', h3}, we can easily evaluate
an unnormalized probability’* (v, h?;#). We can therefore run AIS on a much smaller state space
x = {v,h?} with h! andh? analytically summed out. The sequence of intermediateilnligions,
parameterized by, is defined as follows:

Pi(v,h%6) = ) P(v,h',h*h%0)
hl h3

_ zi (14 S 2 D) TT (14 A H00))
k ;
§ l

We gradually changgy, (the inverse temperature) from 0 to 1, annealing from a srfyohiform” model
to the final complex model. Using Egs. 5.15, 5.16, 5.17, 511i8, straightforward to derive a Gibbs
transition operator that leavé, (v, h?; §) invariant:

p(hj =1v,h?) = g (ﬁk (Z v +Zmehfn>) : (5.29)

p(hy, =1h"h%) = g [ B wamh; +> wEh |, (5.30)
l

p(hi = 1|h?) = (ﬁkZ lh%>, (5.31)
p(vi=1h") =g ﬁk’ZWéh; - (5.32)

Once we obtain an estimate of the global partition functignwe can estimate, for a given test case



CHAPTERS5. DEEPBOLTZMANN MACHINES 60

Mean-Field Updates

h2

W2
hl

Wl

v Fine-tune

Figure 5.4:Left: A two-hidden-layer Boltzmann machin®ight: After learning, DBM is used to initialize a
multilayer neural network. The marginals of approximatetpdorg(h? = 1|v) are used as additional inputs.
The network is fine-tuned by backpropagation.

v*, the variational lower bound of Eq. 5.11:

log P(v*;0) > = Q(h; p) E(v*, h; 0) + H(Q) — log Z(0)
h

%

h

where we definech = {h!,h? h®}. For each test vector under consideration, this lower basnd
maximized with respect to the variational paramejetsing the mean-field update equations.

Furthermore, by explicitly summing out the states of thedbid units{h? h3}, we can obtain a
tighter variational lower bound on the log-probability diettest data. Of course, we can also adopt
AIS to estimateP”(v) = > 1 p2 ps P*(v,h',h? h?), and together with an estimate of the global
partition function we can actually estimate the true loghability of the test data. This however, would
be computationally very expensive, since we would need tftopa a separate AIS run for each test
case. As an alternative, we could adopt a variation of th&-Gtyile estimator, proposed by Murray and
Salakhutdinov [2009]. In the case of Deep Boltzmann Mad)iméhere the posterior over the hidden
units tends to be unimodal, their proposed Chib-style egtincan provide good estimateslof P*(v)
in a reasonable amount of computer time.

When learning a Deep Boltzmann Machine with more than twddridayers, and no within-layer
connections, we can explicitly sum out either odd or everrayThis will result in a better estimate of
the model’s partition function and tighter lower bounds lea fibg-probability of the test data.

5.3.3 Discriminative Fine-tuning of DBM’s

After learning, the stochastic activities of the binarytfgas in each layer can be replaced by determin-
istic, real-valued probabilities, and a Deep Boltzmann Miae can be used to initialize a multilayer
neural network in the following way. For each input vectorthe mean-field inference is used to ob-
tain an approximate posterior distributiégd(h*|v). The marginals;(h; = 1|v) of this approximate
posterior, together with the data, are used to create amtfanged” input for this deep multilayer neu-
ral network as shown in Fig. 5.4. Standard backpropagatfogrror derivatives can then be used to
discriminatively fine-tune the model.

The unusual representation of the input is a by-product af'eding a DBM into a deterministic
neural network. In general, the gradient-based fine-tuniiag choose to ignoré&)(h?|v), i.e. drive
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the 1%t layer connectiond?? to zero, which will result in a standard neural network. Gansely, the
network may choose to ignore the input by driving tti€ layer weightsiW! to zero, and make its
predictions based on only the approximate posterior. Hewelie network typically makes use of the
entire augmented input for making predictions.

5.4 Experimental Results

In our experiments we used the MNIST and NORB datasets. Tedspp learning, we subdivided
datasets into mini-batches, each containing 100 caseyj@dated the weights after each mini-batch.
The number of sample particles, used for approximating thdeat’s expected sufficient statistics, was
also set to 100. For the stochastic approximation algotitiva always used 5 Gibbs updates. Each
model was trained using 300,000 weight updates. The ind&hing rate was set 0.005 and was de-
creased as 10/(2000+t). For discriminative fine-tuning 8MX»s we used the method of conjugate
gradients. Details of pretraining and fine-tuning, alonghvdetails of Matlab code that we used for
learning and fine-tuning Deep Boltzmann Machines, can beddan Appendix A.

MNIST

The MNIST digit dataset contains 60,000 training and 10,642 images of ten handwritten digits
(0 to 9), with 28«28 pixels. In our first experiment we trained a fully conndctélat” BM on the
MNIST dataset. The model had 500 hidden units and 784 visitiks. To estimate the model’s partition
function we used 20,000, spaced uniformly from O to 1. Results are shown in table 5ie [bwer
bound on the average test log-probability wast.67 per test case, which is slightly better compared to
the lower bound of-85.97, achieved by a carefully trained two-hidden-layer DeepdB®etwork (see
section 4.4).

In our second experiment, we trained two Deep Boltzmann lihash one with two hidden layers
(500 and 1000 hidden units), and the other with three hiddgarts (500,500, and 1000 hidden units),
as shown in Fig. 5.6. To estimate the model's partition fiom;twe also used 20,000 intermediate
distributions spaced uniformly from 0 to 1. Table 5.1 shohet the estimates of the lower bound on
the average test log-probability weres4.62 and —85.18 for the 2- and 3-layer Boltzmann machines
respectively.

Observe that the two DBM's that contain over 0.9 and 1.15omlparameters do not appear to suf-
fer much from overfitting. The difference between the estasaf the training and test log-probabilities
was about 1 nat. Figure 5.5 further shows samples generatadfl three models by randomly initializ-
ing all binary states and running the Gibbs sampler for 1lgeps. Certainly, all samples look like the
real handwritten digits. We also emphasize that withouedyepretraining, we could not successfully
learn good DBM models of MNIST digits.

To estimate how loose the variational bound is, we randomiyed 100 test cases, 10 of each
class, and ran AlS to estimate the true test log-probabifity the 2-layer Boltzmann machine. The
estimate of the variational bound was -83.35 per test cabereas the estimate of the true test log-
probability was -82.86. The difference of about 0.5 natsxghthat the bound is rather tight.

Finally, after discriminative fine-tuning, the two-hiddé&yer BM achieves an error rate of 0.95% on
the full MNIST test set. This is, to our knowledge, the bediligined result on the permutation-invariant
version of the MNIST task. The 3-layer BM gives a slightly wererror rate of 1.01%. The flat BM,
on the other hand, gives considerably worse error rate GR4.2This is compared to 1.4% achieved
by SVM’s (Decoste and Scholkopf [2002]), 1.6% achieved agdomly initialized backprop, 1.2%

2Note that computationally, this is equivalent to estimgtl®0 partition functions.
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Training samples 3-layer BM

758484494 7270208507049 .r-rs”; | 7 0

Figure 5.5:Random samples from the training set, and samples gendrataedhree Boltzmann machines by
running the Gibbs sampler for 100,000 steps. The imagesrshosvtheprobabilitiesof the binary visible units
given the binary states of the hidden units
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5

Figure 5.6:Left: The architectures of two Deep Boltzmann Machines used in®MNdxperimentsRight: The
architecture of Deep Boltzmann Machine used in NORB expemis

achieved by the Deep Belief Network, described in (Hintomale{2006], Hinton and Salakhutdinov
[2006]), and 0.97% obtained by using a combination of disitrative and generative fine-tuning on the
same DBN (Hinton [2007]).

To test discriminative performance of DBM’'s when the numbklabeled examples is small, we
randomly sampled 1%, 5%, and 10% of the handwritten digitsach class and treated them as labeled
data. Table 5.2 shows that after discriminative fine-tuningvo-hidden-layer BM achieves error rates of
4.82%, 2.72%, and 2.46%. Deep Boltzmann Machines cleatlyesiorm regularized nonlinear NCA,
discussed in section 3.4, as well as linear NCA, an autoancadd K-nearest neighbours, particularly
when the number of labeled examples is only 600.

NORB

Results on MNIST show that Deep Boltzmann Machines canfsignily outperform many other mod-
els on the well-studied but relatively simple task of harittem digit recognition. In this section we
present results on NORB, which is considerably more diffidaltaset than MNIST. NORB (LeCun
et al. [2004]) contains images of 50 different 3D toy objewtth 10 objects in each of five generic
classes: cars, trucks, planes, animals, and humans. Egatt mbcaptured from different viewpoints



CHAPTERS5. DEEPBOLTZMANN MACHINES 63

Table 5.1:Results of estimating partition functions of BM models,rajavith the estimates of lower bound on
the average training and test log-probabilities. For all’'8Me used 20,000 intermediate distributions. Results
were averaged over 100 AIS runs.

Estimates Avg. log-prob.
logZ  log(Z+6) Test Train

Flat BM 198.29 198.17,198.40 —84.67 —84.35
2-layer BM  356.18 356.06,356.29 —84.62 —83.61
3-layer BM  456.57 456.34,456.75 —85.10 —84.49

Table 5.2:Classification error rates on MNIST test set when only a sfradtion of labeled data is available.

Two-Layer Regularized Linear Autoencoder KNN
DBM Nonlinear NCA  NCA
1% (600) 4.82% 8.81% 19.37% 9.62% 13.74%
5% (3000) 2.72% 3.24% 7.23% 5.18% 7.19%
10% (6000) 2.46% 2.58% 4.89% 4.46% 5.87%
100% (60000) 0.95% 1.00% 2.45% 2.41% 3.09%

and under various lighting conditions. The training settams 24,300 stereo image pairs of 25 objects,
5 per class, while the test set contains 24,300 stereo plaing semaining, different 25 objects. The
goal is to classify each previously unseen object into itsege class. From the training data, 4,300
were set aside for validation.

Each image has 96 pixels with integer greyscale values in the range [0,258) speed-up
experiments, we reduced the dimensionality by using a faegaesentation of each image in a stereo
pair. The central 6464 portion of an image is kept at its original resolution. Tamaining 16 pixel-
wide ring around it is compressed by replacing non-oveifappquare blocks of pixels in the ring with
a single scalar given by the average pixel-value of a blocle sylit the ring into four smaller ones:
the outermost ring consists ok® blocks, followed by a ring of 44 blocks, and finally two innermost
rings of 2x2 blocks. The resulting dimensionality of each trainingteecrepresenting a stereo pair,
was2 x 4488 = 8976. A random sample from the training data used in our experisnisnshown in
Fig. 5.7, left panél.

To model raw pixel data, we use an RBM with Gaussian visiblk lzinary hidden units. Gaussian
RBM’s have been previously successfully applied for modgljreyscale images, such as images of
faces (see subsection 3.2.1). However, learning an RBM @dthssian units can be slow, particularly
when the input dimensionality is quite large. Here we folttv approach of Nair and Hinton [2009] by
first learning a Gaussian RBM and then treating the the &etvof its hidden layer as “preprocessed”
data. Effectively, the learned low-level RBM acts as a pvepssor that converts greyscale pixels into a
binary representation, which we then use for learning a Bm#zmann Machine.

The number of hidden units for the preprocessing RBM wasos¢000 and the model was trained
using Contrastive Divergence learning for 500 epochs. Wa thained a two-hidden-layer DBM with
each layer containing 4000 hidden units, as shown in Fig.right panel. Note that the entire model
was trained in a completely unsupervised way. After the eglsnt discriminative fine-tuning, the
“unrolled” DBM achieves a misclassification error rate of8% on the full test set. This is compared

3We thank Vinod Nair for sharing his code for blurring and stating NORB images.
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Figure 5.7: Random samples from the training set, and samples gendratada three-hidden-layer Deep
Boltzmann Machine by running the Gibbs sampler for 10,080st

to 11.6% achieved by SVM'’s (Bengio and LeCun [2007]), 22.5%ieved by logistic regression, and
18.4% achieved by the K-nearest neighbours (LeCun et 80420

To show that DBM's can benefit from additionahlabeledtraining data, we augmented the training
data with additional unlabeled data by applying simple Ipisanslations, creating a total of 1,166,400
training instances. After learning a good generative mattiel discriminative fine-tuning (using only
the 24,300 labeled training examples without any trarsitieduces the misclassification error down
to 7.2%. Figure 5.7 shows samples generated from the modeirtoyng prolonged Gibbs sampling.
Note that the model was able to capture a lot of regularitiehis high-dimensional, richly structured
data, including different object classes, various viewfand lighting conditions.

Surprisingly, even though the Deep Boltzmann Machine dgostabout 68 million parameters, it
significantly outperforms many of the competing models.a@ie unsupervised learning helps general-
ization because it ensures that most of the information émtlodel parameters comes from modeling
the input data. The very limited information in the labelsiged only to slightly adjust the layers of
features already discovered by the Deep Boltzmann Machine.

5.5 Discussion

We have presented a new learning algorithm for training Befzmann Machines that combines vari-
ational learning and MCMC and showed that it can be used wesgtully learn good generative models
of MNIST digits and NORB 3D objects. The new algorithm regdiktends to learning Boltzmann ma-
chines with real-valued, count, or tabular data. We furthe#oduced a greedy layer-by-layer learning
algorithm that can be used to quickly initialize the pararebf DBM’s to sensible values. This greedy
initialization strategy allowed us to successfully leargaad generative model of NORB 3D objects,
even though the model contained about 68 million parameWesalso showed how Annealed Impor-
tance Sampling, along with variational inference, can lelue estimate a variational lower bound on
the log-probability that a Boltzmann machine with multipielden layers assigns to test data. This al-
lowed us to directly assess the performance of Deep Boltarv&acthines as generative models of data.
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Finally, we showed that the discriminatively fine-tuned p&mltzmann Machines perform well on the
MNIST digit and NORB 3D object recognition tasks.



Chapter 6

Conclusions

6.1 Summary of Contributions

The aim of the thesis was to demonstrate that learning desgra/e models that contain many layers
of latent variables and millions of parameters can be choig efficiently, and that the learned high-
level feature representations can be successfully appliedwide spectrum of application domains,
including visual object recognition, information retrayclassification and regression tasks, as well as
nonlinear dimensionality reduction. Many of the ideas pnésd in this thesis are based on the following
three crucial principles behind learning deep generatigdats: First, multiple layers of representation
can be greedily learned one layer at a time. Second, thegtearhing is carried out in a completely
unsupervised way. Third, a separate fine-tuning stage casdzbto further improve either generative
or discriminative performance of the final model.

The first part of the thesis focused on analysis and appicaidf a particular family of deep gener-
ative models, called Deep Belief Networks (DBN’s), and thwiilding modules Restricted Boltzmann
Machines (RBM’s). In chapter 2 we provided a detailed ovemwof RBM’s and DBN's, along with the
greedy learning algorithms for DBN’s. In chapter 3 we disagsvarious applications of Deep Belief
Networks. In particular, we first showed that these deepalthical models can be used to learn use-
ful feature representations from large amounts of highedisional, highly-structured unlabeled input
data. The learned high-level representations capture @& kitucture in the unlabeled input, which is
useful for subsequent discrimination or regression tasksn though these tasks are unknown when
the deep model is being trained. We then demonstrated hogréweely learning of multiple layers of
representation can be used to initialize deep nonlineareagbders. This allowed deep autoencoders
to learn low-dimensional codes that work much better thamcjgral components analysis as a tool to
reduce the dimensionality of data. We further explored dea iof using the deep autoencoders to learn
“semantic” binary codes that allowed us to perform very &t accurate information retrieval. Finally,
we discussed how the unsupervised greedy learning algoGdm be used to pretrain and fine-tune a
deep encoder network in order to learn a similarity metrierdafie input space, which greatly facilitates
nearest-neighbor classification.

Chapter 4 focused on evaluating generalization performafideep Belief Networks as density
models. Indeed, assessing the generalization perfornariaBN’s plays an important role in model
selection and controlling model complexity. For many sfiedasks, such as information retrieval or
classification, performance of DBN's can be directly eviddaas we demonstrated in chapter 3. More
broadly, however, the ability of DBN’s to generalize can baleated by computing the probability of
held-out input vectors, which is independent of any specifiplication. Computing this probability
exactly is intractable, since it requires enumeration @reexponential number of terms. In chapter 4

66
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we showed how a Monte Carlo based method, Annealed Impertaampling, along with approximate
inference, can be used to estimate a lower bound on the twagpility that a DBN model with multiple
hidden layers assigns to the test data. This allowed us tsunedhe generalization performance of
Deep Belief Networks as density models and to compare theothter probabilistic models, such as
plain mixture models.

In the second part of the thesis we developed a new learngagitim for a different type of hierar-
chical probabilistic model called Deep Boltzmann MachiDB/). Like Deep Belief Networks, DBM's
contain many layers of latent variables. High-level reprnéations can be built from large amounts of
unlabeled sensory inputs and the limited labeled data eanlib used to only slightly adjust the model
parameters for a specific task at hand. Unlike existing nsodéh deep architectures, the approximate
inference procedure, in addition to a bottom-up pass, caorjiorate top-down feedback, which allows
Deep Boltzmann Machines to better propagate uncertairiytambiguous inputs.

Approximate inference in DBM's can be performed using ‘izl approaches, such as mean-
field. Learning can then be carried out by applying a stoahagiproximation procedure that uses
Markov chain Monte Carlo (MCMC) to approximate a model’'s ested sufficient statistics, which is
needed for maximum likelihood learning. This unusual coration of variational methods and MCMC
is essential for creating a fast learning algorithm for D8gttzmann Machines. The new algorithm
readily extends to learning Boltzmann machines with redlied, count, or tabular data. Finally, results
on the MNIST and NORB datasets show that Deep Boltzmann Mashtan learn good generative
models and perform well on handwritten digit and visual objecognition tasks. In fact, we found
that after discriminative fine-tuning, a two-hidden-lay@eep Boltzmann Machine produces the best
published result on the permutation-invariant versionhef MNIST task. It significantly outperforms
logistic regression and support vector machines, and igasito the best published result for Deep
Belief Networks.

6.2 Future Directions

There are several potential extensions and applicatiotisedfieas presented in this thesis, particularly
related to learning Deep Boltzmann Machines.

Better Learning Algorithms for Deep Boltzmann Machines. The success of the Boltzmann machine
learning algorithm heavily relies on the ability of the Mavkchain to explore the highly multi-
modal energy landscape. Particularly towards the end ofileg, as the learning rate becomes
small, the Markov chain used to approximate model’'s expestdficient statistics tends to mix
very poorly. Hence the need for Markov chain sampling mestibdt can better explore distribu-
tions with many isolated modes (Salakhutdinov [2010]).eled] the transition operators used in
the stochastic approximation algorithm do not necessagd to be simple Gibbs or Metropolis-
Hastings updates. Other valid MCMC operators, such as thased on tempered transitions
(Neal [1996]) or parallel tempering (Geyer [1991], Swemdaad Wang [1986], Earl and Deem
[2005]), may significantly improve model performance.

Semi-Supervised Learning with DBM’s. In many practical learning domains, there is a large supply
of high-dimensional unlabeled data and very limited latbelata. Applications such as informa-
tion retrieval and machine vision are examples where langeuats of unlabeled data is readily
available. In chapter 5, we only considered unsupervisaadhieg of Deep Boltzmann Machines,
followed by deterministic discriminative fine-tuning. Hewer, the general Boltzmann machine
framework should allow us to readily extend the proposethiag algorithm to semi-supervised
setting. Treating units with missing labels as “addition@den units”, variational inference can
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be used to effectively “fill in” the missing label informatio Learning can then proceed as if
there were no missing labels. Similar reasoning can beegbpdi learning Boltzmann machines
when parts of input vectors are missing (at random). Alttoagr initial experiments seem to

be encouraging, more theoretical analysis and empiricak weeds to be done to determine the
effectiveness of such a semi-supervised learning proeedur

Extracting Structure from Temporal Data using DBM’s. Modeling complex nonlinear dynamics of
high-dimensional time series data, such as video sequeiscas active area of research in ma-
chine learning. Many of the existing time series modelshaglinear dynamical systems (LDS),
switching LDS, hidden Markov models (HMM'’s), factorial HM#&) and product of HMM's, have
been widely used in practice. However, these models arelweited in the types of structure
they can model. We believe that multiple layers of distelolitepresentation should work better
for modeling temporal structure. One could therefore baiklack of Deep Boltzmann Machines
linked together through time. These models could potdytialt only model nonlinear dynamics,
but also make multimodal predictions and handle missingtsp

Large Scale Object Recognition and Information Retrieval. As we have stated before, both Deep
Boltzmann Machines and Deep Belief Networks have the pialetatlearn layers of feature de-
tectors that become progressively more complex, whichlie\sszl to be a promising way to solve
object recognition problems. However, at present, mosi@ekisting object recognition systems
achieve state-of-the-art results using shallow architestor deep hand coded methods like SIFT
(Lowe [1999]), and include many hand-crafted featuresctviequires considerable human input
and parameter tweaking. It is therefore necessary to applyesaluate predictive performance
of DBM'’s and DBN’s on large scale object recognition tasks]uding, for example, benchmark
datasets such as the PASCAL dataset. Similarly, given tentesuccess of Deep Belief Networks
on image and text retrieval tasks (Torralba et al. [2008]al8auitdinov and Hinton [2007a]), it
will be beneficial to also evaluate the retrieval accuracpeép Boltzmann Machines.

We have outlined several potential research directionsveder, research on deep learning is very
new and there are many broad open questions to consider. rile adew: Can we develop better
optimization or approximation techniques that would allogvto learn deep models more efficiently
without significant human intervention? Can we develop ast@psystems that are more adaptive, and
capable of extracting distributed representations thabedter generalize to unknown future tasks. How
can we make deep models be more robust to dealing with highbicaious or missing sensory inputs?
We believe that answering many of those questions will allevto build more intelligent machines.
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Appendix

A.1 Detalls of the Datasets

Synthetic Curves Dataset The synthetic curves dataset contains<28 images of “curves” that are
generated from three randomly chosen 2-dimensional p@etsFig. A.1, left panel). For this dataset,
the true intrinsic dimensionality is known, and the relatibip between the pixel intensities and the
six numbers used to generate them is highly non-linear. firing and test data contained 20,000
and 10,000 images respectively. To generate the synthaties we constrained the coordinate of
each point to be at leag8tgreater than the coordinate of the previous point. We also constrained all
coordinates to lie in the rand®, 26]. The three points define a cubic spline which is “inked” todurce

the 28<28 pixel images. The details of the inking procedure areritgst in Hinton and Nair [2006]
and the Matlab code for generating synthetic curves isaiailat http://www.cs.toronto.eduhinton.

MNIST Dataset The MNIST digit data set contains 60,000 training and 10,830 28<28 images
of ten handwritten digits (0 to 9). Out of 60,000 training oea, 10,000 were used for validation. The
original pixel intensities were normalized to lie in theental [0, 1]. The normalized pixel intensities
tend to take on extreme values, and were therefore modeleti imetter by a standard binary RBM.
Random samples from the training set are shown in Fig. Aghtpanel. The dataset is available at
http:/lyann.lecun.com/exdb/mnist/index.html.

Olivetti Face Dataset The Olivetti face dataset (Samaria and Fallside [1993hfrehich we obtained
the face patches contains ten@¥ images of each of forty different people, shown in Fig..A@r the
experiments used in section 3.1, we constructed a datad&,@d0 2525 images by rotating—{90°

to +90°), cropping, and subsampling the original 400 images. Thasea was then subdivided into
12,000 training images, which contained the first 30 peapid, 1,000 test images, which contained the
remaining 10 people. For the experiments used in sectignv& Zonstructed a much larger dataset of
165,600 2525 images by rotating{90° to +90°), cropping, and subsampling as well as scaling (1.4
to 1.8) the original 400 images. The dataset was then swativinto 124,200 training images, which
contained the first 30 people, and 41,400 test images, wioictaimed the remaining 10 people. In all
of our experiments, the intensities in the cropped images wsieifted so that every pixel had zero mean
and the entire dataset was then scaled by a single numberk®timaaverage pixel variance beThe
Olivetti face dataset is available at http://www.cs.tdoedu/ roweis/data.html.

20-Newsgroups Dataset The 20-newsgroups corpus contains 18,845 postings ta@emtfre Usenet
newsgroup collection. The corpus is partitioned fairlyrdyento 20 different newsgroups, each corre-
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Synthetic Curves MNIST Digits

Figure A.1l:Left: Random training samples from the synthetic curves datRéght: Random training samples
from the MNIST dataset.

Olivetti Face Dataset

Figure A.2:The Olivetti face dataset showing a random sample of eacbrtyf dlifferent people.

sponding to a separate topic. The data was split by date in814 training and 7,531 test articles, so the
training and test sets were separated in time. The trairityas further randomly split into 8,314 train-
ing and 3,000 validation documents. Newsgroups such ase$igmn.christian and talk.religion.misc
are very closely related to each other, while newsgroupk asacomp.graphics and rec.sport.hockey
are very different. We further preprocessed the data by vergacommon stopwords, stemming, and
then only considering the 2000 most frequently used wordbértraining dataset. As a result, each
posting was represented as a vector containing 2000 wonatsoo other preprocessing was done.
The dataset is available at http:/people.csail.mitjesluiie/20Newsgroups (20news-bydate.tar.gz). It
has already been organized by date.

Reuters Corpus Volume | (RCV1-v2) Reuters Corpus Volume | (RCV1-v2) (Lewis et al. [2004]) is
an archive of 804,414 newswire stories that have been migruaéégorized into 103 topics. The corpus
covers four major groups: corporate/industrial, econgmigovernment/social, and markets. Sample
topics include Energy Markets, Accounts/Earnings, Gavemmt Borrowings, Disasters and Accidents,
Interbank Markets, Legal/Judicial, Production/Servjcets. The topic classes form a tree which is
typically of depth 3. For this dataset, we define the relegamicone document to another to be the
fraction of the topic labels that agree on the two paths fioeroot to the two documents. The data was
randomly split into 402,207 training and 402,207 test btic The training set was further randomly
split into 302,207 training and 100,000 validation docutseriThe available data was already in the
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NORB Dataset
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Figure A.3:Top: Random training samples from each of five generic objectosies.Bottom: 25 training vs.
25 testing objects. Note that the training objects are glifferent from the testing objects.

preprocessed format, where common stopwords were remankdlladocuments were stemmed. We
again only consider the 2000 most frequently used wordsatrdining dataset. The dataset is available
at http://www.ai.mit.edu/projects/jmir/papers/volupewis04a/lyrl2004rcviv2 README.htm.

NORB Dataset NORB (LeCun et al. [2004]) contains images of 50 differentt8i objects with 10
objects in each of five generic classes: cars, trucks, plamésals, and humans, shown in Fig. A.3,
top panel. Each object is captured from 162 viewpoints (Satiens, 18 azimuth) and under 6 lighting
conditions. The training set contains 24,300 stereo imags pf 25 objects, 5 per class, while the test
set contains 24,300 stereo pairs of the remaining, diffe2Brobjects. Figure A.3, bottom panel, shows
25 training and 25 test objects. The goal is to classify eaekigusly unseen object into its generic
class. From the training data, 4,300 were set aside foratédid. The dataset is available at
http://www.cs.nyu.eduéylclab/data/norb-v1.0/
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A.2 Details of Training

Details of the pretraining: To speed up the pretraining of each RBM, we subdivided akskis
into mini-batches, each containing 100 data vectors andteddhe weights after each mini-batch. For
datasets that are not divisible by the size of a minibatah rémaining data vectors were included in
the last minibatch. For all datasets, each hidden layer wetsgmned for 50 passes (epochs) through
the entire training set. The weights were updated usingraitgarate of 0.1, momentum of 0.9, and a
weight decay 0f).0002 xweightxlearning rate. The weights were initialized with small ranmdvalues
sampled from a zero-mean normal distribution with standfedation 0.01. When modeling real-
valued Gaussian visible units, e.g. in the case of modelilingtD face patches, pretraining the first
layer of features typically requires a much smaller leagnmaie to avoid oscillations. The learning rate
was set to 0.001 and pretraining proceeded for 200 epochs.

During the pretraining stage, the visible units of standaircary RBM had real-valued activities,
which were in the rangé€0, 1]. When training higher-level RBM's, the visible units weret $o the
activationprobabilities of the hidden units in the lower-level RBM, but the hiddentsimf every RBM
had stochastic binary values.

Details of the fine-tuning: For the fine-tuning, we used the method of conjugate grasli@miarger
minibatches containing 1000 data vectors. We used Carl Resan’s “minimize” code, available at
http://lwww.kyb.tuebingen.mpg.de/bs/people/carl/¢odeimize. Three line searches were performed
for each mini-batch in each epoch. To determine an adequatder of epochs and to check for
overfitting, we fine-tuned each model on a fraction of thentrey data and tested its performance on the
remaining validation set. We then repeated the fine-tunmthe entire training set.

For many of the experiments presented in this thesis, we t#agious values of the learning rate,
momentum, and weight-decay parameters and we also trimihtgeche RBM'’s for more epochs. We
did not observe any significant differences in the final nssafter the fine-tuning. This suggests that
the precise weights found by the greedy pretraining do ndtamas long as it finds a good region from
which to start the fine-tuning.

A.3 Details of Matlab code

Deep Autoencoders.The Matlab code for pretraining a stack of RBM’s using Costité Divergence
(CD1) and fine-tuning deep autoencoders is available at
http://www.cs.toronto.edu/rsalakhu/software/.

Estimating Partition Functions of RBM’s. The Matlab code for estimating partition functions of RBM’s
using Annealed Importance Sampling is available at
http://www.cs.toronto.edu/rsalakhu/software/.

Pretraining and Learning Deep Boltzmann Machines. The Matlab code includes: pretraining a mod-
ified stack of RBM's, the new learning algorithm that comlsimeean-field inference along with
stochastic approximation algorithm, and discriminatimeftuning of Deep Boltzmann Machines.
The code is available at: http://www.cs.toronto.edwalakhu/software/.



