STA 4273H: Statistical Machine Learning

Russ Salakhutdinov

Department of Computer Science
Department of Statistical Sciences
rsalakhu@cs.toronto.edu
http://www.cs.utoronto.ca/~rsalakhu/

Lecture 8

Project Reminder

- Brief 5-minute presentations of projects will take place on Monday, March 23. You need to send me 6-7 slides in pdf formtat describing your project.
- Deadline: Sunday March 22, 2015. Submit your slides by e-mail: rsalakhu@cs.toronto.edu
- You should have your name, and project title on the first slide.
- You will have 5-7 mins to briefly describe your project and what you would want to accomplish in this project.
- Brief presentations will be done in an alphabetical order.

Continuous Latent Variable Models

- Often there are some unknown underlying causes of the data.
- So far we have looked at models with discrete latent variables, such as mixture of Gaussians.
- Sometimes, it is more appropriate to think in terms of continuous factors which control the data we observe.
- Motivation: for many datasets, data points lie close to a manifold of much lower dimensionality compared to that of the original data space.
- Training continuous latent variable models often called dimensionality reduction, since there are typically many fewer latent dimensions.
- Examples: Principal Components Analysis, Factor Analysis, Independent Components Analysis

Intrinsic Latent Dimensions

-What are the intrinsic latent dimensions in these two datasets?

- How can we find these latent dimensions from this high-dimensional data.

Intrinsic Latent Dimensions

- In this dataset, there is only 3 degrees of freedom of variability, corresponding to the vertical and horizontal translations, and rotations.

- Each image undergoes a random displacement and rotation within some larger image field.
- The resulting images have $100 \times 100=10,000$ pixels.

Generative View

- Each data example generated by first selecting a point from a distribution in the latent space, then generating a point from the conditional distribution in the input space
- Simplest latent variable models: Assume Gaussian distribution for both latent and observed variables.
- This leads to probabilistic formulation of the Principal Component Analysis and Factor Analysis.

- We will first look at standard PCA, and then consider its probabilistic formation.
- Advantages of probabilistic formulation: use of EM for parameter estimation, mixture of PCAs, Bayesian PCA.

Principal Component Analysis

- Used for data compression, visualization, feature extraction, dimensionality reduction.
- The goal is find M principal components underlying D-dimensional data
- select the top M eigenvectors of \mathbf{S} (data covariance matrix): $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{M}\right\}$.
- project each input vector \mathbf{x} into this subspace, e.g. $z_{n 1}=\mathbf{x}_{n}^{T} \mathbf{u}_{1}$.

- Full projection into M dimensions takes form:

$$
\left[\begin{array}{c}
\mathbf{u}_{1}^{\top} \\
\cdots \\
\mathbf{u}_{M}^{\top}
\end{array}\right]\left[\mathbf{x}_{1} \cdots \mathbf{x}_{N}\right]=\left[\mathbf{z}_{1} \cdots \mathbf{z}_{N}\right]
$$

- Two views/derivations:
- Maximize variance (scatter of green points).
- Minimize error (red-green distance per data point).

Maximum Variance Formulation

- Consider a dataset $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right\}, \mathrm{x}_{\mathrm{n}} \in \mathrm{R}^{\mathrm{D}}$. Our goal is to project data onto a space having dimensionality $\mathrm{M}<\mathrm{D}$.
- Consider the projection into $\mathrm{M}=1$ dimensional space.
- Define the direction of this space using a

D-dimensional unit vector \mathbf{u}_{1}, so that $\mathbf{u}_{1}^{T} \mathbf{u}_{1}=1$.

- Objective: maximize the variance of the projected data with respect to u_{1}.

$$
\frac{1}{N} \sum_{n=1}^{N}\left\{\mathbf{u}_{1}^{T} \mathbf{x}_{n}-\mathbf{u}_{1}^{T} \overline{\mathbf{x}}\right\}^{2}=\mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}
$$

where sample mean and data covariance is given by:

$$
\begin{aligned}
\overline{\mathbf{x}} & =\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \\
\mathbf{S} & =\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{T}
\end{aligned}
$$

Maximum Variance Formulation

- Maximize the variance of the projected data:

$$
\frac{1}{N} \sum_{n=1}^{N}\left\{\mathbf{u}_{1}^{T} \mathbf{x}_{n}-\mathbf{u}_{1}^{T} \overline{\mathbf{x}}\right\}^{2}=\mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}
$$

- Must constrain $\left\|u_{1}\right\|=1$. Using Langrage multiplier, maximize:

$$
\mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}+\lambda\left(1-\mathbf{u}_{1}^{T} \mathbf{u}_{1}\right)
$$

- Setting the derivative with respect to \mathbf{u}_{1} to zero:

$$
\mathbf{S} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}
$$

- Hence \mathbf{u}_{1} must be an eigenvector of \mathbf{S}.
- The maximum variance of the projected data is given by:

$$
\mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}=\lambda_{1}
$$

- Optimal \mathbf{u}_{1} is principal component (eigenvector with maximal eigenvalue).

Minimum Error Formulation

- Introduce a complete orthonormal set of D-dimensional basis vectors: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{D}\right\}:$

$$
\mathbf{u}_{i}^{T} \mathbf{u}_{j}=\delta_{i j}
$$

- Without loss of generality, we can write:

$$
\mathbf{x}_{n}=\sum_{i=1}^{D} \alpha_{n i} \mathbf{u}_{i}, \quad \alpha_{n i}=\mathbf{x}_{n}^{T} \mathbf{u}_{i}
$$

- Our goal is to represent data points by the projection into M-dimensional subspace (plus some distortion):
- Represent M-dim linear subspace by the first M of the basis vectors:

$$
\tilde{\mathbf{x}}_{n}=\sum_{i=1}^{M} z_{n i} \mathbf{u}_{i}+\sum_{i=M+1}^{D} b_{i} \mathbf{u}_{i}
$$

Minimum Error Formulation

- Represent M -dim linear subspace by the first M of the basis vectors:

$$
\tilde{\mathbf{x}}_{n}=\sum_{i=1}^{M} z_{n i} \mathbf{u}_{i}+\sum_{i=M+1}^{D} b_{i} \mathbf{u}_{i}
$$

where $z_{n i}$ depend on the particular data point and b_{i} are constants.

- Objective: minimize distortion with respect to $\mathrm{u}_{\mathrm{i}}, \mathrm{z}_{\mathrm{n}}$, and b_{i}.

$$
J=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\tilde{\mathbf{x}}_{n}\right\|^{2}
$$

- Minimizing with respect to $\mathrm{z}_{\mathrm{nj}}, \mathrm{b}_{\mathrm{j}}$:

$$
\begin{aligned}
z_{n j} & =\mathbf{x}_{n}^{T} \mathbf{u}_{j} \\
b_{j} & =\overline{\mathbf{x}}^{T} \mathbf{u}_{j}
\end{aligned}
$$

- Hence, the objective reduces to:

$$
J=\frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D}\left(\mathbf{x}_{n}^{T} \mathbf{u}_{i}-\overline{\mathbf{x}}^{T} \mathbf{u}_{i}\right)^{2}=\sum_{i=M+1}^{D} \mathbf{u}_{i}^{T} \mathbf{S} \mathbf{u}_{i}
$$

Minimum Error Formulation

- Minimize distortion with respect to $\mathbf{u}_{\mathbf{i}}$: constraint minimization problem:

$$
J=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\tilde{\mathbf{x}}_{n}\right\|^{2}=\sum_{i=M+1}^{D} \mathbf{u}_{i}^{T} \mathbf{S} \mathbf{u}_{i}
$$

- The general solution is obtained by choosing \mathbf{u}_{i} to be eigenvectors of the covariance matrix:

$$
\mathbf{S} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

- The distortion is then given by: $J=\sum_{i=M+1}^{D} \lambda_{i}$.

- The objective is minimized when the remaining D-M components are the eigenvectors of \mathbf{S} with lowest eigenvalues \rightarrow same result.
- We will later see a generalization: deep autoencoders.

Applications of PCA

- Run PCA on 2429 19x19 grayscale images (CBCL database)

- Data compression: We can get good reconstructions with only 3 components.
- Pre-processing: We can apply a standard classifier to latent representation -PCA with 3 components obtains 79% accuracy on face/non-face discrimination in test data vs. 76.8% for mixture of Gaussians with 84 components.
- Data visualization: by projecting the data onto the first two principal components.

Learned Basis

- Run PCA on 2429 19x19 grayscale images (CBCL database)

PCA vs. Fisher's LDA

- A comparison of PCA with Fisher's LDA for linear dimensionality reduction.

- PCA chooses direction of maximum variance (magenta curve) leading to strong class overlap (unsupervised).
- LDA takes into account the class labels (supervised), leading to a projection into the green curve.

PCA for High-Dimensional Data

- In some applications of PCA, the number of data points is smaller than the dimensionality of the data space, i.e. $\mathrm{N}<\mathrm{D}$.
- In so far, we need to find the eigenvectors of the $\mathrm{D} \times \mathrm{D}$ data covariance matrix \mathbf{S}, which scales as $\mathrm{O}\left(\mathrm{D}^{3}\right)$.
- Direct application of PCA will often be computationally infeasible.
- Solution: Let \mathbf{X} be the $\mathrm{N} \times \mathrm{D}$ centered data matrix. The corresponding eigenvector equation becomes:

$$
\frac{1}{N} \mathbf{X}^{T} \mathbf{X} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

- Pre-multiply by \mathbf{X} :

$$
\frac{1}{N} \mathbf{X} \mathbf{X}^{T}\left(\mathbf{X} \mathbf{u}_{i}\right)=\lambda_{i}\left(\mathbf{X} \mathbf{u}_{i}\right)
$$

PCA for High-Dimensional Data

- Define $v_{i}=X u_{i}$, and hence we have:

$$
\frac{1}{N} \mathbf{X} \mathbf{X}^{T} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}
$$

- This is an eigenvector equation for the $\mathrm{N} \times \mathrm{N}$ matrix
- It has the same $\mathrm{N}-1$ eigenvalues as the original data covariance matrix \mathbf{S} (which itself has an additional $\mathrm{D}-\mathrm{N}+1$ zero eigenvalues).
- Computational cost scales as $\mathrm{O}\left(\mathrm{N}^{3}\right)$ rather than $\mathrm{O}\left(\mathrm{D}^{3}\right)$.
- To determine eigenvectors, we multiply by X^{\top} :

$$
\left(\frac{1}{N} \mathbf{X}^{T} \mathbf{X}\right)\left(\mathbf{X}^{T} \mathbf{v}_{i}\right)=\lambda_{i} \mathbf{X}^{T} \mathbf{v}_{i}
$$

- Hence $X^{\top} \mathbf{v}_{\mathrm{i}}$ is an eigenvector of \mathbf{S} with eigenvalue λ_{i}.
- These eigenvectors may not be normalized.

Probabilistic PCA

- Probabilistic, generative view of data.
- Key advantages of probabilistic PCA (PPCA):
- It represents a constrained form of the Gaussian distribution.
- We can derive EM algorithm for PCA which is computationally efficient.
- PPCA allows us to deal with missing values in the data set.
- We can formulate mixture of PPCAs in a principled way.
- PPCA forms the basis for a Bayesian PCA, in which the dimensionality of the principal subspace can be determined from the data.
- The existence of a likelihood function allows direct comparisons with other probabilistic density models
- PPCA can be used to model class conditional densities and hence it can be applied to classification problems.

Probabilistic PCA

- Key assumptions:
- underlying latent M -dim variable \mathbf{z} has a Gaussian distribution.
- linear relationship between M-dim latent z and D-dim observed \mathbf{x} variables.
- isotropic Gaussian noise in observed dimensions

$$
\begin{aligned}
p(\mathbf{z}) & =\mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I}) \\
p(\mathbf{x} \mid \mathbf{z}) & =\mathcal{N}\left(\mathbf{x} \mid \mathbf{W} \mathbf{z}+\mu, \sigma^{2} \mathbf{I}\right)
\end{aligned}
$$

- Hence the mean of \mathbf{x} is a linear function of \mathbf{z} governed by the $\mathrm{D} \times \mathrm{M}$ matrix \mathbf{W} and the D-dim vector μ.
- We will see that the columns of \mathbf{W} span the principal subspace of the data space (Columns of \mathbf{W} are the principal components, σ^{2} is sensor noise).

Generative View of PPCA

- Generative view of the PPCA for a 2-d data space and 1-d latent space:

- Draw a value of the latent variable from its prior distribution:

$$
\hat{z} \sim p(z)
$$

- Draw a value for x from from an isotropic Gaussian distribution:

$$
\hat{x} \sim p(\mathbf{x} \mid \hat{z})=\mathcal{N}\left(\mathbf{x} \mid \mathbf{w} \hat{z}+\boldsymbol{\mu}, \sigma^{2} I\right)
$$

Marginal Data Density

- The joint $p(\mathbf{z}, \mathbf{x})$, the marginal data distribution $p(\mathbf{x})$, and the posterior distribution $p(\mathbf{z} \mid \mathbf{x})$ are also Gaussian.
- Marginal data density (also known as predictive distribution):

$$
p(\mathbf{x})=\int_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) d \mathbf{z}=\mathcal{N}\left(\mathbf{x} \mid \mu, \mathbf{W} \mathbf{W}^{T}+\sigma^{2} \mathbf{I}\right)
$$

- Can derive this result directly by computing the mean and covariance given that it is Gaussian:

$$
\begin{aligned}
E[\mathbf{x}] & =E[\mu+\mathbf{W} \mathbf{z}+\epsilon]=\mu+\mathbf{W} E[\mathbf{z}]+E[\epsilon] \\
& =\mu+\mathbf{W} 0+0=\mu \\
\mathbf{C} & =\operatorname{Cov}[\mathbf{x}]= \\
& =E\left[(\mu+\mathbf{W} \mathbf{z}+\epsilon-\mu)(\mu+\mathbf{W} \mathbf{z}+\epsilon-\mu)^{T}\right] \\
& =E\left[(\mathbf{W} \mathbf{z}+\epsilon)(\mathbf{W} \mathbf{z}+\epsilon)^{T}\right] \\
& =\mathbf{W} \mathbf{W}^{T}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Redundancy in Parameterization

- The marginal distribution is governed by parameters $\mathbf{W}, \mu, \sigma^{2}$:

$$
p(\mathbf{x})=\int_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) d \mathbf{z}=\mathcal{N}\left(\mathbf{x} \mid \mu, \mathbf{W} \mathbf{W}^{T}+\sigma^{2} \mathbf{I}\right)
$$

- Redundancy in parameterization: rotation of the latent space coordinates.
- Let \mathbf{R} be an orthogonal matrix, then define a new matrix:

$$
\tilde{\mathbf{W}}=\mathbf{W R}, \quad \mathbf{R R}^{T}=\mathbf{I}
$$

- Then

$$
\tilde{\mathbf{W}} \tilde{\mathbf{W}}^{T}=\mathbf{W} \mathbf{R} \mathbf{R}^{T} \mathbf{W}^{T}=\mathbf{W} \mathbf{W}^{T}
$$

- There is a whole family of matrices all of which give rise to the same marginal distribution.
- Rotations within the latent space.

Joint Density for PPCA

- Joint density for PPCA, where \mathbf{x} is D-dim and \mathbf{z} is M-dim is given:

$$
p\left(\left[\begin{array}{l}
\mathbf{z} \\
\mathbf{x}
\end{array}\right]\right)=\mathcal{N}\left(\left.\left[\begin{array}{l}
\mathbf{z} \\
\mathbf{x}
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
0 \\
\mu
\end{array}\right],\left[\begin{array}{cc}
I & \mathbf{W}^{\top} \\
\mathbf{W} & \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}
\end{array}\right]\right)
$$

where cross covariance term forms:

$$
\begin{aligned}
\operatorname{Cov}[\mathbf{z}, \mathbf{x}] & =E\left[(\mathbf{z}-0)(\mathbf{x}-\mu)^{T}\right]=E\left[\mathbf{z}(\mu+\mathbf{W} \mathbf{z}+\epsilon-\mu)^{T}\right] \\
& =E\left[\mathbf{z}(\mathbf{W} \mathbf{z}+\epsilon)^{T}\right]=\mathbf{W}^{T}
\end{aligned}
$$

- When evaluating marginal distribution, we need to invert a $\mathrm{D} \times \mathrm{D}$ matrix \mathbf{C}, which can be expensive.
- Reduce $O\left(D^{3}\right)$ to $O\left(M^{3}\right)$ by applying matrix inversion lemma:

$$
\mathbf{C}^{-1}=\sigma^{-1} \mathbf{I}-\sigma^{-2} \mathbf{W}\left(\mathbf{W}^{T} \mathbf{W}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{W}^{T}
$$

Posterior Distribution for PPCA

- Inference in PPCA amounts to computing posterior distribution over latent variables:

$$
\begin{gathered}
p(\mathbf{z} \mid \mathbf{x})=\mathcal{N}(\mathbf{z} \mid \mathbf{m}, \mathbf{V}) \\
\mathbf{m}=\mathbf{M}^{-1} \mathbf{W}^{T}(\mathbf{x}-\boldsymbol{\mu}) \\
\mathbf{V}=\sigma^{2} \mathbf{M}^{-1} \\
\mathbf{M}=\mathbf{W}^{T} \mathbf{W}+\sigma^{2} \mathbf{I}
\end{gathered}
$$

- Mean of inferred \mathbf{z} is the projection of centered \mathbf{x} :
 linear operation.
- Posterior variance does not depend on the input \mathbf{x} at all.
- Remember:

$$
\begin{aligned}
\mathbf{C} & =\mathbf{W} \mathbf{W}^{T}+\sigma^{2} \mathbf{I} . \\
\mathbf{C}^{-1} & =\sigma^{-1} \mathbf{I}-\sigma^{-2} \mathbf{W}(\overbrace{\left.\mathbf{W}^{T} \mathbf{W}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{W}^{T}}^{\text {M matrix }}
\end{aligned} \underbrace{\text { Man }}
$$

Constrained Covariance

- Marginal density for PPCA has the following form:

$$
\begin{aligned}
& \quad p(\mathbf{x} \mid \theta)=\mathcal{N}(\mathbf{x} \mid \mu, \underbrace{\mathbf{W} \mathbf{W}^{T}+\sigma^{2} \mathbf{I}}_{\text {Covariance } \mathbf{C}}) \\
& \text { where } \theta=\left\{\mathbf{W}, \mu, \sigma^{2}\right) .
\end{aligned}
$$

- The covariance is low-rank outer product of two long skinny matrices plus a constant diagonal matrix:

- Hence PPCA is a constrained Gaussian model.
- We can fit model parameters using maximum likelihood.

Maximum Likelihood

- Model parameters can be determined using maximum likelihood (by integrating our latent variables):

$$
\begin{aligned}
L(\theta ; \mathbf{X}) & =\log p(\mathbf{X} \mid \theta)=\sum_{n} \log p\left(\mathbf{x}_{n} \mid \theta\right) \\
& =-\frac{N}{2} \log |\mathbf{C}|-\frac{1}{2} \sum_{n}\left(\mathbf{x}_{n}-\mu\right) \mathbf{C}^{-1}\left(\mathbf{x}_{n}-\mu\right)^{T} \\
& =-\frac{N}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{Tr}\left[\mathbf{C}^{-1} \sum_{n}\left(\mathbf{x}_{n}-\mu\right)\left(\mathbf{x}_{n}-\mu\right)^{T}\right]+\mathrm{const}
\end{aligned}
$$

- Maximizing with respect to the mean: $\mu_{M L}=\overline{\mathbf{x}}$.
- We then have:

$$
\log p(\mathbf{X} \mid \theta)=-\frac{N}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{Tr}\left[\mathbf{C}^{-1} \mathbf{S}\right]+\text { const. }
$$

- Maximizing with respect to \mathbf{W} and σ^{2} can be solved directly.

Maximum Likelihood

- Objective:

$$
\log p(\mathbf{X} \mid \theta)=-\frac{N}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{Tr}\left[\mathbf{C}^{-1} \mathbf{S}\right]+\text { const. }
$$

- \mathbf{C} is model covariance; \mathbf{S} is sample data covariance.
- In other words, we are trying to make the constrained model covariance as close as possible to the observed covariance, where "close" means the trace of the ratio.
- Sufficient statistics: mean $\overline{\mathbf{x}}=\frac{1}{N} \sum_{n} \mathbf{x}_{n}$ and sample covariance \mathbf{S}.

Maximum Likelihood

- Objective:

$$
\log p(\mathbf{X} \mid \theta)=-\frac{N}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{Tr}\left[\mathbf{C}^{-1} \mathbf{S}\right]+\text { const. }
$$

- Maximizing with respect to \mathbf{W} :

$$
\mathbf{W}_{M L}=\mathbf{U}_{M}\left(\mathbf{L}_{M}-\sigma^{2} \mathbf{I}\right)^{1 / 2} \mathbf{R}
$$

where

- U_{M} is a $\mathrm{D} \times \mathrm{M}$ matrix whose columns are given by the M principal eigenvectors of the data covariance matrix \mathbf{S}.
- L_{M} is the $M \times M$ diagonal matrix containing M largest eigenvalues.
- \mathbf{R} is an arbitrary $\mathrm{M} \times \mathrm{M}$ orthogonal matrix.
- If the eigenvectors have been arranged in the order of decreasing values of the corresponding eigenvalues, then the columns of \mathbf{W} define the principal subspace of standard PCA.

Maximum Likelihood

- Objective:

$$
\log p(\mathbf{X} \mid \theta)=-\frac{N}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{Tr}\left[\mathbf{C}^{-1} \mathbf{S}\right]+\text { const. }
$$

- Maximizing with respect to σ^{2} :

$$
\sigma_{M L}^{2}=\frac{1}{D-M} \sum_{i=M+1}^{D} \lambda_{i}
$$

which is the average variance associated with the discarded dimensions.

EM for PPCA

- Instead of solving directly, we can use EM. The EM can be scaled to very large high-dimensional datasets.
- The complete-data log-likelihood takes form:

$$
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mu, \mathbf{W}, \sigma^{2}\right)=\sum_{n}\left[\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\log p\left(\mathbf{z}_{n}\right)\right]
$$

- E-step: compute expectation of complete log likelihood with respect to posterior of latent variables \mathbf{z}, using current parameters.
- We need to derive $\mathbb{E}\left[\mathbf{z}_{n}\right], \mathbb{E}\left[\mathbf{z}_{n} \mathbf{z}_{n}^{T}\right]$ with respect to the true posterior: $p(\mathbf{z} \mid \mathbf{X})$.
- M-step: maximize with respect to parameters \mathbf{W} and σ^{2}.

- Appealing property: EM avoids direct $\mathrm{O}\left(\mathrm{ND}^{2}\right)$ construction of covariance matrix!
- Instead EM involves sums over data cases: O(NDM). It can also be implemented online, without storing data.

Zero Noise Limit

- We can derive standard PCA as a limit of probabilistic PCA as the noise term goes to zero: $\sigma^{2} \rightarrow 0$.
- ML parameters are the same.
- Inferring the distribution over latent variables is easier: The posterior mean reduces to:

$$
\lim _{\sigma^{2} \rightarrow 0}\left(\mathbf{W}^{T} \mathbf{W}+\sigma \mathbf{I}\right)^{-1} \mathbf{W}^{T}(\mathbf{x}-\boldsymbol{\mu})=\left(\mathbf{W}^{T} \mathbf{W}\right)^{-1} \mathbf{W}^{T}(\mathbf{x}-\boldsymbol{\mu})
$$

which represents an orthogonal projection of the data point onto the latent space - standard PCA.

- Posterior covariance goes to zero:

EM for PPCA

- EM algorithm for PCA.

Bayesian PCA

- It is easy to take a Bayesian viewpoint and place priors over model parameters.
- One option is to employ the evidence approximation (empirical Bayes) framework.
- We can define an independent Gaussian prior over each column of \mathbf{W}.
- Each such Gaussian has an independent
 variance:

$$
p(\mathbf{W} \mid \alpha)=\prod_{i=1}^{M}\left(\frac{\alpha_{i}}{2 \pi}\right) \exp \left[-\frac{1}{2} \alpha_{i} \mathbf{w}_{i}^{T} \mathbf{w}_{i}\right],
$$

where w_{i} is the $i^{\text {th }}$ column of \mathbf{W}.

- The values of α_{i} are re-estimated during training by maximizing the marginal likelihood:

$$
p\left(\mathbf{X} \mid \alpha, \boldsymbol{\mu}, \sigma^{2}\right)=\int p\left(\mathbf{X} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^{2}\right) p(\mathbf{W} \mid \alpha) d \mathbf{W}
$$

Example of Bayesian PCA

- Hinton diagram of the matrix W : each element of W is depicted as a square (white for positive and black for negative).

PPCA

Bayesian PCA

- The synthetic dataset contains 300 points in $D=10$ space with the intrinsic dimensionality set to $D=3$.
- Bayesian PCA discovers appropriate dimensionality.

Factor Analysis

- Linear Gaussian latent variable model that is closely related to PPCA.
- Key assumptions:
- underlying latent M -dim variable \mathbf{z} has a Gaussian distribution
- linear relationship between M-dim latent \mathbf{z} and D-dim observed \mathbf{x} variables.
- diagonal Gaussian noise in observed dimensions.

$$
\begin{aligned}
p(\mathbf{z}) & =\mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I}) \\
p(\mathbf{x} \mid \mathbf{z}) & =\mathcal{N}(\mathbf{x} \mid \mathbf{W} \mathbf{z}+\mu, \Psi)
\end{aligned}
$$

- W is a $\mathrm{D} \times \mathrm{M}$ factor loading matrix.
- Ψ is a $\mathrm{M} \times \mathrm{M}$ diagonal matrix (or axis-aligned).
- The only difference between PPCA and FA is that in Factor Analysis the conditional distribution of the observed variable \mathbf{x} has diagonal rather than isotropic covariance.

Factor Analysis: Distributions

- As in PPCA, the joint $p(\mathbf{z}, \mathbf{x})$, the marginal data distribution $p(\mathbf{x})$, and the posterior $p(\mathbf{z} \mid \mathbf{x})$ are also Gaussian.
- Marginal distribution (predictive distribution):

$$
p(\mathbf{x})=\int_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) d \mathbf{z}=\mathcal{N}\left(\mathbf{x} \mid \mu, \mathbf{W} \mathbf{W}^{T}+\mathbf{\Psi}\right)
$$

- The joint distribution:

$$
p\left(\left[\begin{array}{l}
\mathbf{z} \\
\mathbf{x}
\end{array}\right]\right)=\mathcal{N}\left(\left.\left[\begin{array}{l}
\mathbf{z} \\
\mathbf{x}
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
0 \\
\mu
\end{array}\right],\left[\begin{array}{cc}
I & \mathbf{W}^{\top} \\
\mathbf{W} & \mathbf{W} \mathbf{W}^{\top}+\Psi
\end{array}\right]\right)
$$

Factor Analysis: Optimization

- Parameters are coupled, which makes it impossible to solve for ML parameters directly, unlike in probabilistic PCA.
- Because FA is a latent variable model, we can use EM, or other nonlinear optimization
- E-step: compute posterior $p(z \mid \mathbf{x})$: Use matrix inversion to convert $\mathrm{D} \times \mathrm{D}$ matrix inversions to $\mathrm{M} \times \mathrm{M}$.
- M-step: take derivatives of the expected complete log likelihood with respect to parameters.
- Bayesian treatment of the factor analysis can be obtained by a straightforward extension of standard FA (as we did for PPCA).

FA vs. PCA

- intuition: Gaussians are hyperellipsoids.
- Mean == center of football.

Eigenvectors of covariance matrix $==$ axes of football.
Eigenvalues == lengths of axes.

- In FA our football is an axis aligned cigar.

In PCA our football is a sphere of radius σ^{2}.

Rotation Invariance in PCA

- In PPCA the rotation of the data is unimportant: we can multiply the data \mathbf{x} by a rotation matrix \mathbf{Q} without changing anything:

$$
\begin{aligned}
\mu & \leftarrow \mathbf{Q} \mu \\
\mathbf{W} & \leftarrow \mathbf{Q} \mathbf{W} \\
\Psi & \leftarrow \Psi
\end{aligned}
$$

- However, the scale is important.
- PCA looks for directions of large variance, so it will chase big noise directions.

Scale Invariance in FA

- In FA, the data can be re-scaled without changing anything.
- Multiply x_{i} by α_{i} :

$$
\begin{aligned}
\mu_{i} & \leftarrow \alpha_{i} \mu_{i} \\
\mathbf{W}_{i j} & \leftarrow \alpha_{i} \mathbf{W}_{i j} \\
\Psi_{i} & \leftarrow \alpha_{i}^{2} \Psi_{i}
\end{aligned}
$$

- However, rotation in data space is important.
- FA looks for directions of large correlation in the data, so it will not model large variance noise.

Model Identifiability

- Factors in FA are non-identifiable: not guaranteed to find the same set of parameters - not just local minimum but invariance.
- Rotate \mathbf{W} by any unitary \mathbf{Q} and model stays the same - \mathbf{W} only appears in model as outer product $\mathbf{W W}^{\top}$

$$
(\mathbf{W} \mathbf{Q})(\mathbf{W Q})^{T}=\mathbf{W} \mathbf{W}^{T}
$$

- This means that there is no "one best" setting of the parameters. An infinite number of parameters all give the same ML score.
- Degeneracy makes unique interpretation of learned factors impossible.

Mixture of Dimensionality Reducers

- The next logical step is to consider a model that has two kinds latent variables: one discrete cluster, and one vector of continuous causes.
- Such models simultaneously do clustering, and within each cluster, dimensionality reduction.
- Example: Mixture of Factor Analyzers:

$$
\begin{aligned}
p(\mathbf{z}) & =\mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I}), \quad p(k)=\pi_{k} \\
p(\mathbf{x} \mid \mathbf{z}, k, \theta) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}+W_{k} \mathbf{z}, \Psi\right) \\
p(\mathbf{x} \mid \theta) & =\sum_{k} \int_{\mathbf{z}} p(k) p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}, k, \theta) d \mathbf{z} \\
& =\sum_{k} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, W_{k} W_{k}^{T}+\Psi\right) .
\end{aligned}
$$

which is constrained mixture of Gaussians.

- Fitting is done via EM algorithm.

Independent Components Analysis

- ICA is another continuous latent variable model, like FA, but it has a nonGaussian and factorized prior on the latent variables.
- This is good in situations where most of the factors are small most of the time, and do not interact with each other.
- Example: Mixture of speech signals.

- The learning problem is the same: find the weights from the factors to the outputs and infer the unknown factor values.
- ICA: the factors are sometimes called "sources", and the learning is sometimes called "unmixing".

Geometric Intuition

- Since latent variables are assumed to be independent, we are trying to find linear transformation of data that recovers independent causes.
- Avoid degeneracies in Gaussian latent variable models: Assume non-Gaussian prior distribution for latent variables (sources).
- Recall that in PPCA (and FA) the model cannot distinguish between two different choices for the latent variables: These differ simply by a rotation in latent space!
- Often we use heavy-tailed source priors, e.g.:
$p\left(z_{j}\right)=\frac{1}{\pi \cosh \left(z_{j}\right)}=\frac{1}{\pi\left(\exp \left(z_{j}\right)+\exp \left(-z_{j}\right)\right)}$
- Geometric intuition: finding spikes in histograms.

ICA Model

- The simplest form of ICA has as many outputs as sources (square) and no sensor noise on the outputs:

$$
\begin{aligned}
p(\mathbf{z}) & =\prod_{k} p\left(z_{k}\right) \\
\mathbf{x} & =\mathbf{V}_{\mathbf{z}}
\end{aligned}
$$

- Learning in this case can be done with gradient descent (plus some tricks to make the updates faster and more stable).
- If we keep V square, and assume isotropic Gaussian noise on the outputs, there is a simple EM algorithm.
- Much more complex cases have been studied also: nonsquare, convolutional, time delays in mixing, etc..

Autoencoders

- Neural networks can also be used for nonlinear dimensionality reduction.
- This is achieved by having the same number of outputs as inputs. These models are called autoencoders.
- Consider a multilayer perceptron that has D inputs, D outputs, and M hidden units, with $\mathrm{M}<\mathrm{D}$.
- It is useful if we can squeeze the information through some kind of bottleneck.
- If we use a linear network this is very similar to Principal Components Analysis.

Autoencoders and PCA

- Given an input x, its corresponding reconstruction is given by:

$$
y_{k}(\mathbf{x}, \mathbf{w})=\sum_{j=1}^{M} w_{k j}^{(2)} \sigma\left(\sum_{i=1}^{D} w_{j i}^{(1)} x_{i}\right), \quad k=1, . ., D
$$

- We can determine the network parameters w by minimizing the reconstruction error:

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\|y\left(\mathbf{x}_{n}, \mathbf{w}\right)-\mathbf{x}_{n}\right\|^{2}
$$

- If the hidden and output layers are linear, it will learn hidden units that are a linear function of the data and minimize the
 squared error.
- The M hidden units will span the same space as the first m principal components. The weight vectors may not be orthogonal.

Deep Autoencoders

- We can put extra nonlinear hidden layers between the input and the bottleneck and between the bottleneck and the output.
- This gives nonlinear generalization of PCA.
- It should be very good for non-linear dimensionality reduction.
- The network can be trained by the minimization of the reconstruction error function.

- Much harder to train.

Geometrical Interpretation

- Geometrical interpretation of the mappings performed by the network with 2 hidden layers for the case of $\mathrm{D}=3$ and $\mathrm{M}=2$ units in the middle layer.

- The mapping F_{1} defines a nonlinear projection of points in the original D-space into the M -dimensional subspace.
- The mapping F_{2} maps from an M-dimensional space into D-dimensional space.

Deep Autoencoders

- We can consider very deep autoencoders.
- There is an efficient way to learn these deep autoencoders

- By row: Real data, Deep autoencoder with a bottleneck of 30 linear units, and 30-d PCA.

Deep Autoencoders

- We can consider very deep autoencoders.
- Similar model for the MNIST handwritten digits:

- Deep autoencoder produces much better reconstructions.

Class Structure of the Data

- Do the 30-D codes found by the deep autoencoder preserve the class structure of the data?
- Take the 30-D activity patterns in the code layer and display them in 2-D using a new form of non-linear multi-dimensional scaling (UNI-SNE).
-Will the learning find the natural classes?

Class Structure of the Data

- Do the 30-D codes found by the deep autoencoder preserve the class structure of the data?

Learning 2-D topic Space

- Latent Semantics Analysis (LSA) uses SVD to get a low-rank approximation of the log of term-frequency matrix:

$$
\begin{array}{r}
\log (1+M(d o c, w)) \sim U S V \\
U=|d o c| \times d, S=d \times d, V=d \times|w|
\end{array}
$$

Autoencoder 2-D Topic Space

LSA 2-D Topic Space

Reuters dataset

- Autoencoder: 2000-500-250-125-2

