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The fundamental task facing Optical Character Recognition (OCR) systems involves the

conversion of input document images into corresponding sequences of symbolic character

codes. Traditionally, this has been accomplished in a bottom-up fashion: the image

of each symbol is isolated, then classified based on its pixel intensities. While such

shape-based classifiers are initially trained on a wide array of fonts, they still tend to

perform poorly when faced with novel glyph shapes. In this thesis, we attempt to bypass

this problem by pursuing a top-down “codebreaking” approach. We assume no a priori

knowledge of character shape, instead relying on statistical information and language

constraints to determine an appropriate character mapping. We introduce and contrast

three new top-down approaches, and present experimental results on several real and

synthetic datasets. Given sufficient amounts of data, our font and shape independent

approaches are shown to perform about as well as shape-based classifiers.
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Chapter 1

Introduction

For over one hundred years now, humans have sought machines with the ability to “read”

and interpret printed textual documents (so that they can be automatically converted into

an alternate medium or format). Initially, mechanical machines capable of automating

telegraph processing, or aiding the visually impaired were desired [38]. However, with

the advent of the computer and electronic storage mechanisms, transformation of paper

documents to an electronic format that a computer can manipulate has become the norm.

When done accurately, such a transformation becomes a tremendous boon to businesses

and individuals alike, helping to pave the way for easily searchable electronic copies of

documents that might otherwise remain tucked away in filing cabinets gathering dust.

This process of converting textual symbols found on printed paper to a machine

understandable format has come to be known as optical character recognition (OCR).

The first recorded evidence of discussions related to character recognition systems dates

back to the patent filings of Tauschek in Germany in 1929 [57] (he was later granted

a U.S. Patent in 1935), and Handel independently in 1933 [17]. Both of these patents

describe machines that make use of a circular disk with template symbols cut out of it so

that light shines through (see Figure 1.1). The image to be recognized is held in front of

the disk and illuminated so that light reflecting off a portion of it can be focused through

1



Chapter 1. Introduction 2

a template hole and detected at the other end by a photosensor. The disk is rotated so

that the light passes through each of the template symbols in turn, but no light reaches

the sensor precisely when the dark shape on the page exactly matches its corresponding

template symbol.

Figure 1.1: OCR system described in Handel’s Patent [17]

While some minimal progress was made in improving character recognition systems,

it wasn’t until after the invention of the computer that the first commercial OCR ma-

chines began to appear in the mid 1950’s [36]. The design of these systems was heavily

influenced, and often intertwined with computers; making use of their electronics and

logic circuits to carry out template character matching algorithms. These early systems

were extremely limited, only able to read documents written in a single font and point

size. They would also have problems distinguishing among similar shaped symbols in

some cases (like l and 1 for instance). To try and remedy this, specially created fonts
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called OCR-A and OCR-B were designed so that each symbol was given a recognizably

unique shape [5] as can be seen in Figure 1.2.

Figure 1.2: The OCR-A font

As research and technology progressed, character recognition accuracy improved, and

systems were created that could handle a handful of common font styles and sizes provided

the input document was rigidly formatted, had a high contrast and was free of any

artifacts. By the end of the 1960’s, successful OCR systems were installed and used

to help route outgoing mail, process credit card imprints, and automatically read social

security and census forms [37].

Between the 1960’s and 1980’s, character recognition moved beyond the simple iso-

lated character template matching approach. First, statistical classifiers trained on char-

acter images in a wide array of fonts and sizes began to be employed. Features of these

images were combined and stored to create relatively robust and efficient representations

of each character that were then compared at test time with the sequence of shapes to

be recognized. Second, contextual and linguistic information began to be used, initially

as a post-recognition step to correct some of the misclassified characters. This was ac-

complished by making use of the statistical frequency in which one character was seen

to follow another when estimated from a large piece of text. These character bigram

frequencies were extended by looking at sequences of 3, 4 and higher orders of char-

acters, however computer processing and storage deficiencies limited their initial use.
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Linguistic information in the form of simple word lookup was also employed to improve

OCR accuracy. Such an approach can be thought of as feeding the recognized sequence

of characters through a simple spell checker, with those words not found in the lookup

dictionary either flagged, or automatically corrected. Unfortunately this approach was

also limited due to computational constraints. By the mid 1980’s, these improvements

(among others) led to the introduction of so-called “omnifont” OCR systems capable of

recognizing characters from a vast array of font shapes and sizes [26], [5].

OCR systems and research have continued to improve over the years, and have now

reached a point that some researchers deem the recognition of machine printed character

images a largely solved problem [37]. Affordable commercial OCR software packages are

readily available, with some advertised claiming recognition accuracy rates above 99%.

While this state of affairs may lead one to believe that the use of character recognition

systems by businesses and individuals would be fairly widespread, the reality isn’t quite

so rosy. Recognition results are often quoted under “optimal” conditions, or are tested

against a sample of documents that do not necessarily match up to those seen in the real

world. In fact, given that documents can vary in terms of noise, layout, and complexity in

limitless ways it becomes near impossible to report a representative recognition accuracy.

To further examine this, we conducted a simple experiment whereby a synthetic

document was constructed using text taken from the Reuters-21578 news corpus [34].

The document was typeset using Donald Knuth’s TEX typesetting system, and each page

was rendered as a single spaced, single column image written in the 10 point Computer

Modern typeface. Each page image was saved as a TIFF file with an output resolution

of 200 dots per inch (dpi). A sample page is presented in Figure 1.3. These page images

were then fed as input to several commercial and freely available OCR software packages.

The initial sequences of non-whitespace characters recognized by each package were then

compared with the first 19,635 non-whitespace characters belonging to the actual text

using tools from the OCRtk toolkit [42]. The resulting performance of each product
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is listed in Table 1.1. While the accuracy reported by each system is roughly on par

with the error rate of a human typist, this synthetic document represents an ideal not

necessarily seen in the real world. First, the pages are completely free of noise. The

pixels of each character image are identical everywhere that that character appears in

the document. There are no additional marks on the page, and each line is perfectly

straight. The document is free of non-textual regions, and is single column. The same

commonly seen serif font family is used for all text in the document, always typed in the

same point size.

OCR Software Overall Low Let. Upper Let. Digit Other

Acrobat 99.66 99.72 98.80 99.32 99.69

Omnipage 99.93 99.95 99.64 99.80 100

Tesseract 98.48 98.46 96.65 99.80 100

Any2DjVu 99.74 99.90 96.53 99.61 100

Table 1.1: Recognition accuracy reported over a 20,000 character synthetic document in

a typical font

As soon as slight modifications were made to this synthetic input document, recogni-

tion performance began to drop. The original document was changed so that all charac-

ters were typed in italics instead of the normal font face (see Figure 1.4). The content,

font family, font size, layout, and resolution remained unchanged however. In effect, this

test roughly simulates performance on a document set in an uncommon font. The recog-

nition results from this test can be found in Table 1.2. It should also be stressed that

even with modifications, this synthetic document still represents an ideal representation,

not likely to match “real-world” input.

Finally, a sample page scanned at 200 dpi was taken from the ISRI magazine OCR

dataset [42] and tested. A reduced version of this input image is shown in Figure 1.5.

It can be argued that this image is more representative of the type of images seen in
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Figure 1.3: Sample synthetic input page image
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Figure 1.4: Sample synthetic italic font input page image
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OCR Software Overall Low Let. Upper Let. Digit Other

Acrobat 96.60 96.95 95.45 91.70 95.98

Omnipage 99.71 99.79 99.28 99.80 96.59

Tesseract 91.75 92.50 93.65 98.83 23.84

Any2DjVu 93.51 94.20 80.96 90.33 98.45

Table 1.2: Recognition accuracy reported over a 20,000 character synthetic document in

an italicized font

typical character recognition tasks than the previous two synthetic documents. First,

the original paper input has been digitized using a flatbed scanner. Such a conversion

introduces unwanted noise and artifacts due to the fidelity of the sensors in the scanner,

dust or other particles on the scanning surface, etc. The image is also skewed due to its

slightly off-centre placement on the scanning surface. The text to be recognized is spread

over several columns, and mixed with images and other non-textual regions. Finally, the

characters to be recognized vary in font face, size, style, and weight. Individual character

images are no longer identical everywhere they appear on the page, due to noise. As can

be seen from the results specified in Table 1.3, recognition results are drastically worse

than the synthetic tests. For both Acrobat and Any2DjVu, entire regions of text were

missing.

OCR Software Overall Low Let. Upper Let. Digit Other

Acrobat 43.33 44.50 41.85 53.05 31.71

Omnipage 88.96 90.07 90.57 83.54 75.85

Tesseract1 77.49 80.80 69.09 71.34 68.78

Any2DjVu 49.01 53.40 34.50 68.29 35.12

Table 1.3: Recognition accuracy reported over a single magazine page from the ISRI

OCR dataset
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Figure 1.5: Sample page image from the ISRI magazine dataset
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While one cannot accurately judge performance on a few short pages of input, the

tremendous range in recognition accuracy reported by all systems should help illustrate

that the character recognition problem is still a ways off from truly being a solved one.

Steps must be taken to create robust recognition systems, able to perform accurately

across an incredibly vast range of possible inputs.

This thesis presents an exploration into improving the robustness of optical charac-

ter recognition. We do so by departing from the traditional bottom-up or shape-based

matching approach that has been present throughout the fifty plus year history of re-

search into recognition systems. Instead we focus fundamentally on exploiting contextual

cues and linguistic properties to determine the mapping from blobs of ink to underlying

character symbols. This is largely motivated by human behaviour. We can effortlessly

read passages like those seen in Figure 1.6, or a sentence like f yu cn rd ths, yu’r smrtr

thn mst cr systms precisely because we appeal to context or language constraints. For a

language like English, we are readily aware that certain sequences of characters are much

more likely than others. We know that just about every word will contain at least one

vowel character, even that the ordering of words must follow a grammatical structure.

Instead of relying on shape information to do the heavy lifting during the recognition

process (with context being used as an afterthought to fill in the gaps and improve low

confidence mappings), we turn this approach on its head. Working in a top-down fashion

in which we completely ignore shape information during the recognition process, we in-

stead rely on contextual clues to do much of the work in determining character identities.

It is hoped that by operating in this manner, the recognition process will automatically

adapt to the specific nuances and constraints of each input document. Such a system be-

comes entirely independent of character font and shape, and with this variation removed,

improved robustness should result.

1Since Tesseract is currently limited to recognition of single column text, the input image was first
cropped into 3 separate column images
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(a) Large gutter noise with curled characters

(b) Atypical font face and size

(c) Textured background. Taken from [61]

Figure 1.6: Small collection of noisy samples humans can easily read, but OCR systems

find difficult



Chapter 1. Introduction 12

1.1 Overview

The remainder of this thesis is structured as follows: In Chapter 2 we describe some of

the initial actions required to convert a paper document into a useful electronic version,

ready to have its characters recognized. This involves digitizing input pages, removing

noise and other artifacts, finding regions of text, then deskewing the regions so that lines

and characters are straight. In Chapter 3 we discuss techniques for isolating individual

character images, as well as grouping or clustering them together. This paves the way

for their subsequent recognition, which we describe in Chapter 4. We introduce three

new top-down recognition strategies each of which relies strongly on contextual and

other statistical language cues to determine the symbol that each cluster best represents.

Finally, in Chapter 5 we test the feasibility of our introduced approaches against several

real world and synthetic datasets containing documents from a variety of domains, fonts,

and quality levels. We tie all this work together in Chapter 6, where the advantages and

limitations of our proposed strategies, as well as areas for future work are discussed.



Chapter 2

Initial Document Processing

Before an OCR system can begin to recognize the symbols present in an input document

image, several important processing stages must be carried out to convert the input into

a usable form. While these processing stages do not represent the main focus of this

thesis, they are introduced and discussed in order to form a more complete picture of the

character recognition process.

2.1 Digitizing the Input

If the document to be recognized exists as a physical paper printout, the very first step

that must be carried out involves converting it to a representation that the recognition

system can manipulate. Since the majority of modern recognition systems are imple-

mented on computer hardware and software, this conversion of each page is typically to

some compressed or uncompressed digital image format. An uncompressed digital image

is stored on disk as a sequence of picture elements (pixels) each of which represents some

colour value. It should be noted that digital images are only approximations of their

original counterparts, albeit fairly accurate ones. The reason for this is the finite preci-

sion to which computers can store values. The continuous spectrum of colours that can

appear in nature, are quantized when stored digitally. Similarly, each pixel represents

13
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some small but finite region of a page, and so any variability in smaller subregions will

remain unaccounted for. While these limitations rarely have an impact on the ability of

an OCR system to recognize the original symbols, trade-offs must be made between the

quality or fidelity of the digital image, and how efficiently it can be stored and processed

by a computer.

This conversion from printed page to digital image often involves specialized hardware

like an optical scanner that attempts to determine the colour value at evenly spaced points

on the page. The scanning resolution will determine how many of these points will be

inspected per unit of page length. Typically this is specified in dots or pixels per inch,

thus a document scanned at a resolution of 300dpi will have been sampled at 300 evenly

spaced points for each inch of each page. A standard US Letter sized (8.5 x 11 inch)

page scanned at 300dpi will have been sampled 8,415,000 times. At each of these sample

points or pixels the colour depth will determine to what extent the recognized colour

matches the true colour on the page. One of the more common colour depths involves

using a single byte to store each of the red, green and blue channels (plus an optional

additional byte used to store opacity information). Since each byte of storage is made

up of 8 bits, 28 = 256 unique shades of a colour can be represented. Since any colour can

be created by mixing red, green, and blue, the desired colour is approximated using the

closest shade of red, green, and blue. Note that colour depth is often measured in bits

per pixel (bpp), so our example above describes a 24bpp colour depth (32bpp if opacity

information is included).

While the optical scanner is the traditional means by which paper images become dig-

itized, there is an increasing trend in the use of digital cameras (including those attached

to cellular telephones) to capture and digitize document images [11]. These methods have

the advantage of being able to capture documents (like thick books, product packaging

or road signs) that might prove difficult or impossible using a flatbed scanner. Brewster
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Kahle’s Open Library project1, is a massive digitization effort currently underway at sev-

eral Universities and libraries (including the University of Toronto). This project makes

use of “Scribe” stations to digitize the often delicate older books and manuscripts. These

stations operate via two digital SLR cameras mounted so that documents only have to

be open at most a 90◦ angle before 500dpi images of each page are taken. The setup of

a “Scribe” station is shown in Figure 2.1.

Figure 2.1: A “Scribe” station used to digitize out of copyright material as part of the

Open Library project

1http://www.openlibrary.org

http://www.openlibrary.org
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2.1.1 Binarization

For character recognition purposes, one generally does not need a full colour represen-

tation of the image, and so pages are often scanned or converted to a grayscale (8bpp),

or bilevel (1bpp) colour depth. In grayscale, each pixel represents one of 256 shades of

gray, and in a bilevel image each pixel is assigned one of two values representing black or

white. While both of these methods will allow a digital image to be stored in a smaller

space (fewer bpp), they can suffer from information loss as the original colour value is

more coarsely approximated. Working with bilevel images is particularly efficient, and

some processing algorithms are restricted to this format.

The process of converting a colour or grayscale image to bilevel format is referred to

as binarization. Several approaches to binarization have been discussed in the literature

but they typically fall into one of two categories [59]. Global methods treat each pixel

independently, converting each to black or white based on a single threshold value. If

a pixel’s colour intensity is higher than the global threshold it is assigned one value,

otherwise it is assigned the opposite value. In contrast local methods, make use of the

colour information in nearby pixels to determine an appropriate threshold for a particular

pixel. The example shown in Figure 2.2 has been reduced to a bilevel format via a local

binarization scheme.

Figure 2.2: Sample text section, before and after binarization. Taken from [61]
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2.1.2 Textured Backgrounds

A related problem facing character recognition systems is the separation of text from a

textured or decorated background. See Figure 1.6c for an example. Not only can tex-

tured backgrounds prohibit accurate binarization of input document images (particularly

skewing global threshold based approaches), but they make segmentation and recognition

of characters much more difficult.

One of the more common approaches is to make use of mathematical morphological

operators [18]. After the image has been binarized, a small structuring element (a group

of pixels with specified intensities) is created and swept across the image as the example

in Figure 2.3a illustrates. At each step the pixels in the structuring element and their

corresponding image pixels are compared, and depending on the result of this comparison

as well as the operation being performed, the image pixel underneath the centre of the

structuring element is updated. The most common basic morphological operations used

in image processing are dilation and erosion. In dilation, if at least one of the pixels in

the structuring element is set to a foreground value and its corresponding image pixel is

also set to a foreground value, then the centre of the image is set to foreground. The

result of performing this operation on the example in Figure 2.3a is shown in 2.3b (note

that a separate lighter colour is used to indicate new foreground pixels, but in an actual

implementation, each of these pixels would be assigned the same colour intensity). In

erosion, the centre of the image is only set to foreground if at least one structuring element

is set to foreground and all of the structuring element pixel values exactly match their

corresponding image location pixels (see Figure 2.3c for an example). Dilation tends to

have the effect of increasing the foreground area of an image, often filling in or smoothing

small holes. Erosion on the other hand tends to have the opposite effect; decreasing

the foreground area of the image, and increasing the size of holes. Combining these

operations by performing an erosion, followed by a dilation on the eroded image is called

an opening operation, and can often be used to eliminate small textured backgrounds
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from foreground text to reasonably good effect. A synthetic example of the opening

operation is shown in Figure 2.3e.

In recent work by Wu and Manmatha [61], an alternate approach to separating text

from textured backgrounds and binarizing an input image was described. First a smooth-

ing low-pass Gaussian filter was passed over the image. Then the resultant histogram of

image intensities was smoothed (again using a low-pass filter). The valley after the first

peak in this smoothed histogram was then sought, and used to differentiate foreground

text from background.

2.2 Noise Removal

During the scanning process, differences between the digital image and the original input

(beyond those due to quantization when stored on computer) can occur. Hardware or

software defects, dust particles on the scanning surface, improper scanner use, etc. can

change pixel values from those that were expected. Such unwanted marks and differing

pixel values constitute noise that can potentially skew character recognition accuracy.

Furthermore, certain marks or anomalies present in the original document before being

scanned (from staples, or telephone line noise during fax transmission etc.) constitute

unwanted blemishes or missing information that one may also like to rectify and correct

before attempting character recognition.

There are typically two approaches taken to remove unwanted noise from document

images. For pixels that have been assigned a foreground value when a background value

should have been given (additive noise), correction can sometimes be accomplished by

removing any groups of foreground pixels that are smaller than some threshold. These

groups of foreground pixels can be identified by employing a connected component sweep

over the document (see Chapter 3). Care must be taken to ensure that groups of pixels

corresponding to small parts of characters or symbols (dots above i, or j, or small
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(a) Input image and 3× 3 structuring element

(b) result after dilation (c) result after erosion

(d) result after closing (e) result after opening

Figure 2.3: Image morphological operations
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punctuation like ., etc.) are left intact. Additive noise that is directly adjacent to

other foreground pixels will not be corrected by this approach, and so each instance of

a character may appear slightly different on a page. Figure 2.4 illustrates this, showing

an originally noisy image region, and its denoised equivalent after small blobs containing

fewer than 3 pixels are removed (note that the noise around each of the characters

remains).

Figure 2.4: Closeup of a noisy image region, and its result after denoising

For pixels that should contain a foreground value instead of the noisy background

value given (dropout noise), a common remedy is to smear the image by passing either

a linear or non-linear filter over it. Performing a morphological closing operation is one

example of a non-linear smoothing filter (see the sample in Figure 2.3d). A common

linear filter can be created by averaging neighbouring pixel intensities, which are usually

first re-weighted by being multiplied by entries in a small kernel or structuring element

matrix. Fast implementations exist for calculating these linear combinations of values

by first transforming the input image into its Fourier or frequency domain. These filters

must be used with caution, as problems can arise if too much smoothing is applied.

Discontinuous character edges can become joined (turning ! into l for instance), or

multiple characters may become merged together.

2.3 Page Deskewing

A common problem that occurs when a flatbed scanner is employed to digitize paper

documents, is that the paper is often placed so that it does not lie exactly perpendicular
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with the scanner head. Instead it is often rotated some arbitrary angle, so that when

scanned the resultant digitized document image appears skewed (see Figure 2.5). De-

pending on the algorithms employed, working with skewed documents directly can lead

to difficulties when attempts are made to segment the input image into columns, lines,

words or individual character regions. One simple illustration of this is the (naive) at-

tempt of creating a line finder that works by summing pixel intensity values horizontally

across each row of pixels, then scanning these sums vertically to find consecutive valleys

or runs of minimal sum (this assumes the document to be recognized has a horizontal

reading order). For unskewed documents consisting of single column text written in a

horizontal fashion, this approach should allow one to determine line boundaries by find-

ing the start of the minimal sum valleys. However, if the document has been scanned

so that its digital representation is skewed, then profile sums across each row of pixels

will no longer contain sharp minimal valleys. If the skew is large enough that each row

of pixels contains portions of two or more lines of text, then the profile sums will look

somewhat more uniform, and one will not be able to identify the line boundaries. Skewed

documents can also impact character recognition performance. If the approach attempts

to group similar shaped symbol images together so that each instance can be assigned a

single label, then multiple page documents that have been scanned so that each page has

a different skew angle will result in slightly altered (rotated) shape images for the same

symbol.

Many of the earliest attempts at identifying document skew angle exploited the regu-

larity with which the lines of text were oriented on a page. By using the Hough transform

[12], pixels aligned along an arbitrary skew angle could be found fairly efficiently. The

Hough transform works by transforming each pixel in image space, into a sinusoidal curve

in an equivalent parameter space. Specifically, each pixel xi, yi in the image gets mapped

to a sinusoidal curve r = xi cos θ + yi sin θ where the parameters define a straight line

lying a distance r from the origin, and oriented perpendicular to the angle θ. The nice
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Figure 2.5: Sample skewed input document page
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property resulting from this representation is that image points that lie along the same

straight line, will have their sinusoidal curves intersect at a common point in parameter

space. By looking in this space for places where many of the curves intersect, one can

then determine the dominant angle of skew of the page.

In 1987, Baird [2] described a method for skew estimation that first calculated the

connected components of each page image (see Chapter 3 for a discussion of how con-

nected components can be found). By selecting the bottom middle co-ordinate point of

the bounding box around each of these components, the number of these points found

to lie near lines of a particular angle can be found. As the angle is changed, the squared

sum of the number of points lying along that angle will change, but it will be maximal

near angles that constitute dominant text orientation lines. Instead of attempting to

sum pixels along some arbitrary angle, the image is first sheared vertically by the angle,

and a projection is taken horizontally to estimate the number of pixels lying along that

particular line. Finding this maximal sum value then amounts to finding the skew angle

for most document images.

An alternate approach that works independently of the amount of skew was intro-

duced by Hashizume [19]. Under the assumption that the distance between lines of text

is greater than the distance between characters on the same line, their approach sets

out first to determine the connected components on a page, then find the angle of the

straight-line drawn to connect the centres of the bounding boxes of the single nearest

neighbour of each component. A histogram of these angles is constructed, with the modal

value representing the dominant document skew angle. This fairly simple approach works

well provided the document is mostly text, though its performance can rapidly deterio-

rate when image regions are included, or many touching characters are present yielding

interline distances roughly on par with the perpendicular distance between these multi-

character components.

In 1995, Bloomberg et al [4] introduced and applied to 1,000 page images, a slightly



Chapter 2. Initial Document Processing 24

modified version of skew detection first presented by Postl in a patent application [46].

Postl and Bloomberg’s implementations are similar to Baird’s in that they all work to

find skew angle by locating lines in the image. However, instead of taking squared

sums across the rows of individual connected components as the angle changes, Postl

and Bloomberg take the difference between the row values when summing across all

foreground pixels along a particular line as the angle changes. Bloomberg increases the

efficiency over Postl’s original implementation by first subsampling and smoothing the

image. The dominant angle can then be found as the angle that leads to the largest

difference between subsequent row sums. This is easy to understand if one imagines

comparing the sum of pixels along an aligned row of text with the sum of pixels along a

row between lines of text. The former will have a large sum, while the latter will have

a minimal or zero sum. If the angle is skewed so that rows now cross text lines, this

will end up smoothing out the difference in such sums since both rows will likely cross

portions of the text that both cover characters, and the blank spaces between lines of

characters.

More recently, Amin and Wu [1] introduced an approach to skew detection that was

shown to be robust to document images that contain a mixture of text and graphics, even

documents with regions belonging to the same page that are skewed in different directions.

After identifying regions of the input image in a bottom-up fashion (see Section 2.4 for a

discussion of region detection), the regions are rotated, and a rectangular bounding box

is drawn tightly around the region to be deskewed. Their method exploits the property

that even though the area of the region itself remains constant during rotation, the area

of the bounding box is at a minimum when the object is aligned in one of the four

principal directions. By trying all possible rotations in a fixed degree of increment, the

minimum can be found. Drawbacks of their approach include not handling regions that

do not contain a primary direction (like circular regions), as well as the computational

cost required to try each possible rotation for each region of interest.
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For the most part, many of the approaches discussed can accurately identify the

skew angle in documents that are mostly text written in a single direction, however

most methods of correcting this skew often involve nothing more than a single shear

transformation on the image pixels. While this will orient the lines of the text, the

individual character images may become inconsistent as seen in the sample in Figure 2.6

(take a close look at some of the e images for instance).

2.4 Geometric Layout Analysis

Once a page has been digitized, denoised, and deskewed, the final remaining preprocessing

task involves identifying the regions of text to be extracted from the page. Like most of

the other phases of document analysis, there are many ways to attempt to tackle this

problem, and doing so leads naturally into the follow-up tasks of isolating and segmenting

the lines, words, and individual character images for the purposes of recognizing them.

Textual region identification can become an intricate procedure due in part to the endless

variety of document images that can be presented. While large, single column paragraphs

of body copy may be fairly trivial to pick out of a document image, this process becomes

increasingly more complex as one tries to extract the contents of tables, figure captions,

text appearing within a graph or halftone image, etc. In multi-column documents and

documents containing figure captions, determining the correct reading order of the text

is non-trivial. Care must be taken to ensure that the recognized text does not insert a

figure caption between two body text paragraphs, or does not cross column boundaries

resulting in non-sensical text strings interleaved from disparate paragraphs. The entire

textual region and reading order identification process is often given the term zoning

[8]. In the discussion that follows, we use the term “region” to mean a maximally sized

grouping of neighbouring pixels such that each pixel in the group belongs to the same

class type, e.g. the group of pixels composing a paragraph of text, or a graph for instance.
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Figure 2.6: Resultant deskewed document page, after using the method outlined in [4]
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We assume that region boundaries are rectangular in nature unless otherwise stated.

Identifying textual regions first requires that the pixels on a page become partitioned

into disjoint groups (a process called page segmentation). Methods for performing this

grouping often fall under one of two opposing paradigms. In top-down approaches, all

the pixels are initially placed into the same group, which is repeatedly split apart until

each group contains pixels resembling a homogeneous region of the page. In contrast,

bottom-up methods initially place each pixel into a separate group, which are merged

together until a sensible region partitioning exists.

The run-length smoothing algorithm introduced by Wong et al [60] was one of the

first bottom-up approaches used to identify page regions. This simple algorithm makes

two passes over a binary input page, one smearing the foreground pixels vertically and

the other horizontally, resulting in two intermediate copies of the original image. The

smearing process leaves the original foreground pixels untouched, but for each background

pixel that is closer than some threshold number of pixels from an adjacent foreground

pixel, its value is changed to a foreground intensity (the remaining background pixels

retain their original intensity). These two intermediate images are overlaid, and a logical

AND operation is performed on the overlapping foreground pixels to produce a final

intensity image upon which a second horizontal smearing and connected components

analysis is run to determine final region boundaries.

One of the earliest top-down approaches introduced by Nagy and Seth in 1984 [39],

attempted to carve a document into regions by recursively performing either a horizontal

or vertical cut inside of the regions defined by previous cuts (with the cut performed

in the direction opposite the previous cut). This led to a data structure representation

called an XY-tree, whose nodes represent rectangular page subregions (the root being

the region defined by the entire page). The children of a given node are determined by

summing the foreground pixels across that region in a single direction, then scanning

down that sum for large valleys or runs of consecutive minimal value. Runs longer



Chapter 2. Initial Document Processing 28

than a particular threshold are identified, and cuts are made at their centres so that

new child regions are created between successive cuts. This process then repeats by

summing across these child regions in the orthogonal direction and cutting until no

valleys larger than the threshold length remain. The leaves of this tree then represent

the final set of segmentation rectangles for the page image. Often, two different thresholds

are employed, one for the horizontal cuts and one for vertical reflecting the difference in

gap sizes between foreground pixels in each direction. This work was later extended by

Cesarani et al [9] to process subregions inside enclosed structures like tables. One of the

biggest drawbacks to the traditional XY-tree approach is its failure to segment a page

that contains long black strips around the margins when scanned (see the discussion in

Section 2.2 for further details). Such noisy regions prevent the appearance of valleys

when sums are taken perpendicular to them and this may halt the cutting process for

that region [52].

The docstrum approach introduced by O’Gorman in 1993 [43] is an alternate bottom-

up strategy for page layout analysis that shares some of the same initial processing steps

as Hashizume’s method for skew estimation [19]. First, the connected components of

a page are found, then separated based on size (histograms of bounding box size are

created so that large characters like those appearing in document titles are separated

from body text written in a smaller font). Within a particular size range, the k nearest

neighbouring components are found for each component based on the Euclidean distance

metric as measured from component centroids, with the length and orientation angle

recorded. Typically k is set to a value around 5, though values closer to 2 or 3 can be

used if only the lines of text are required. Each nearest neighbour pairwise distance is

plotted as a point extended a radial distance from the centre, and oriented in a particular

angle. The orientation angles are quantized to lie in the range [0, 180◦), and a mirror

point is plotted, rotated by 180◦. The resultant symmetric polar plot (called a docstrum

plot) will typically result in 4 to 6 clusters of points that will lie in a cross shape if
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the document has a 0◦ skew angle. The relative orientation of these clusters can be

used to determine overall page skew, as well as estimate inter-character, inter-word, and

inter-line space width. After page skew is estimated, text lines are found by forming

the transitive closure on neighbouring components lying roughly along the skew angle.

The centroids of each resultant group component are joined by least squares fit straight

lines. These text lines are then merged by finding other text lines that fall within a small

perpendicular distance threshold, and lie roughly parallel (as measured by a parallel

distance threshold). Unlike some of the previously discussed approaches, the docstrum

method does not require an explicit hand-set threshold for determining inter-character

and inter-line space width estimation, instead this is found automatically as part of the

process. Another nice feature of this approach is that skew estimation is found as part of

the process. It can easily be extended via a preprocessing stage to run within subregions

of a page, allowing one to handle separate sections of a page that contain different skew

angles. A major drawback of the docstrum approach is that it requires prior identification

and removal of images and other graphics from the page before processing (which really

defeats the purpose of using it to separate textual from non-textual regions).

A reliable page segmentation strategy that is not limited to rectangular shaped re-

gions is the area Voronoi diagram approach introduced by Kise et al [27]. Connected

components are found, then the outer boundary along each of these components is sam-

pled at a regular interval. A set of edges is circumscribed around each sampled point

creating a Voronoi region V (p), defined as in Equation 2.1.

V (p) = {x|d(x, p) ≤ d(x, q), ∀q 6= p} (2.1)

In Equation 2.1 p, q are sample boundary points, x is a point on the page, and d(a, b) is

defined to be the Euclidean distance between points a and b. Thus, the boundary Voronoi

edges lie exactly midway between the sampled point and its closest neighbouring sample

point. The edges created between sample points belonging to the same component are
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deleted, resulting in an area Voronoi diagram. An example of this is shown in Figure 2.7

below

Figure 2.7: The area Voronoi region boundaries found for a small text region. Taken

from [27]

To create the final region boundaries, further Voronoi edges are deleted based on

the area and distance between corresponding connected components. If the components

are close together and of roughly similar area, then their connecting edges are removed.

The Voronoi approach to page segmentation has several nice properties, including being

skew and page resolution independent. This approach works equally well without first

deskewing the document, and handles arbitrarily large skew angles. It is also one of

the few methods to handle non-rectangular (and non-Manhattan) regions like those that

often appear in magazines. One of the downfalls of this approach is that it typically

does not output rectilinear region boundaries (thus more memory is required to describe

their locations), it also tends to oversegment or fragment homogeneous sections of a page.

Titles containing larger inter-character spaces than the rest of the document often end up

being split into multiple region boundaries for instance. Fortunately, oversegmentation

has a minimal impact on character recognition provided that each region is recognized

as textual, and is preferable to the opposite problem of undersegmentation leading to

merged regions (which cannot be corrected).

To get a sense of the relative merits and claims of various page segmentation algo-

rithms, Shafait et al [52] ran a detailed performance comparison. A baseline approach in

which each test page was left as a single region was compared against 6 popular top-down
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and bottom-up approaches including XY-tree cutting, run-length smoothing, whitespace

analysis, constrained text-line finding, docstrum, and area Voronoi diagram based ap-

proaches. The authors calculated errors based on text line and ignored non-textual region

detection completely. For each contiguous line of text, an error was counted if it either

did not belong to any region (missed), was split into two or more region bounding boxes

(split), or was found contained within a region bounding box that also contained another

horizontally adjacent text line (merged). Note that multiple text lines merged vertically

within a single region boundary were not counted as errors, thus for single column pages,

the dummy algorithm would achieve a low error score. The error score was defined to be

the percentage of text-lines that were either missed, split, or merged. Each algorithm was

tested against 978 page images from the University of Washington UW-III database [45].

The set was split into 100 training and 878 testing images, with the training set used

to find optimal parameter settings for each method. While no single method was shown

to be significantly better than the others (due to large performance variation across in-

dividual pages), both the docstrum and Voronoi approaches had average optimized test

performance scores lower than 6%. All approaches performed better than the dummy

implementation, but both XY-cuts and smearing tended to perform the worst (average

test scores of 17.1 and 14.2% respectively).

Once a suitable region partitioning of a page has been found, each region must then

be labelled as belonging to a particular region type (a process often termed page or region

classification). For basic character recognition purposes, distinguishing between textual

and non-textual region types is the minimal requirement. A naive and inefficient way of

determining this involves simply running a character recognition process on each region,

and if a significant portion of confident mappings can not be found, the region should be

discarded as being non-textual. Less involved methods of determining whether a region is

textual exploit the periodic structure of pixels inside these regions. For example regions

written in Latin-based alphabets will consist of approximately evenly spaced horizontal
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lines, between which no foreground pixels appear. Analyzing the Fourier spectra, or

horizontal projection profile of such regions should yield a distinctive, repeatable pattern

when compared with that of non-textual regions like graphs, or halftone images [13].

Most of the methods for determining this distinction combine simple region features like

mean foreground pixel run-length [60], with a few rules or cases to label a region as

textual or not.

Instead of simply separating text from non-text regions, a more involved process

called logical layout analysis can be used to differentiate between regions of the same

broad type (for instance distinguishing a title text region from an abstract, or footnote

region). Laven et al [30] showed that using a simple logistic regression classifier on many

hand-picked region features, one could attain fairly accurate fine-grained region identifi-

cation of technical documents like journals and conference proceedings. This approach

was able to distinguish between 25 different region types including article titles, page

numbers, equations, body text, graphs, references, etc. Though this fine-grained distinc-

tion is most useful for other tasks like information retrieval and document classification,

it still provides additional information that can aid in the character recognition process.

For instance, knowing in advance that a text region has been identified as a page num-

ber allows one to significantly restrict the set of output symbols (to numbers or roman

numerals), and thus reduce the likelihood of a misclassification.

2.5 Our Implementation

In all experiments carried out thus far, the input images have already been digitized and

converted to an appropriate image representation (like TIFF). Whenever a full colour

or grayscale page image has been given, we have binarized the document using a simple

global threshold. Thus far we have also dealt exclusively with images that contained

plain backgrounds, so text separation from coloured or textured backgrounds was not
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investigated.

In our experiments, many of the pages given were generated from perfectly aligned

PDF originals, thus page deskewing was largely not implemented. When testing against

some of the ISRI OCR datasets [42], page images were first deskewed using the implemen-

tation in the Leptonica2 image processing libraries. This library uses the implementation

discussed by Bloomberg et al [4].

For the majority of our experiments, we were given ground-truth region information.

In such cases we made direct use of this instead of trying to detect textual zones upon

which to perform further processing. If these regions were available for a page, our

implementation would remove the foreground pixels from all areas on the page, except

those regions that were labelled as text. When testing documents for which no ground-

truth region and zoning information was available, for the most part we made use of the

JTAG [29] software package to automatically find a list of textual regions. The JTAG

software implementation performs page segmentation using recursive cuts applied to the

XY-tree (the horizontal and vertical cutting thresholds were set manually, depending on

the document being processed). After textual regions were identified, their reading order

was set manually by inspection. The results of running region detection on the input

image originally given in Figure 2.6 is shown in Figure 2.8.

2http://www.leptonica.org

http://www.leptonica.org
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Figure 2.8: Text regions and reading order identified for input image in Figure 2.6



Chapter 3

Segmentation and Clustering

Once a page has been suitably digitized, cleaned up, and had its textual regions located,

it is ready to be segmented so that the individual symbols of interest can be extracted and

subsequently recognized. In this chapter we focus on locating these isolated character

images and related features like word and line boundaries. We also describe our approach

to grouping these isolated images together so that there is only one (or a few) such rep-

resentatives for each character symbol. It is at this stage, that our character recognition

strategy begins to distinguish itself from classical or historically driven approaches to

recognition. Such systems typically do not make attempts to cluster similar shapes to-

gether, instead they move directly to the recognition of isolated character images (via

image shape features).

3.1 Isolated Symbol Image Segmentation

With non-textual and other noise regions removed, this section discusses how a document

image is further segmented so that each region corresponds to the bitmap of a single

character. In the early days of OCR, input documents were heavily constrained so that

individual characters could be isolated without too much difficulty. Many forms contained

rectangular bounding boxes, forcing the user to type or print a single character per box.

35
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Most of the fonts initially designed for OCR were written in a fixed pitch; each character

image had the same pixel width, with identical spacing gaps placed between characters.

The segmentation task became problematic as systems began to tackle variable width

fonts, kerned characters, and noisy photocopied documents. In such cases, symbols

were sometimes seen joined or smeared together, or sometimes fragmented into multiple

pieces. Using too low of a threshold on a noisy grayscale or colour scanned document

would often turn too many pixels into foreground pixels leading to touching symbol

images. By contrast, using too high of a threshold would end up breaking single characters

into multiple pieces. A compounding problem for isolating the symbols of Latin-based

languages is that some of them are composed of multiple pieces, as can be seen in the

characters i, j, punctuation symbols !, :, ?, symbols containing diacritical marks

like é, and other symbols such as =, %, ". As a result, a procedure that treats each

blob of touching foreground pixels as an individual character is an insufficient means

of determining isolated character boundaries (though it is often a useful first step). It

should also be stressed that the performance of isolated symbol image segmentation plays

a key role in the final accuracy of a character recognition system, with errors at this stage

reported as making up a large portion of overall recognition errors [7]. This importance

was exemplified in the 30% drop in performance of Calera’s OCR system when different

spaced text paragraphs were photocopied nine times and scanned [5]. This image has

been reproduced in Figure 3.1.

3.1.1 Connected Components Analysis

A common approach to identifying isolated symbol images, begins by grouping together

touching (connected) pixels to create a set of connected components. Given a binary

input page P , individual pixels can be represented by p(x, y) = v where x denotes the

horizontal and y the vertical distance (measured as the number of pixels) away from

the origin of the page. Often, this origin is set to the top-left corner of the page. The
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Figure 3.1: The impact of character spacing on recognition performance. Taken from [5]

pixel value v for binary intensity images implies that v must be one of 0, or 1 with the

convention (used throughout the remainder of this thesis) that foreground pixels will

have v = 1, and background pixels v = 0. Using this description then, a foreground pixel

p(x, y) is said to be connected to a second foreground pixel p(x′, y′) if and only if there is

a sequence of neighbouring foreground pixels p(x1, y1), . . . p(xn, yn) where x = x1, y = y1

and x′ = xn, y
′ = yn. Two pixels p(xi, yi) and p(xj, yj) are said to be neighbouring under

what is called an 8-connected scheme exactly when |xj − xi| ≤ 1 and |yj − yi| ≤ 1. The

same two pixels are considered neighbouring under a 4-connected scheme when one of

the following two cases holds: either |xj − xi| ≤ 1 and |yj − yi| = 0, or |xj − xi| =

0 and |yj − yi ≤ 1. For 4-connected schemes, neighbouring pixels must be vertically

or horizontally adjacent, whereas in 8-connected schemes, neighbouring pixels can be

vertically, horizontally, or diagonally adjacent. Both of these schemes are illustrated

in Figure 3.2. A single connected component ci is then defined as a set of foreground
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pixels such that each is pairwise connected with each other pixel in that set. The pixels

of each connected component are assigned the same unique label (which we assume is

a positive integer), and so the task of connected components analysis then is to turn

some input image P of pixel intensity values, into a second labelled image P ′ where each

foreground pixel is assigned the value of the connected component to which it belongs

(background pixels are typically all given the same label like 0, which is distinct from

each foreground label). Each connected component can be thought of as a member of

the same equivalence class, where the equivalence relation between pixels is based on the

concept of them being 4 or 8-connected. To illustrate this, a small sample binary image

is presented, along with its resultant 8-connected components labelling in Figure 3.3.

Figure 3.2: A single pixel and its 4-connected neighbourhood (left), and 8-connected

neighbourhood (right)

There have been several connected components implementations over the years, one

of the earliest being that attributed to Rosenfeld and Platz [50]. Their approach involves

carrying out an initial sweep over the input binary image to construct an intermediate

labelled representation. Conflicting labelled regions are then resolved with the aid of

an external equivalence table. A second pass over this intermediate representation is

performed to fix-up conflicting labellings. Given an input binary image P , the first

sweep visits the pixels in raster scan order (left to right and top to bottom), creating the

intermediate image P ′ according to the recurrence in Equation 3.1
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1 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1

1 1 1 1 0 0 1 1

0 0 1 1 0 1 1 1

0 0 0 0 0 0 0 1

1 1 0 0 0 0 1 0

0 1 1 0 0 0 0 0

0 1 0 1 0 0 1 0

1 1 1 0 0 0 0 0

1 1 0 0 1 1 1 0

1 0 0 1 1 0 0 2

1 0 1 1 0 0 0 2

1 1 1 1 0 0 2 2

0 0 1 1 0 2 2 2

0 0 0 0 0 0 0 2

3 3 0 0 0 0 2 0

0 3 3 0 0 0 0 0

0 3 0 3 0 0 4 0

3 3 3 0 0 0 0 0

3 3 0 0 5 5 5 0

Figure 3.3: A Small binary input image (left), and its resultant 8-connected components

labelling (right)

P ′(x, y) =



0 if P (x, y) = 0,

v if P (x, y) = 1 and at least one of P (x− 1, y), P (x, y − 1) or
P (x− 1, y − 1) = v,

vmax+1 otherwise.

(3.1)

The recurrence in Equation 3.1 assumes an 8-connected neighbour strategy, with vmax

denoting the largest label value seen while scanning pixels up to that point. When the

second case is encountered (it occurs when the label seen in one of the previously explored

neighbouring pixels is being extended), if the neighbours have been assigned more than

one differing label value, then the lowest value found is assigned to the current pixel

and a new entry is added to an equivalence table denoting that these differing labels

are equivalent. Figure 3.4 displays the intermediate result of processing the input image

in Figure 3.3 according to the recurrence in Equation 3.1 (entries denoted with a ∗
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represent conflicts that get added to the equivalence table). At the end of this sweep, the

equivalence table is then processed to determine which labels are equal and can therefore

be removed. The labels are partitioned into sets such that all elements of a set belong

to the same equivalence class and are therefore equal. Given an equivalence table entry

containing two labels vi, vj, if neither can be found in any of the existing sets, a new set

is created and both labels are added to it. If only one of them is found in an existing

set, then the other label is added to this set. If both of them are found in different

sets, then the contents of these sets are merged into a single large set. If both vi, vj

are already in the same set, nothing further is done. At the end of this processing, a

mapping is created such that for each set S, the smallest valued label is extracted, and the

remaining labels are listed as mapping to this smallest label. At this point, an optional

step involves updating the mappings so that there are no gaps in the labels assigned to the

components. In the example in Figure 3.4, the label value 2 ends up being merged with

label 1, so the remaining label values larger than 2 can be mapped to a value 1 smaller

than the value they currently are being mapped to. Having a consecutive sequence of

labelled connected components can make further processing easier (for calculating the

total number of components for instance). The final step then is to perform a second

sweep across the intermediate labelled representation P ′ and for each value, check if it

should be updated based on the listed mapping for that label.

One downside to this approach, is that the size of the equivalence table can potentially

grow to be quite big for certain large images. To attempt to address this, Lumia et al

[35] introduced a modification to Rosenfeld’s algorithm that ensured the size of the

equivalence table remained small. They too employed a two sweep procedure, however

instead of waiting until the first sweep was complete to process the equivalence table, they

do so at the end of each line. This keeps the size of the table down, as certain conflicts can

be resolved and corrected right away (without the second sweep). While the first sweep

proceeds in raster scan order, propagating remaining equivalences downward, the second
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1 0 0 2 2 0 0 3

1 0 2 2 0 0 0 3

1 1∗ 1∗ 1∗ 0 0 3 3

0 0 1 1 0 3 3 3

0 0 0 0 0 0 0 3

4 4 0 0 0 0 3 0

0 4 4 0 0 0 0 0

0 4 0 4 0 0 5 0

4 4 4 0 0 0 0 0

4 4 0 0 6 6 6 0

1 2

1 2

1 2

Figure 3.4: Resultant intermediate representation and equivalence table after performing

a first sweep of the classical connected components algorithm [50] over the input image

in Figure 3.3

sweep starts on the last row of pixels, and moves its way upward, resolving equivalences

and updating on a per line basis. In experimental tests, performance in both the amount

of CPU time, as well as the amount of space required to carry out the labelling (measured

by the required number of page faults), was shown to be significantly better than the

original approach by Rosenfeld [35].

Today, most uncompressed page images (even those scanned at high resolutions), can

reside and be manipulated comfortably in memory, something that most modern algo-

rithms take advantage of. A very simple recursive labelling algorithm [53] that operates

this way, first processes an input binary image P by negating it so that foreground pixels

are assigned the value -1 (and background pixels retain their 0 value). This negated

image P ′ has its pixels processed in raster scan order according to Algorithm 3.1.1.
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Algorithm 1 Recursive Connected Components Algorithm

function RecConnComp(P )

LP ← Negate(P ) . this flips foreground pixels in P to -1

label← 0

LP ← FindComps(LP, label)

return LP . the final labelled component image

end function

function FindComps(LP, label)

NumRow ← NumRows(LP ) . determine the number of rows in LP

NumCol← NumCols(LP ) . determine the number of columns in LP

for r = 1 to NumRow do

for c = 1 to NumCol do

if LP (r, c) == −1 then

label← label + 1

LP ← Search(LP, label, r, c)

end if

end for

end for

return LP

end function

function Search(LP, label, r, c)

LP (r, c)← label

nbs← Neighbours(r, c) . determine adjacent neighbour row and column offsets

for each (a, b) ∈ nbs do

if LP (a, b) == −1 then

LP ← Search(LP, label, a, b)

end if

end for

end function
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3.1.2 Line Identification

Assuming that the input document image contains regions that are predominantly tex-

tual, it becomes beneficial to be able to discern the boundaries of each line of text. For

instance it can be a useful aid in skew correction or verification procedures, and it also

helps determine useful character properties like baseline and x-height offset. For lan-

guages with a left-to-right reading order, text lines are often long horizontal sections,

and the baseline defines the horizontal position that the bottom pixels of most symbols

just reach. Symbols that extend below this baseline offset are called descenders, and for

the Latin alphabet this includes symbols like y, j, p. The x-height is also a horizontal

line (for left-to-right reading languages), which indicates were the topmost pixels of a

majority of symbols lie. It is so named because the offset position represents the height

of a lower-case x symbol as measured from the baseline. Symbols that extend above the

x-height offset are called ascenders, and include Latin alphabet symbols like i, t, d as

well as all digit and upper-case character symbols. Not all text found in document images

is written in a strict left-to-right ordering. Many languages are read in a top-to-bottom

fashion, which results in vertical lines of text. For spatial or stylistic reasons, text lines

can be found oriented in arbitrary directions, making their identification quite trouble-

some. In the discussion that follows we restrict ourselves to methods that attempt to

find horizontal text lines, though first performing script and language recognition on a

document image (as is discussed in Chapter 4) could be used to determine the typical

text line orientation.

Text line identification can be thought of as a particular flavour of region detection,

and a lot of the page segmentation strategies can be used directly to determine individual

lines of text. For instance, by simply choosing a small enough vertical cut threshold, the

recursive XY-cuts procedure [39] should yield individual regions for each text line on most

well spaced textual documents. The docstrum approach by O’Gorman [43] can find text

lines by performing the transitive closure roughly along the skew angle estimated from
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neighbouring connected components. Care must be taken when a document contains

multiple columns of text (like some technical articles or newspapers). In such cases if

the text in these columns is aligned, a single horizontal line can mistakenly be identified

instead of two separate lines that happen to be horizontally adjacent. Reading order

information from zoning and page layout (see Chapter 2), as well as horizontal whitespace

gap size can be used to ensure line boundaries are correctly identified.

3.1.3 Segmenting Symbols from Components

The issue of having more or fewer than one symbol image contained within a found

connected component bounding box must be resolved prior to character recognition to

ensure accurate results. Obviously this resolution process is dependent on the language

and subsequent alphabet of symbols present, but for the most part it requires updates

that both split individual components into two or more components, as well as merge

together the bounding boxes of multiple components into a single symbol image compo-

nent. Unless the document is extremely noisy or poorly spaced, this breaking apart of

multiple touching symbols belonging to the same connected component is only required

in the reading-order direction of the document (horizontal for Latin-based languages).

Splitting Fused Symbols

There have been many approaches to segmenting document images into individual sym-

bols, some of the earliest of which have attempted to exploit properties like the height

and width of typical characters [20]. Starting from the bounding boxes of connected com-

ponents, measuring their average width and looking for boxes that are significantly wider

than this mean value are often good indications of a multiple symbol component for doc-

uments written in a left-to-right reading order based language, particularly when written

using a fixed pitch font. Such a method breaks down when a document is written in a

variable width font containing tightly kerned touching symbols or ligatures like fi that
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end up being narrower than single wide symbols like w. Several other early approaches to

isolated symbol segmentation did not start from connected components, instead choosing

to vertically sum the pixel values of identified lines of text looking for minimal values

indicating probable segmentation points [7] (see the example in Figure 3.5). When de-

termining whether or not to split apart a component containing multiple symbols in a

known language, Fujisawa et al [16] showed that the contours of the foreground pixels

can be followed to determine potential segmentation points. They tested their approach

against the segmentation of touching hand written numerals and found that 97% of the

time, the numerals end up joined in just one of three different patterns. If at least one

of two touching symbols contains a rounded contour at the join point, this can often be

identified by performing successive erosion operations on the pixel images [18] (though

it will fail if the joined symbols happen to touch along a straight line, such is often the

case with serif characters). Once an ideal set of segmentation points has been identified,

selecting the best among them can usually be accomplished by exploiting the fact that

most symbol images appear multiple times in a document. Each potential segmentation

can be tried in turn, and the pieces that result from that segmentation can be searched

for matching images among the rest of the components. While a ligature like fi will of-

ten result in a single fused component, other pairs of characters like fr or in are usually

separated into separate components allowing one to split the ligature and find matches

among individual f and i components.

Figure 3.5: Fused connected component, with horizontal and vertical projection profiles

shown, as well as potential segmentation points found by minimal projection profile
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Merging Broken Symbols

Identifying and merging components containing only parts of a symbol is complementary

to solving the problem of splitting fused symbols above. A lot of the same properties

can be used to determine when two or more connected components should be merged.

The merger process is highly language and alphabet dependent. As will be discussed in

Section 3.4.1, for the English language, several symbols composed of multiple connected

components can typically be recombined based on their horizontal overlap and vertical

proximity. Broken symbols are particularly common in hand printed text as the writer

constantly picks up the pen between strokes, leading to small gaps between parts of

symbols. Poor scanner quality coupled with too high of a binarization threshold can

fragment symbols. Shridhar and Badreldin [54] found that for hand printed numerals,

these broken symbols could often be found by following contour pixels and looking for

horizontal or vertical discontinuities (though this approach will not work if starting from

a connected components representation). Another simple approach involves looking for

connected components that lie close to one another, then determine if this temporarily

joined component happens to match another component in shape, size, and line-offset.

The computation time required to carry out this check can become quite large, and

care must be taken to ensure that two separate symbols are not accidentally merged.

For example when considering separate components c and l under certain tightly spaced

fonts, this can often look very similar to the single symbol d, though these symbols should

not be merged in such a case. Shape information alone is not sufficient to determine

whether a merger should be made in such a case, instead the segmentation decision may

have to come after, or as part of the recognition process.

Recognition Based Segmentation

More recent research has highlighted the strong interconnectedness of character segmen-

tation and recognition processes such that many segmentation strategies actually depend
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on an initial character recognition score to guide which components should be further

split and re-segmented [38]. Such procedures can iterate between the two tasks, perform-

ing classification on an initial sequence of connected components, then those components

with low scores are searched for potential split points (or merges with neighbouring low

scoring components), updated, and reclassified.

Instead of calculating connected components, Lecun et al [31] took words and lines

of input text, and proceeded to oversegment them into many pieces with each potential

segmentation point representing a node in a directed, acyclic graph. Edges are drawn

between these nodes to generate several possible segmentation scenarios (each valid path

through this graph defines a single segmentation of the word or line of text). The best

such segmentation is found via the Viterbi decoding algorithm [15], where the cost along

each edge (which represents some portion of pixels from the line), is determined by the

recognition score assigned by a trained convolutional neural network.

Holistic Methods

Holistic methods attempt to bypass the issue of finding a suitable character segmentation

by considering words as the atomic units of recognition [7]. These methods exploit the

fact that for documents written in languages whose atomic symbols represent phonemes

or portions of words, the space between these atomic symbols may be small enough

that some of them end up touching, but the spacing between groups of these symbols

representing the words are almost always separated by a recognizable gap. Thus each

word can be identified as one or more connected component, alleviating the problem of

having to identify and locate suitable split points in the components. A major downside to

this approach is the explosion in the size of the alphabet since distinct atomic “symbols”

now represent words instead of isolated characters. As a result, the use of holistic methods

is typically employed when the vocabulary is of a small, fixed length (like a cheque reader

designed to read numerical amount strings or dates).
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3.2 Clustering Components

After preprocessing and the determination of a reasonable set of lines and connected

components has been carried out on each page of the document image, the next step

involves grouping or clustering these components together. This clustering serves two

major purposes. First, if done in such a manner that each component represents a single

symbol and only components representing the same symbol end up in each cluster, then

recognition of the entire document boils down to recognition of the single symbol in each

cluster (since the label determined for a single cluster can then be applied to all of its

elements). Secondly, an accurate clustering allows one to determine statistical properties

and features of the symbols that appear in the document to be recognized. Counts based

on how frequently each type of symbol is seen, as well as a sense of what symbols tend

to follow what other symbols can be taken. This information forms the backbone of our

contextual approach to character recognition, so the precision with which components

can be clustered goes a long way in shaping the overall accuracy of our recognizer.

The clustering of arbitrary objects can proceed in one of two ways. In partition

based approaches all the objects are grouped during a single pass, whereas in hierarchical

approaches, the set of clusters produced at each stage is a result of refining the clusters

determined in a previous stage. Hierarchical clustering approaches are further categorized

depending on whether they work in a divisive or agglomerative fashion. In divisive or

top-down clustering, each object is initially assigned to the same cluster, and at each step

the objects determined to lie farthest (based on some sort of comparison metric that can

be determined for each object), are removed from the original cluster, and placed into

new clusters. This procedure typically repeats until either the desired number of clusters

has been reached, or the differences between the objects falls below the threshold used

to separate them, and so no further changes are possible. In contrast, agglomerative or

bottom-up clustering procedures start with each object assigned to its own cluster. At

each step, objects are compared and those found to lie closest to one another (based
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on some distance criterion) are merged together under the same cluster. Again, this

procedure repeats until the desired number of clusters has been found, or no objects lie

close enough to be merged into other clusters. Hierarchical clustering approaches can be

represented by a tree structure often called a dendrogram. Divisive clustering starts at

the root and works its way down the tree, whereas agglomerative clustering starts at the

leaves, and works its way upward toward the root. In both cases, the tree may be cut

before the leaves (or the root respectively) are reached.

3.2.1 Distance Metrics Used for Cluster Comparison

Clustering objects together requires that they be grouped based on some measure of

similarity. An object belonging to a particular cluster should be more “similar” to each

of the other objects belonging to that cluster, than to any of the objects belonging to any

other cluster. When working with image representations of symbols from an alphabet,

this notion of similarity should attempt to group all instances of a particular symbol

together in the same cluster, without including any instances of another symbol. Since

each symbol image is represented by a matrix of pixel intensity values located by the

co-ordinates of its rectangular bounding box, similarity should be calculated using this

information in some manner. Often, this is carried out by converting the m row by

n column matrix representation into a single vector of pixels of length m × n. These

vectors can then be thought of as defining points in an m × n dimensional Euclidean

space, where each pixel’s value contributes to the final point location along a single

dimension. By representing each symbol image as a point in Euclidean space, this allows

us to determine similarity of two images based on the distance between their defined

points. Many methods for calculating this distance exist, and we briefly introduce a few

of which that we happen to make use of in our implementation.
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Manhattan Distance

The Manhattan distance, also called the L1, city-block, or taxicab distance is so named

since calculating it from a point A to a point B requires traveling at right-angles just like

one would do when driving along a grid of roads that make up the edges of square city

blocks. Formally, if points A and B come from symbol image vectors of length n pixels,

the Manhattan distance DM is defined in Equation 3.2.

DM =
n∑

i=1

|A(i)−B(i)| (3.2)

In Equation 3.2, A(i) denotes the pixel intensity of the ith pixel in symbol image A,

and B(i) denotes the intensity at the same position in image B. Figure 3.6 illustrates

this calculation between two images, both when viewed as pixel intensity matrices, as

well as points in a vector space.

If the input images are both binary, the calculation of the Manhattan distance will

result in a value that is equivalent to the number of pixels that must be flipped in

one image, to make it identical to the other image. This distance is also called the

Hamming distance and originates from work in information theory. This calculation can

be implemented efficiently as the final magnitude of this distance is just the sum of

the values that remain after performing a logical XOR operation between the two input

images (assuming foreground pixels are given a value of 1).

Euclidean Distance

The Euclidean distance metric is typically what one person appeals to when the term

distance is used in its natural or everyday sense. The Euclidean distance between two

points is measured as the length of a straight line used to connect them. For two symbol

image vectors A and B both composed of n pixels, this distance DE is formally defined

in Equation 3.3.
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Figure 3.6: Manhattan distance calculation between two grayscale images

DE =

√√√√ n∑
i=1

(A(i)−B(i))2 (3.3)

The quantities A(i) and B(i) in Equation 3.3 again denote the intensity value of the

ith pixel in image A and B respectively. The image in Figure 3.7 displays calculations of

this distance between two symbols, both when represented as matrices of pixel intensities,

and when represented as points in an arbitrary vector space.

When comparing a symbol image with others to determine a relative ordering, the

squared Euclidean distance is often used for efficiency reasons as it saves having to cal-

culate the square root during each comparison. If the input images happen to be binary

valued, then the calculation of the Euclidean or squared Euclidean distances reduces to

calculation of the Hamming distance since these approaches become equivalent in such a

scenario.

Hausdorff Distance

One of the problems which both the Euclidean and Manhattan distance suffer from when

used to compare symbol images represented by pixel vectors, is that the differences be-

tween corresponding pixels are each given the same weighting. When trying to determine

how similar two symbol images are by comparing corresponding pixel intensities, it would
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Figure 3.7: Euclidean distance calculation between two grayscale images

be advantageous to place a smaller weight on those pixels along the contours and edges

of the symbol being compared, than on the pixels far from these edges. This allows

slight shape-deviations to be penalized less than mark patterns that have very little in

common with the symbol image being compared. One such distance metric that achieves

this weighting is the Hausdorff distance [51]. The Hausdorff distance between two n-pixel

symbol image vectors A and B, is actually determined by calculating two asymmetric

“distances”, one from A to B, and the other from B to A. Intuitively, an asymmetric or

directed Hausdorff distance from A to B is assigned a value that implies that no fore-

ground pixels in A lie more than this value away from the nearest foreground pixel in B

when the pixels from B are superimposed on top of those in A. The “nearest” pixel is

calculated using an underlying distance metric like Euclidean distance. By calculating

this directed distance both from A to B, then B to A and taking the maximum we have

defined a symmetric distance metric that weights mismatches based on how far they lie

from nearby foreground pixels in each image. It does this essentially by charging no

cost for the distance to the nearest neighbouring foreground pixel for the other image in

all cases except for the pixel which is farthest away (and for this it charges full cost).

Expressed formally, the Hausdorff distance DH between two n-pixel symbol images A

and B is defined as in Equation 3.4.
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DH = max(h(A, B), h(B, A))

where

h(X, Y ) = max
i∈X′

(min
j∈Y ′

(d(X(i), Y (j)))) (3.4)

In Equation 3.4, d(x, y) is replaced with the distance value calculated by a suitable

distance metric (like Euclidean distance) between the two intensity values passed. X ′

denotes the set of foreground pixel locations in the input image X, and Y ′ is similarly

defined for Y . Since this calculation only considers distances between foreground pixels,

input images are either binarized or thresholded first so that foreground pixels can be sep-

arated from background pixels. The third image in Figure 3.8 illustrates this calculation

between two symbol images represented by matrices of pixel intensities.

Residual noise found to reside within one of the bounding boxes of symbol images

being compared can greatly skew the Hausdorff distance calculated as even a single

pixel far from any other foreground pixels on the comparison image will create a large

directional distance. To attempt to minimize the impact of noise, often the Hausdorff

distance calculation is relaxed so that when determining the directed distance value

h(X, Y ), instead of finding the nearest pixel that lies absolutely the farthest away, the

nearest pixel distances for each foreground pixel in X are sorted in decreasing order, and

the value found some percentage of the way into this list is used (the first value in this

sorted list gives the farthest distance). By selecting the value 5% of the way into this list

for example gives a tolerance of about 5% noisy pixel values in the comparison image.

Setting the tolerance too high may prohibit distinguishing among symbol images as it

may miss legitimately distinct pixels that actually lie far apart from one another in the

images.
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Figure 3.8: Hausdorff distance calculation between two binary images

3.2.2 Comparing Different Sized Regions

A rather important point not mentioned in the introduction of each distance metric, is

that each assumes that the symbol images being compared are of the exact same size

(have the same pixel dimensions). In any document image, the symbols will have differ-

ent bounding box sizes depending on their shape, font, and point size. Thus the distance

metric used must allow comparison between different sized regions. A simple way to re-

solve this issue involves padding the smaller of the two symbol images with background

value pixels until the bounding box regions are the same size. Determining where to

pad the smaller image then becomes a potential cause for concern, as different padding

schemes could give radically different distance values. A sample range of values com-

puted using the Hamming distance under a few padding schemes is shown in Figure 3.9.

Depending on the scenario, we take one of several different approaches as discussed in

Section 3.4.2.

Even with padding in place, the distance values calculated by any of the metrics

could vary wildly depending on the scale of the regions. A Hausdorff distance value of

5 pixels would almost certainly indicate that two 20 × 20 pixel symbol images are of

different types, however that same value found on two 300 × 300 pixel symbol images

might be small enough to indicate that these symbols should be clustered together. Thus,
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Figure 3.9: Hamming distances found under various padding schemes

the distance value returned must be normalized. This can be accomplished simply by

dividing the value by the area of the smaller of the two pixel regions being compared

(before padding is inserted).

An alternate approach to dealing with different sized image regions involves rescaling

the inputs so that they end up being the same size. Since aspect ratio, and line offset

information should remain fixed, padding will most likely be required around the edges of

these images to ensure that this happens. Most rescaling or size normalization implemen-

tations involve some sort of interpolation where the grid of pixels in the original is scaled

up or down, then sampled. Because the pixels cannot change size, when this grid is mag-

nified or shrunk, it may not align with pixel boundaries forcing some sort of averaging of

original pixel intensities to be calculated to determine new pixel intensities. Depending

on the technique used, this could result in information loss seen in the form of aliasing

effects or jagged contour edges. A further problem specific to character recognition sys-

tems, is that a lot of upper and lowercase characters written in the same font, differ only

in scale (like c and C for example). Rescaling such components may make it impossible

to distinguish upper-case versions of some letters from their lower-case equivalents, thus

reducing recognition performance.
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3.3 Addition of Word-Space Demarcations

In order to carry out our contextual recognition approach over phoneme-based languages,

it becomes important to be able to accurately demarcate word boundaries. This can

be accomplished by estimating the inter-word space width, then looking for connected

components whose nearest neighbour distance exceeds this width.

Figure 3.10 displays a histogram showing the horizontal pixel distance frequency

between nearest neighbour components after clustering a 15 page document scanned

at 196dpi (the fine-mode fax compressed letter 9460 from the ISRI legal letter dataset

[42] was used). As this figure illustrates, this distribution is typically bimodal with

the first peak near the average inter-character space width, and the second smaller and

flatter peak near the average inter-word space width. The range in character and word

space values can be attributed to the variable width font used, as well as different space

widths employed to kern characters and ensure that the text in each paragraph remains

fully justified. To accurately determine where words begin and end we must attempt

to automatically estimate a suitable position in the valley between these two peaks.

Since each document will generate different histograms based on its input resolution and

content, a principled method must be employed to determine this inter-character cut-off

value.

One such principled approach introduced by Huang et al [25] models these histogram

widths as a mixture of 2 Poisson distributions. After calculating the set of horizontal

space widths s1, . . . sN between neighbouring components, parameters representing the

threshold c at which a space width should be considered an inter-word space (as opposed

to inter-character), as well as the rate parameters λ1, λ2 for the inter-character and inter-

word Poisson distributions are estimated. Each space width si is modelled according to

the probability in Equation 3.5
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Figure 3.10: Histogram of horizontal space pixel widths found in a 15 page legal document

with a resolution of 196dpi
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P (si|c, λ1, λ2) = I(si > c) · e
−λ1λsi

1

si!
+ (1− I(si > c)) · e

−λ2λsi
2

si!
(3.5)

In Equation 3.5, the indicator function I(si > c) is used to select which Poisson

distribution will be used. In practice, this function is approximated by the sigmoid

function 1
1+ec−si

to ensure that the overall function remains differentiable everywhere.

Given the list of spaces, gradient ascent is used to optimize the objective function

given in Equation 3.6 which is simply the likelihood of the data. These learned parameter

values found on the same 15 page legal document are indicated by the vertical line and

fit curves shown in Figure 3.10.

Ω(c, λ1, λ2) =
N∏

i=1

P (si|c, λ1, λ2) (3.6)

3.4 Our Implementation

3.4.1 Isolating Symbol Images

Our actual implementation begins by creating a connected components labelled image,

using the simple two-sweep procedure outlined in [50]. We then sweep across the label

image to determine and store the co-ordinates of a rectangular bounding box that just

encloses each component. This allows us to quickly access each component image for

further processing. Starting from Figure 2.6, the image in Figure 3.11 shows bounding

box outlines over the identified connected components.

Neighbour and Line Identification

Our approach to line identification is slightly different than those previously discussed in

Section 3.1.2. Following connected components processing, we attempt to identify and

store the nearest neighbouring component in each of the four principal directions (left,

above, right, and below). Two matrices are initialized with one row per component and
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Figure 3.11: Initial connected component regions identified for an input document image
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four columns. The first will store the label of the nearest component in each direction

(using a dummy label of 0 if no such neighbour exists in that direction), and the second

matrix stores the pixel distance to that neighbouring component (using a value of ∞ if

no neighbour is present in that direction). The first matrix is initialized to 0 everywhere,

and the second to ∞ everywhere. The foreground pixels of the document image are

first scanned from top to bottom along each row, before moving on to the adjacent

column. The connected component label li of the first seen foreground pixel is stored,

and compared with the next foreground pixel found in that column. If it belongs to

a different component lj then the distance d between these two pixels is compared to

determine if either matrix should be updated. For li, if the entry for its row and below

neighbour column is a 0 in the first matrix, or is a value larger than d in the second matrix,

then lj represents the new closest below neighbour to li. The matrices are updated so

that for li’s below neighbour column, the first matrix has a value lj, and the second has

a value d. Similarly, for lj, its above neighbour column is checked and if either its label

value is 0, or its distance value is larger than d, then it gets updated with a values of li and

d respectively. The current foreground pixel gets updated to lj and this process repeats

over each transition. It also repeats over each column until the entire document image

has been processed, and final nearest above and below neighbour labels and distances

have been estimated for each component. A second analogous pass is then employed to

calculate left and right nearest neighbour components and distances, but this time the

scanning is done left to right across each column before exploring an adjacent row. To

ensure multiple column page layouts are handled correctly, this left to right exploration

follows the reading order determined as part of the region detection process in Chapter 2.

Thus at any given time we only explore columns based on the currently identified region

we are attempting to identify left and right neighbours of.

Armed with this nearest neighbour information, we find text lines by first scanning

component bounding box co-ordinate positions to find the component that lies closest
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to the top of the page. For multiple column pages, we actually restrict the search to

within the column currently being identified. We then follow left neighbours of this

component until we find a component with no left neighbour listed (this component

becomes our initial line anchor). The first line region bounding box is initialized to the

co-ordinates of the anchor component, then right neighbours are followed starting from

the anchor. At each step we potentially update the top, right, and bottom line boundary

co-ordinates so that this new component is completely covered. We also attempt to

follow left neighbours of the bottom neighbour of the component most recently added to

the line. If this left-most component happens to match our original anchor component,

then the co-ordinates of the line boundary are updated to ensure they encompass each

of the bottom and left neighbours explored along the sequence. If they do not match,

this different left neighbour has its co-ordinates compared to see if it should be marked

as the next line anchor to start from. This will happen if it lies closer to the top than

any other explored left-most neighbour. During this exploration checks are made to

ensure that we do not end up seeing the same component twice (which can occur if one

component lies completely or partially inside another). If this occurs neighbours and

distances are updated to remove this cycle. This process then repeats moving one step

to the right, updating line boundary co-ordinates and checking the bottom neighbour’s

left-most neighbour, until we reach a component with no right neighbour. At this point

we consider this line complete, associate its line number with each component that has

been seen to lie within its bounding box and repeat on the closest next anchor point.

After this procedure is complete, a reasonable list of lines (for a single column) will

have been found. As a final cleanup step, we search for any remaining components not

found to belong to a particular line number (but that lie within the current column being

processed), then if its co-ordinates completely or partially lie within a single line region,

the line region boundaries are extended appropriately and this component is added. If

a component happens to cross two or more line boundaries, then they are merged to a
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single large line with appropriate boundaries, and the line number associated with the

encompassed components is updated. If an unmarked component does not cross any line

boundaries, a new line is created with the boundaries of that component. For multiple

column pages, this entire process is repeated until lines have been identified in each

column.

To estimate baseline and x-height information, a simple thresholding of the horizontal

profile sum is used. In practice, the baselines of each line are identified as the last row

that has at least 20% of its pixels containing foreground values. The x-height is then

estimated as the modal value found when inspecting each columns topmost foreground

pixel (it must lie above the baseline). The lines, baseline, and x-heights detected when

running our line finding procedure on a small portion of the image in Figure 2.8 is shown

in Figure 3.12.

Figure 3.12: Lines, baselines, and x-heights detected within part of a region identified in

Figure 2.8

One of the benefits of this neighbour following approach is that it should still correctly

identify short lines of text containing a few (or even a single) symbol. It should also cor-

rectly handle lines containing sub and superscripts (as seen in references and equations)

provided that there is at least one pixel separating the highest ascending symbol in one

line from the lowest descending symbol in the previous line. Drawbacks of our imple-

mentation include being limited to rectangular line boundaries, and also the additional

processing time required to perform line detection separate from region detection (though

having a compiled list of nearest neighbours for each component becomes a necessity for

subsequent processing steps).
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Diacritic Merging

As can be seen by the image in Figure 3.11, the result of running connected components

labelling does not always yield isolated character bounding boxes. Broken or fragmented

individual symbols can appear spread over multiple components for a number of rea-

sons, including a symbol actually consisting of more than one connected grouping of

pixels, or because noise or a poor choice of binarization thresholds has split the symbol.

For Latin-based alphabets, we employ a simple yet effective approach to merging frag-

mented components that belong to the same symbol. Using the line information found

in Section 3.1.2, we attempt to merge vertically split components (almost all multiple

component symbols in Latin alphabets are separated vertically with the double quote

symbol " being a notable exception). We merge two such components provided that they

belong to the same line (are contained within the same line boundary), have bounding

boxes separated by no more than a threshold of x pixels (where the threshold is small

and set based on the input document resolution), and have one of the components com-

pletely overlapping the other horizontally. Figure 3.13 shows the updated bounding boxes

that result in performing this merging procedure on one region of the original connected

component sample found in Figure 3.11

Figure 3.13: Updated connected components found for a small region after a vertical

merging procedure has occurred
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3.4.2 Our Clustering Approach

The clustering strategy we employ in our system is a hierarchical agglomerative approach

which starts by assigning each connected component to its own individual cluster. The

centroid image of each cluster is compared against the remaining cluster centroids to

look for potential matches. If the distance between these centroids is small enough, the

clusters are combined. After a matching sweep, the cluster centroids are examined to

determine if they represent fewer or more than one symbol. If this turns out to be the

case, each component in that cluster is then broken apart, or merged with neighbouring

components, and the list of clusters is updated appropriately. We repeat this matching,

splitting, and merging of clusters until no changes are seen amongst the cluster members.

Euclidean Match Sweep

The first clustering sweep that is deployed if a document is found to be fairly noiseless (so

that most symbol images of a given type are nearly identical) is a fast Euclidean distance

sweep between each of the cluster centroid images. When we perform this calculation

against different sized image regions, the smaller is aligned with the top-left corner of

the larger image, and background pixel padding is added to the right and bottom of the

smaller image until they are the same size. All those cluster centroids found to have a

Euclidean distance to the comparison cluster that is smaller than a conservatively set

threshold are merged together into a single new cluster. When components are added

to or removed from a cluster, its centroid is recalculated by re-averaging each pixel’s

intensity over the number of components it now contains.

Since largely textual documents will contain a small set of dissimilar symbols (perhaps

in a few different font sizes or styles), this allows us to drastically reduce the number

of clusters in a short amount of time, particularly when processing longer documents

composed of many pages.
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Hausdorff Match Sweep

A Hausdorff distance based sweep is then performed against the centroids of the remaining

clusters, by isolating the cluster to be compared, then tiling the remaining cluster images

with enough padding between them so the isolated cluster image can be placed over top

of each of the comparison images without any overlap. Since the current cluster image

being tested may be of a different size than the comparison images, we attempt to find

an optimal overlapping alignment between the cluster and each comparison cluster, one

which yields a minimal Hausdorff distance. To determine these optimal image alignment

positions, we convolve the tiled image with that of the isolated image (the isolated image

can be thought of as a correlation filter). Once these positions have been determined

we use them to construct a second tiled image of the isolated template cluster. Since

we use Euclidean distance as our underlying distance metric in computing the Hausdorff

distance, we perform a Euclidean distance transform on both of the tiled images. Doing

so will generate matrices the same size as the tiled images, with values of 0 at foreground

pixel points, and positive values representing how many pixels that particular location

is from the nearest foreground pixel. We can then rapidly compute directed Hausdorff

distances between the isolated cluster and all of the comparison clusters by reading off

the largest Euclidean transform value in the tiled comparison image, when looking only

at the pixels corresponding to foreground pixel position in the tiled template image. We

calculate the other directed distance in an equivalent manner, then take the maximum to

compute the overall Hausdorff distance values. Clusters whose Hausdorff distance values

are found to be smaller than a conservatively set threshold are then combined.

A nice advantage of applying the Hausdorff distance in this manner is that this

distance only gets calculated once between the template and each comparison image,

and is tolerant of slight font and size differences for images of the same symbol, as can

be seen in Figure 3.16.
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Match Threshold Value Determination

Determining a suitable cluster merging threshold for both the Euclidean and Hausdorff

distance sweeps is crucial and a poor choice could vastly deteriorate subsequent recog-

nition performance. If too low a threshold is used, we will end up with several clusters

of the same symbol (each cluster image deviating very slightly from the others) which

will increase the amount of time and space required to carry out the clustering process.

Furthermore, given our contextual approach to recognition, multiple clusters of the same

symbol could potentially skew statistics and counts enough that we end up misclassifying

one or more of these clusters. More significant problems arise when too high of a distance

threshold is chosen. This results in different symbols belonging to the same cluster, which

will guarantee that we end up incorrectly recognizing at least some of the components

belonging to such a cluster (since we assign a single symbol label to each cluster). As

soon as clusters become impure or tainted by multiple symbol images, the problem can

snowball. Cluster centroids will become shifted and so on subsequent rounds components

lying even further away may become included as their distance falls below the threshold

until we end up with very few clusters containing many different symbols.

Because of this, we have chosen conservative threshold values so that we ensure that

we end up with too many clusters rather than too few. In our experiments thus far, we

have set distance thresholds by hand, based on the dataset. The best value to choose is

a function of the input document resolution (and thus the resultant size of the connected

components), the amount of noise present, and the amount of shape deviation of the

symbol images (which will depend on the alphabet and fonts present in the document).

The resultant cluster centroid images (and their frequency) found after a single Euclidean

and Hausdorff based sweep over the components found in Figure 3.13 are shown in

Figure 3.14. Note that this procedure has reduced the initial set of 1735 clusters (one

component per cluster) down to 126 clusters.
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Figure 3.14: Cluster centroids and component counts found after performing a single

Euclidean and Hausdorff distance sweep over the components found in Figure 3.13

Merging Partial Symbol Components

After the initial match based sweeps have been run over each of the clusters, we make

an attempt to identify and correct clusters representing partial or broken symbols. This

merge refinement is carried out by searching for clusters whose components nearly always

list adjacent neighbour components that belong to the same cluster and are separated by

only a small pixel distance. Similarly if the components of this modal neighbouring cluster

almost always list components in the first cluster as the nearest neighbour component

in the other direction, then these matching components are identified as candidates for

being merged together. In the experiments we have run thus far, we explicitly require at

least 85% of each cluster’s components to list the same neighbouring cluster (and vice

versa) as well each cluster having a minimum of 3 components before being selected for

merging. The maximum separation gap threshold between these components was set

based on the experiment being carried out but was usually no more than a few pixels in

length. If all these criteria were met, these adjacent components would be merged, with
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their bounding boxes and neighbours updated and either the clusters themselves would

be merged to a single cluster (if all components matched), or the existing cluster(s) were

kept if they had at least one element that did not match, with a new cluster created to

hold the matching components.

Splitting Multiple Symbol Components

To attempt to split apart components that contain more than one symbol joined hori-

zontally, each cluster centroid is scanned for potential cut points based on its projection

profile and width. At each reasonable point found, the image is temporarily split, and

matches of each half of the image are searched for among the remaining cluster images

(recursively segmenting the right half at appropriate points if necessary). The Hausdorff

distance is usually computed between these temporary splits and the rest of the clusters,

and a suitable threshold is set (usually given approximately the same value as for the

match threshold). If each half of the temporary segmentation matches a cluster with a

distance lower than this threshold, then the split is made at these cut points for each com-

ponent in this cluster, and each of the new components has its neighbours recalculated,

and is added to its matching cluster. The original cluster is removed.

Iterative Cluster Refinement

During each phase of attempted matching, merging, and splitting of the clusters, those

clusters that end up affected in some manner by these operations are marked for further

processing. Each of these marked clusters is then subjected to a subsequent round of

matches, mergers, and splits until no change is seen in cluster groupings. The final set

of cluster centroids (and their frequency) found when iteratively splitting, merging, and

matching the initial set of clusters found in Figure 3.14 is shown in Figure 3.15. Because

this particular input document contains very few split or merge segments, the final set of

cluster centroids only decreases by 3 from that found during the initial matching sweep.
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Up to 50 randomly sampled elements are also shown for the top 20 most frequent clusters

in Figure 3.16

Figure 3.15: Cluster centroids and component counts found after iteratively perform-

ing matches, merges and splits over the initial set of clusters and components found in

Figure 3.14

Word Space Demarcation

Our implementation makes direct use of a two Poisson mixture estimation model

In our implementation, we generate a new cluster whose components represent the

blocks of space between words. The components each have bounding boxes of the same

inter-word estimated space width, and should never contain foreground pixels.
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Figure 3.16: Randomly sampled set of cluster elements from each of the first 20 most

frequent clusters found when processing Figure 2.6



Chapter 4

Context-Based Symbol Recognition

In this chapter we outline our approach to the fundamental task of OCR systems, namely

the recognition and assignment of labels to each isolated symbol image. Most of the time,

these labels are numeric codes that represent entries in standardized symbol tables like

ASCII or Unicode1. In the simplest task where we do not aim to preserve layout infor-

mation, our goal is simply to determine the sequence of mappings in the “reading-order”

of the document (left to right, top to bottom for English) and thus reduce the origi-

nal input document image to an approximation that is understandable by a computer.

Depending on the software tools available and the user’s requirements, auxiliary region

information can be incorporated into the final output format. In many cases the final

recognized result ends up as a file formatted for word processing software, though in spe-

cial applications this output may instead be formatted for spreadsheet, Computer aided

design, sheet music, or other software packages. Graphs, line drawings, and other figures

typically remain as images in the final output. Some attempts may be made to process

and arrange tabular data, though this remains a difficult and active area of research [14].

The traditional approach to inferring the mapping from glyph images to labels pro-

ceeds in a bottom-up fashion. Once these images have been suitably isolated, the raw

1http://unicode.org
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pixel intensities or features taken from these pixel intensities are fed as input into some

sort of shape-based classifier, whose output is the predicted label for that image. Most

current systems are initially trained on a large and varied collection of font shapes so

that the system can recognize the characters in documents written in a wide array of font

faces. Depending on the features and implementation, such classifiers can sometimes suc-

cessfully generalize to untrained fonts, though this only works when the font face differs

by a minuscule amount from sample fonts used to initially train the classifier (see the

experimental results run on Figure 1.4 which are reported in Table 1.2). When faced with

novel input fonts that do not closely resemble any of the trained samples, shape-based

classifiers tend to perform very poorly (though humans have very little trouble distin-

guishing and recognizing such symbol images). This inability to generalize becomes an

increasing problem for shape-based classifiers, particularly as new software tools enable

ordinary users to design and create their own custom fonts2. As a result, the number

and variety of fonts seen in input document images continues to grow, motivating the

pursuit of alternate approaches to tackling the character recognition problem.

One way of guaranteeing that a recognition system will generalize to untrained or

unseen font faces and styles is to have the input document itself provide the font model.

Unless the document is a ransom note, page from a font manual, or extremely noisy,

each occurrence of a particular symbol glyph will remain relatively consistent everywhere

that symbol is used in the document (using multiple font faces and sizes could alter this,

though consistencies still exist). Our clustering approach described in Chapter 3 attempts

to exploit this idea, however the glyph shapes found remain unlabelled (unlike shape-

based classifiers which make use of labelled training samples). Determining the labels

or symbol mapping associated with each cluster requires that we appeal to information

not present in the cluster glyph shapes (since we would like our approach to remain font

neutral). Fortunately, several non shape-based sources of information exist. In particular,

2http://www.fontlab.com

http://www.fontlab.com
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a grammatically correct textual document is subject to the constraints and regularities

imposed by the language it is written in. For languages like English, this implies that

the sequence of symbol images must follow particular patterns that can be exploited.

First, the order and type of words present in constructing a sentence must follow the

grammatical constraints of the language. Thus you would not expect to see a pronoun

directly followed by another pronoun for instance. Furthermore, certain constructs are

more likely to appear than others. In any given sentence you might expect to see several

conjunctions and determiners, but fewer adverbs. As a result of this, common words like

the, of, and will dominate any English document, regardless of its subject or focus.

For languages in which most of the atomic written symbols represent parts of words (e.g.

characters in the English language), these atomic symbols will be similarly constrained.

First, only certain combinations of them will form valid words, and so certain character

sequences will be seen more than others. This gets amplified as certain words appear

more commonly than others. The syntax of a particular language might also dictate

that particular types of symbols appear in certain positions. In documents written in

English, the end of a sentence must be delimited by a punctuation symbol like a . or

a ?. Furthermore, sentences that start with a letter, will have that letter capitalized.

Using this information then, one can proceed to determine the mapping from a sequence

of glyph images to a corresponding label sequence, via a top-down “codebreaking” style

of attack. Since the sequence of glyphs has been clustered so that each cluster (ideally)

represents a single symbol, this information combined with knowledge of the language

constraints should provide a means by which the most likely cluster to label mapping

can be inferred, and this is exactly the approach we take.
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4.1 Script and Language Determination

Before we can begin to decode the clustered sequence of symbol images using language

constraints, we must obviously determine what language the document image is written

in. Choosing an incorrect language would certainly have catastrophic effects on recogni-

tion accuracy when a strongly contextual approach is used. While it would take minimal

effort to have the user select the input language prior to performing the OCR process,

it would be ideal if this could be automated so that no user intervention is required

(particularly if the recognition work is to be performed unattended on a large batch of

documents).

Fortunately, previous work has shown it largely possible to distinguish both the script

and underlying language of document images. Script refers to the set of alphanumeric and

punctuation symbols used in written versions of a language. Some scripts are unique to

individual languages (like the Hangul script is for Korean text), whereas others are shared

among several languages (like the Roman script for the English, French, Vietnamese, and

other languages).

Building off earlier work capable of distinguishing between 23 different Roman script

languages [55], Spitz extended this to incorporate several Han-based languages like Ko-

rean, Japanese and Chinese [56]. Input document images are first grouped into one of

two script classes by examining the distribution over the vertical offset position (rela-

tive to the baseline) at which upwardly concaving pixel intensities appear. For Roman

scripts, this distribution is largely bi-modal, with a large peak near the baseline and a

second peak near the x-height line. For Han-based scripts, this concave vertical offset

distribution is much more uniform, so the variance of these distributions can be used

to determine which group an input document belongs to. An example showing upward

concaving points (highlighted in a lighter colour) for both the English language as well

as a Han-based language is illustrated in Figure 4.1.

For documents belonging to the Han-based group, distinguishing between Chinese,



Chapter 4. Context-Based Symbol Recognition 75

Figure 4.1: Upward concavities found in small samples of Roman (left) and Han-based

scripts (right)

Japanese, and Korean documents is carried out by measuring the character density (inside

its rectangular bounding box). Chinese characters are generally more dense than Korean

or Japanese, so this provides a useful starting point. The distribution of these densities

is calculated and the area under these plots is integrated at three key regions. Linear

discriminant analysis is carried out on a small training set of labelled input documents

at these regions to determine two salient linear combinations that best separate these

inputs based on class. At test time, the same linear combinations are calculated on the

region areas of the density curve from the input document, and the document is classified

according to the training document which lies closest in terms of Euclidean distance in

this linearly combined input feature space.

Documents written in a Roman script are further classified into one of 23 languages

based on the frequency in which certain “word shape tokens” appear. Each word shape

token is composed of one or more “character shape codes”. Each symbol image is clas-

sified as one of six different character shape codes based on its number of connected

components, as well as where its components lie in relation to the baseline and x-height.

Those that ascend above the x-height line will generally be grouped in a different class

than those that descend below the baseline etc. Since each language will be composed of

many stop-words common to that language (words like the in English, der in German,

or le in French), the distribution over word shape tokens should show characteristically

distinct peaks, allowing one to determine the underlying language of an input Roman

script document.

A related approach carried out by Hochberg et al [23] was tested on languages written
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in 13 different scripts. Distinguishing between these scripts was determined by first

collecting and rescaling connected components found in training documents for each

language. These components were clustered together based on shape similarity, and the

average or centroid of each cluster was used as a template symbol for that language

(clusters with few components were removed). At test time, the script of an input

document was determined by normalizing found connected components and determining

how many matched trained templates from each script. The script which achieved the

best matching score was then selected for the input document. While this system has

the advantage of being easily deployed for arbitrary scripts, it was shown to be sensitive

to the fonts the documents were trained on. Thus even though an input document may

be in a trained script, if it is written in an untrained font, this approach may fail to

correctly determine its script.

4.2 Previous Top-Down Work

There have been several approaches to top-down or purely contextual character recog-

nition, a few of which are outlined and discussed here. Each of these methods either

assumes, or makes an initial attempt at grouping together similar shaped symbol images

(refer back to Chapter 3 for an examination of various image clustering approaches).

By assigning a unique identifier to each cluster found, we can then determine the resul-

tant sequence of these identifiers as shown in Figure 4.2. Furthermore, we can also use

the distance between neighbouring components to infer word boundaries in all but the

noisiest of input document images (typically these gaps are large enough that symbols

belonging to different words remain separated). The recognition task then boils down to

determining the mapping from each cluster identifier to its appropriate symbol label.

Inferring this mapping is equivalent to decoding a cryptogram: the input sequence

of cluster identifiers represents the encrypted ciphertext, and the unknown sequence of
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Figure 4.2: Sequence of component images and their corresponding cluster identifiers

character labels the plaintext which we would like to recover. The original plaintext

message has been encrypted using a simple substitution cipher which means that each

occurrence of a particular character label has been uniformly replaced by another symbol

(a cluster identifier value in this case).

While it is theoretically possible to solve a substitution cipher by simply trying each

possible combination of mapping assignments in a naive fashion, such an approach is

prohibitively expensive since there are n! combinations that must be tried, where n will

be the larger of the number of symbols or number of clusters present in the document

(even under the modest assumption of a handful of clusters and only the 26 lowercase

letter symbols, this value 26! is larger than 4×1026). For each combination, the assigned

mapping must be scored so that an optimal mapping can be determined.

Approaches to performing cryptogram decoding or contextual character recognition

can be classified as either dictionary-based, probability distribution approximation or

Markov-based, or hybrid [58]. In dictionary-based approaches, a large lookup list of words

is used to guide the mapping refinement process. For probability distribution based ap-

proaches, the input plaintext sequence is assumed to obey the Markov property for some

order n− 1, and so the identity of a particular cluster in the sequence is dependent only

on the previous n − 1 cluster identifiers in the sequence (and independent of the rest).

A large text corpus is often used to collect reference n-gram statistics, which measure

how likely each possible sequence of n symbols is. Finally, hybrid methods attempt to

mix dictionary lookup with some sort of probability distribution estimation in order to

determine a suitable mapping from cluster identifiers to output symbols.
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One of the most successful methods for solving cryptograms in which each cipher-

text symbol maps to a single distinct plaintext symbol (something which may not be

guaranteed to hold for textual document clusters), is the use of probabilistic relaxation

techniques. While these techniques have been employed in various areas of computation

(particularly computer vision), it was Peleg and Rosenfeld [44] that first introduced this

approach to solving substitution ciphers. First an initial distribution P
(0)
i defined over

the set of output symbols σ is calculated for each cluster identifier ci, and from this an

initial mapping function K(0) is defined, which takes each cluster identifier ci in the ci-

phertext and maps it to a particular plaintext symbol sj = K(0)(ci), sj ∈ σ. The symbol

selected for the mapping for each ci, is that which has the largest probability under the

current distribution Pi. A simple method for determining the initial estimates for P
(0)
i

involves counting the relative frequency in which each symbol sj occurs in a large corpus

of text, then doing the same for the number of occurrences ci in the coded message. The

probability assigned is then related to how close these frequencies match. While this

may produce some correct mappings, the probability distributions and mapping func-

tion are iteratively refined to improve the results. At iteration n + 1, each probability

distribution is updated based on the previous distributions of adjacent identifiers in the

coded sequence (Peleg and Rosenfeld examined the immediately previous and immedi-

ately succeeding identifiers for each cluster identifier in the ciphertext). Given a triplet of

cluster identifiers ci1 , ci2 , ci3 at some point in the text, the update rule for this particular

sequence which we denote P
(n+1)
i1,i2,i3

, is given in Equation 4.1. Since each cluster identifier

may succeed and precede different letters, the final distribution P
(n+1)
i2

is calculated by

averaging over the distributions from each triplet occurrence involving ci2 as the middle

symbol.

P
(n+1)
i1,i2,i3

(ci2 = sj) =
P

(n)
i2

(ci2 = sj)
∑

sk∈σ

∑
sl∈σ P

(n)
i1

(ci1 = sk)P (n)
i3

(ci3 = sl)r(sk, sj , sl)∑
sm∈σ P

(n)
i2

(ci2 = sm)
∑

sk∈σ

∑
sl∈σ P

(n)
i1

(ci1 = sk)P (n)
i3

(ci3 = sl)r(sk, sm, sl)
(4.1)
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The function r(a, b, c) in Equation 4.1 is calculated from unigram and trigram fre-

quency counts taken from a large text corpus. Specifically, the relative proportion of

appearances in which the symbol sequence abc appears, is divided by the relative propor-

tion of appearances of a multiplied by b multiplied by c (these values are precomputed

and stored for efficiency).

While the relaxation approach can not be guaranteed to converge to a particular op-

timal solution, in experiments run by Peleg and Rosenfeld using a 26 character symbol

alphabet over several short documents (including the Gettysburg address), nearly all the

symbols were correctly recovered after 10-15 iterations (they also introduced an alter-

nate update procedure that did not simply average individual distributions and found it

converged faster, but did not always perform as well).

In one of the earliest approaches designed specifically for OCR, Nagy et al [41],[40]

used a small lookup word dictionary written in the target language to aid in inferring the

mapping of identifiers to the appropriate lowercase character labels. Cluster sequence

words with the fewest unmapped symbols were first identified, then among those un-

mapped words, each unmapped symbol was ordered in a decreasing fashion based on

occurrence frequency. For each such symbol, a list of candidate labels was found based

on the number of matching dictionary words that appear when that label is replaced for

each occurrence of that symbol. The first symbol is temporarily mapped to the first can-

didate label, and this process repeats until either each symbol has been mapped, or the

number of completely mapped words that are not valid dictionary words exceeds some

threshold. In the latter case, mappings are unassigned until this score improves, then the

next candidate label is tried. This assignment and backtracking approach repeats until

a final mapping can be established. Some of the limitations of this approach include the

assumption of a one-to-one mapping from cluster identifiers to character labels, as well

as the restriction to lowercase letter labels only.
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Published at around the same time as Nagy et al, Casey also attempted to come up

with a dictionary-based, OCR specific decoding scheme [6]. Unlike the previous efforts,

this work made some attempts to deal with multiple clusters mapping to the same symbol,

as well as handle broken and touching clusters. In Casey’s approach, an initial partially

correct mapping is assumed and then used to create an initial word sequence called the

master sequence. Each master word is fed through a spell-checker to get a list of claimant

words that closely match the original. For each claimant word, the individual symbols

are processed in pairs and examined against the symbols in the master. By assigning

each claimant symbol an individual or pair of adjacent symbols in the master, checks are

made to ensure that at least one of each claimant pair matches the master. Claimant

words not meeting this requirement are thrown out, reducing the length of the claimant

word list associated with each master. Using this remaining list of claimant words and

their individual symbol to master symbol mappings, scores are generated for each cluster

identifier by counting the number of occurrences that an identifier is found to map to

a particular symbol or symbol pair in the claimant word list (each count is multiplied

by the length of the claimant word in which it appears). Those identifiers for which

only a single symbol matches are immediately assigned, then the claimant word list is

re-processed so that words not matching these assigned symbols are thrown out. This

process repeats until identifiers with more than one mapping symbol are all that remain.

In such a scenario the identifier with the largest difference between first and second

mapping scores is assigned the first mapping choice, and so on until each identifier has

been mapped. While it was claimed that accurate identification and fast convergence

could be accomplished, no empirical results were presented. Furthermore this approach

has a strong dependence on an initial partially correct mapping, which must be quite

good in order for this procedure to generate an initial list of claimant words that will

also include the correct word in its list of choices. To handle punctuation, digits and

non-dictionary words Casey suggests first identifying and stripping small punctuation
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symbols, then using an acceptance threshold to determine whether a word decoding

should be deemed valid (no details are presented on how either of these steps should be

carried out).

In an attempt to accommodate potential many-to-many mappings, Ho and Nagy

[21] combined a large dictionary with a sequence of ad-hoc modules to determine map-

pings from cluster identifiers to character labels. Potential mappings assigned under

each module were scored based on what the authors call a “v/p ratio”. This ratio mea-

sures the number of words in which the identifiers to be mapped appear, against the

number of those words that can be found in a dictionary (wildcards are used for the

labels of unmapped symbols during lookup). The first module takes the three most fre-

quently occurring cluster identifiers, and tries all possible triplet assignments using the

eight most commonly seen character labels (a, e, i, o, n, r, s, t). The assignment

which produces the highest v/p ratio score is then applied as the final mapping for these

three clusters. Other modules include looking for partially mapped words that match a

single dictionary word, as well as assignments that give a significantly larger v/p score

than other assignments of the same symbol, and swapping assigned symbols to boost v/p

score. In experimental trials on a set of short business letter faxes [42], they found that

on two-thirds of the pages, they could successfully identify almost 80% of the characters

that belonged to words which were also present in their lookup dictionary (performance

over all words in the document, including those containing digits or punctuation was

approximately 68%). Average performance on the remaining one-third of the documents

was around 20% and suffered from catastrophic errors early in the segmentation and

mapping process. The authors note a major problem with their approach is the inability

to handle non-character symbols like digits and punctuation symbols. In follow-up work

attempting to address this situation [22], Ho and Nagy set about trying to automatically

classify each symbol image as a digit, punctuation mark, uppercase, or lowercase char-

acter (without determining which specific symbol the image represented). Using a large
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text corpus as a training document, bi and trigram statistics were calculated for each

symbol label, and from these, 11 features were created. These included how frequently

each symbol appeared, how often it appeared at the start and end of words, the average

positional location within a word, as well as the average word-length in which it appears.

These features were suitably normalized and from their values, a simple nearest neigh-

bour classifier was built. At test time, each symbol was assigned the class of the training

point which was found to have the closest Euclidean distance (when compared in feature

space). For long test documents, treating the entire training set of documents as a single

large document gave identification rates above 99%. When tested on shorter documents,

the classifier was modified to collect and average n-gram statistics over each training doc-

ument separately, resulting in a classification accuracy of around 90% (which represents

an improvement over the 84% achievable by assigning every symbol to the lower case

character class).

An alternate approach making use of Hidden Markov Models (HMMs) was introduced

by Lee [32]. HMMs have been shown to be well suited to a variety of tasks involving

sequential data including speech recognition, financial prediction, and DNA alignment.

In this particular setup, the sequence of observed cluster identifiers is assumed to be

generated by traversing a set of underlying hidden states, each of which represents a par-

ticular character label. To completely specify this model, each hidden state is assigned

some prior probability representing its likelihood as being the first state seen. The tran-

sitional probability between each state is then estimated. In Lee’s implementation, a

basic first-order Markov model is assumed, so bigram transition probabilities represent-

ing the likelihood of moving to the next adjacent state given the current state are the

only estimates required. Finally, for each hidden state, a distribution over output cluster

identifiers is also required. This represents how likely we are to generate a particular

cluster identifier, given a particular hidden character label state. Lee used a large text

corpus to estimate both the start state, and state transition probabilities. To estimate
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the output cluster identifier probabilities for each hidden state, a specialized version of

the Expectation Maximization (EM) algorithm [10], known as the Baum-Welch algorithm

[3] was employed. Starting from an initial estimate of these output emission probabil-

ities, an initial set of underlying hidden states can be determined. Then using these

hidden states, new estimates for the most likely output probabilities can be found. This

procedure iterates until the likelihood of the output probabilities ceases to improve (or

the amount of improvement falls below some threshold). Efficient dynamic programming

procedures exist for estimating these hidden states given some set of output probabilities

and transition probabilities, and the EM algorithm is guaranteed to converge to some

(locally) optimal solution. With final estimates of these distributions, the most likely

mapping from cluster identifiers to character labels can be found using Viterbi decoding

[15]. Starting from the initial state probabilities, the cost of transitioning to each adjacent

character label state is multiplied by the probability of outputting the observed cluster

identifier at that state. The state transition that maximizes this overall probability is

stored, as is the probability value, and this repeats by examining all possible transitions

from this state, and so on. One of the nice properties of the HMM approach is that it can

be made somewhat tolerant of noisy mappings. Each label state generates a distribution

over possible output cluster identifiers, thus it is perfectly possible (given adjacent state

transition probabilities) for the state to emit a particular identifier at one point, then a

different identifier later on in the sequence. Similarly, it is also possible for more than one

hidden state to emit the same identifier at various points in the sequence. Lee tested both

one-to-one as well as noisy mappings and found that given sufficiently long sequences of

cluster identifiers (at least 1000 symbols), the correct sequence of hidden character labels

could be found with over 90% accuracy in the noisy case.

Recently, Huang et al [25] have taken an entropy based approach to inferring cluster

identifier to character label mappings. Initially, cluster identifier sequences representing

each of the individual words in the input document image are converted to numerization
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strings, as are a large collection of words taken from a text corpus. A numerization string

is calculated by assigning a value of 1 to the first symbol seen, 2 to the next distinct

symbol, 3 to the next and so on. Each occurrence of a particular symbol (whether it be

a cluster identifier or character label) is replaced uniformly with the same value, thus an

input string of identifiers of the form 4 3 10 10 5 3 1 9 would be mapped to 1 2 3 3

4 2 5 6 for instance. An initial cluster identifier to character label mapping is computed

by collecting all the words in the corpus that have the same numerization string as the

current cluster identifier sequence being mapped. For each cluster identifier, counts are

taken over the character labels that occur in the same positions as the identifier among

these collected word lists, and normalized to determine a distribution over symbols for

that cluster identifier and numerization string. Initial mappings are determined for each

cluster identifier by multiplying together these distributions over all words in which it

appears in the input document sequence, then taking the character label mapping which

has the largest value. The entropy of these initial assignments is used to guide the

refinement process. Cluster identifier mappings will have a low entropy precisely when

the distribution over character label scores is sharply peaked at the chosen label alone.

Those distributions that are more uniform (and thus have several words with labels that

map approximately as frequently as the chosen mapping), will have a high entropy. The

cluster identifier mappings are examined in increasing order of their entropies and at

each step the label producing the largest score is assigned to that identifier. For the

remaining unexamined mappings, their entropies are recalculated by removing words

from the corpus which are now incompatible with the current mapping. Thus if identifier

4 was assigned the label c, then the identifier 9 in the partially mapped sequence 4

9 o w, would have initially matching dictionary words like brow, snow, blow, glow,

grow, know, flow removed, leaving only the word crow as matching. Thus the entropy

over the mapping to cluster identifier 9, would be updated so that instead of being

roughly uniform across letters like l, r and n, it would now be sharply peaked at r
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alone. This process repeats until all cluster identifiers have been examined. To extend

their approach beyond an assumed one-to-one mapping between identifiers and labels,

Huang et al examine cluster identifiers that when mapped to character labels, occur more

frequently in words that are not found in a lookup dictionary than those that do. For

each such identifier, the “closest” dictionary word is found, where closeness is determined

by the number of character addition, deletion, and substitution operations required to

convert the original word into a dictionary word. By tabulating this closest mapping for

each such word, the most common label string substitution can be determined, and this

is what the identifier is then remapped to. When tested against 314 pages of the UNLV

Department of Energy dataset [42], average character recognition performance was found

to be about 74% (though this improves to about 78% when considering lowercase letter

performance alone). Like many of the previous approaches, the implementation by Huang

et al fails to handle upper case letters, digits, or punctuation symbols. Their approach

may also suffer when the same symbol appears in multiple clusters. For example if the

second e symbol in the word even is assigned a different cluster identifier than the first,

this sequence will be given a numerization string 1 2 3 4 instead of the correct 1 2 1

3. As a result, the matching lexicon word list will be significantly different which could

end up altering the symbol predicted for the second e cluster (or the others in that

word). This is particularly true if the cluster only appears at a few places in the original

sequence.

4.3 New Approaches

In this section we introduce several new, purely contextual or cryptogram decoding based

recognition approaches, each of which attempts to exploit all of the available sources of

linguistic information present in textual documents. Though much of the discussion

that follows will assume the input documents are written in the English language, it
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is important to stress that these methods are amenable to any language whose atomic

written symbols (called graphemes) are roughly phonetic in nature. These approaches

will not work directly on logographic or ideographic languages like Chinese or Egyptian

hieroglyphs since the atomic written symbols of these languages represent words, ideas,

or other meaningful constructs.

Each approach requires a large text corpus containing words written in the same

language as the document to be recognized. This reference corpus should be as free

from spelling or grammatical errors as possible to ensure that accurate language related

statistics can be tabulated. Unlike most of the previously discussed approaches, we do

not restrict our output symbol label alphabet to lowercase characters alone. Instead we

allow the 92 different symbols listed in Table 4.1 as valid outputs. Note that this list

contains upper and lowercase characters, digits, many punctuation symbols, brackets,

arithmetic operator symbols, and other marks that may appear in textual documents.

To ensure accurate statistics can be gathered for each symbol, it is important that each

occurrence is not stripped or altered in any way when processing a reference corpus.

digits lowercase characters uppercase characters punctuation

0 1 2 3 4 a b c d e f g h i A B C D E F G H I . ? , : ; &

5 6 7 8 9 j k l m n o p q r J K L M N O P Q R [ ] ( ) { } ’ " @

s t u v w x y z S T U V W X Y Z % $ # ∼ = * + -

/ ^ < >

Table 4.1: Output symbol alphabet used in our implementation

4.3.1 Vote-Based Strategy

A simple and efficient approach to decoding the mapping from cluster identifiers to

symbols starts by computing the numerization string for each cluster identifier sequence
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(just as is done in [25]). The words of a large text corpus are similarly parsed. For

each cluster identifier, each of the words in which it appears has its corresponding list

of numerization string equivalent words selected, and votes are tallied for each symbol

that appears at the same position as the cluster identifier within the cluster sequence

word. If a cluster identifier happens to appear in multiple positions within a single

cluster sequence word, each lexicon matching word must also contain the same symbol

in the same positions. Determining the mapping for a particular identifier then involves

selecting the output symbol which is found to have the most votes.

In implementing this strategy, there are many decisions and choices to be made re-

garding how the votes are normalized as well as tabulated, and whether the matching

word lists are updated as cluster identifiers get mapped to symbols. We defer detailed

discussion regarding these choices to the experimental results of Section 5.3, where we

describe and report recognition accuracy over a wide variety of vote-based implementa-

tions.

4.3.2 Within-Word Positional Count Strategy

In this approach, each potential character or symbol label has positional statistics calcu-

lated for it based on where and how often it occurs within words in the corpus. Counts of

the number of times a symbol occurs within each possible position in words up to length

x are calculated, resulting in a feature vector of length x(x+1)
2

. Similarly, these positional

counts are also estimated for each cluster identifier found in the input document to be

recognized. Since these feature vectors can equivalently be thought of as points in an

x(x+1)
2

dimensional feature space, distances between them can be calculated and used to

define a measure of similarity or relatedness among such points. By comparing cluster

identifier positional features with symbol features estimated from a large corpus, it is

hoped that a suitable mapping from clusters to labels can be established.

An example illustrating the positional count vectors and corresponding distances
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between the corpus symbols e, o, t, S, 4 and clusters representing the symbols e,

o as estimated from a relatively short document are displayed in Table 4.2. Note that

each of these counts has been normalized so that within each word, positional counts

sum to a value of 1 unless the symbol has not been seen at any position in that word

length. In such cases, the positional counts are each assigned a value of 0. A weighted

Euclidean distance metric is used to compare the corpus and cluster symbols, as discussed

in Section 4.3.2.

As Table 4.2 illustrates, these positional counts are quite unique to each character

label yet still retain a lot of similarities when an image of the same symbol is clustered

in a short document. For instance, in short words of length two and three, the lowercase

character e is most often seen in the last position, and rarely seen in the first position.

This is to be expected since common words like the, and we will be present in many

documents, though more specialized contractions like ed and words like ewe, may not be

seen at all in a document.

Mapping Approaches

There are several approaches that can be taken to model these positional features to

determine the mapping from clusters to symbol labels. One of the simplest has been

alluded to in the preceding paragraphs, and involves finding the nearest neighbouring

character label feature point for each cluster feature point. For each cluster point, the

Euclidean distance (in feature space) to each character label point is measured, providing

some indication of which labels this cluster is likely to map to (as well as some estimate

of how well its counts resemble the reference counts in the character label). Before the

distance between the feature vectors is calculated, the counts are first re-weighted so that

mismatches occurring in infrequently seen word lengths are not penalized as strongly as

those in frequent word lengths. According to a landmark analysis by Kučera and Francis

[28] on a large and varied set of English language corpora, the most frequently seen word
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e cluster o cluster

0.0920 0.4096

e

0.2981 0.1090

o

0.3588 0.4249

t

1.0187 0.9147

S

0.3518 0.3681

4

Table 4.2: Weighted Euclidean distance and word positional features between several

corpus and cluster symbols



Chapter 4. Context-Based Symbol Recognition 90

length was three characters, followed by two characters then four characters. It was also

found that over 81% of the words found in the corpora were of length 10 or less, and

98% were of length 15 or less. When calculated by taking into account the number of

occurrences of each word, more than 84% of the total corpus consisted of words of length

7 or less. Histograms of word length occurrence as found in the text corpus are used

to determine how much weight to apply to positional count differences for each word

length. In the simplest re-weighting approach, these weights are applied to all symbol

labels uniformly. Sample distances found when comparing several corpus symbols to two

different clusters using this simple re-weighting approach can be found in Table 4.2. In

our experiments, we also carried out tests by counting the frequency of each label in

each word length so that specific word length weighting factors for each reference symbol

could be employed (see Section 5.4).

Instead of classifying clusters based on their weighted Euclidean distance to symbols

(an approach that can be thought of as maximizing the likelihood of the mapping from

clusters to symbols), an alternate approach involves minimizing the cross entropy between

clusters and symbols. This approach requires first normalizing the positional counts so

that they define valid probability distributions. One method for doing so is to simply

take each cluster or symbol and divide each of its positional counts by the total number

of counts found over all positions and word lengths for that cluster or symbol. From

these distributions, the Kullback-Leibler (or KL) divergence can be calculated between

a particular cluster and each symbol. Letting P define the distribution over cluster

positional counts and Q the distribution over a particular symbol’s positional counts,

the value of this calculation can be found in Equation 4.2, where the discrete index i

will range over each of the x(x+1)
2

word positions (assuming words up to length x are

included).

DKL(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
(4.2)
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The KL divergence will yield a non-negative value which measures the relative entropy

between the cluster positional distribution and the corresponding symbol distribution.

Such a value can be loosely interpreted to represent the extra number of bits that must be

transmitted in a message describing the positional statistics of the cluster, when starting

from a description of the positional statistics of a particular symbol. The KL divergence

is 0 precisely when both sets of statistics are identical (since if they are identical, no

additional bits are required to transmit the cluster’s positional statistics). By calculating

the KL divergence between a cluster and each symbol, an estimate of which symbols

more “closely match” the cluster can be found, where closeness is defined as having a

minimal cross entropy value.

4.3.3 Cross-Word Constraint Strategy

A limitation of both the vote based, and positional statistic decoding approaches is that

neither makes use of constraints present across words in the document (that is, both op-

erate on each cluster sequence word independently). As a hypothetical example, consider

the cluster identifier words 10 1 4 3 and 1 5 19 7 2, and furthermore assume that the

mappings 4 → l, 5 → h, 19 → o, 7 → s, 2 → t are all known and correct (and that

each identifier represents exactly one symbol). Thus the first cluster sequence represents

a word of the form * * l * (the * symbols represent wildcards that are currently un-

known), and there are over 400 words in the English language that match such a pattern:

milk, wolf, solo, silk, sell, golf, cold, etc. The second cluster word is of the

form * h o s t and has only a single valid dictionary match, namely the word ghost.

Knowing the constraint that cluster identifier 1 must map to symbol g allows the list of

dictionary words matching the first cluster sequence to be significantly reduced to just

two potential matches: ugly and ogle.

Following this idea, our cross-word constraint strategy begins by first determining

the numerization strings of each cluster sequence word, as well as each word in the
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lexicon. Using these strings, an initial list of candidate matching words can be found

for each cluster sequence word. The process for generating this matching between lists

is not limited to those lexicon words that exactly match the cluster words numerization

strings. Instead, the requirement is relaxed so that any positions in which the cluster word

lists identical numerization values, words in the lexicon must list the same symbol value.

Distinct numerization values in the cluster word are free to map either to distinct symbols,

or the same symbol. This increases the initial number of matches, and ensures that cases

where multiple cluster identifiers map to the same symbol are handled appropriately. As

an example, if the cluster sequence representing the word e v e n has been coded so

that each e ends up in a different cluster (resulting in a numerization string of 1 2 3 4),

when looking for lexicon words that match, not only will we consider those of the form

1 2 3 4, but we will also include words of the form 1 2 1 3, 1 2 1 2, 1 1 2 2, etc.

After carrying out this process, any cluster words that have no candidates are marked as

invalid, and removed from further processing. Any cluster identifiers that always appear

mapped to the same value (and only that value) are considered correctly mapped, and

are substituted into cluster words to further reduce the list of matching lexicon words.

Starting from the most frequently occurring unmapped symbol, and the cluster word

containing that symbol that has the fewest matching lexicon words, we then record the

symbols that each of the cluster identifiers in this word can map to. If any cluster contains

0 valid mapping words, this word is marked as invalid, and the procedure continues on

to the next word containing the most frequent cluster and the fewest remaining lexicon

matches. Otherwise, the cluster word belonging to one of the cluster identifiers found in

the first word and containing the fewest matching lexicon symbols is sought and checks

are made to ensure that all pairwise cluster identifier constraints are satisfied across

these two word lists. This process repeats until either a unique mapping can be found

for a particular cluster identifier, or no valid mappings can be found, in which case the

first word is flagged as invalid. We continuously add a new word, check for mutual
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satisfaction across our current word list, and update matching lexicon words as more

clusters are mapped, until eventually we have mapped each cluster.

4.4 Additional Extensions

In this section we briefly introduce and discuss a couple of additional extensions that

can be applied to some of the new top-down recognition strategies in order to boost

recognition performance.

4.4.1 Explicit Dictionary Lookup

For some of the infrequently appearing clusters, each of the previously discussed mapping

approaches may yield an incorrectly assigned symbol. This is particularly true for the

positional statistic based approach as few appearances can severely skew these statistics

so that they lie farther away from the correct reference mapping than other incorrect label

points. To try and remedy such a situation, an initial set of mappings can be combined

with a large word list or dictionary. In our experiments, we simply extract the unique

words from our text corpus. We select clusters in order (starting with the most frequently

seen), and attempt to infer an improved label mapping using the initially found cluster

to label mappings and the lookup dictionary as guides. We extract the set of all cluster

identifier words in which the cluster being mapped appears at least once, and replace

already mapped identifiers in these words with their found character or symbol label. The

remaining unmapped identifiers appearing in these words are treated as wildcards. Each

potential label mapping is temporarily assigned to the cluster identifier currently under

consideration, and these partially mapped cluster words are searched for matching valid

dictionary words. Matches are considered valid when there is at least one dictionary word

that has the same length as the cluster word, and each mapped symbol in the cluster

word has the same label value and position in the lookup word (wildcards in the cluster



Chapter 4. Context-Based Symbol Recognition 94

word are considered capable of matching any symbol label). To better identify upper

case characters and punctuation, if the identifier appears in the first position of a word,

the lexicon words that begin with a lowercase letter are copied, but the first character is

replaced with its uppercase equivalent symbol. Similarly, if the identifier being mapped

appears in the last position of a cluster word, each lexicon word that is one symbol

shorter and does not end with a punctuation symbol is copied, and each of several valid

punctuation symbols are added to the end of these words, and each such word is added

to the dictionary. Under each temporary cluster identifier to character label mapping,

the ratio of the number of valid matching dictionary words, to total cluster words in

which the cluster identifier appears is calculated, and if this ratio exceeds a particular

threshold, then the mapping is considered valid and permanently assigned. The next

most frequently occurring cluster identifier is then found, and the process repeats.

Initially when there are very few (or no) mappings, most of the words in which the

cluster appears, will be considered valid dictionary words. Fortunately, if using the

positional statistical frequency mapping to get an initial ordering, the most frequently

occurring clusters are also the most likely to have positional statistics closely representing

those of the corresponding label in the reference corpus (simply because these symbols

are seen so frequently). Thus for the early assignments, the initial map ordering will

dominate which label is selected for each cluster, allowing us to bootstrap the recognition

process. Because these early symbols occur most frequently, they will quickly constrain

a majority of the cluster words, allowing the dictionary lookup ratios to successfully

identify the best mapping among less frequently occurring clusters (those for which an

initial mapping based on positional statistics are of less import).

Eventually, this recognition approach may reach a point where multiple symbols ex-

hibit the same dictionary lookup ratio. Breaking ties in such a scenario can be accom-

plished in a number of ways; the simplest of which involves choosing the label that comes

first based on the initially generated map ordering. This same approach can also be
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used when none of the mappings produce a lookup ratio above the desired threshold. An

alternate approach may make use of weak shape information in the form of baseline and

x-height offset. The set of symbols found to produce the same score can potentially be

reduced by considering only those symbols that have similar offsets as the cluster. This

information is largely font independent (i.e. regardless of the font, a lowercase g symbol

will almost always be seen to descend below the baseline by some amount).

4.4.2 Re-segmentation Refinement

Determining the mapping from cluster identifiers to symbols works optimally when each

identifier represents exactly one symbol. Due to noise or other complications, the clus-

tering process may leave multiple symbols fused together into a single element, or it may

break apart a symbol so that it becomes spread over several elements (and thus clus-

ters). Just as most modern shape-based recognition approaches make use of contextual

information to either improve an existing segmentation, or guide the current segmen-

tation [13] (also see Section 3.1.3), a top-down contextual recognition approach can be

used equivalently. Given an initial recognition, cluster identifiers that tend to appear

in words not found in a lookup dictionary can be flagged as candidates for potential re-

segmentation. Once split or merged, this new sequence of identifiers can either be passed

directly through a dictionary lookup to see if there is an improvement in the number of

matching words, or any of the initial mapping strategies like positional features can be

re-estimated and again checked to see if overall recognition accuracy improves.

Since merged cluster elements typically involve at most a few symbols, an alternate

approach would be to extend the symbol alphabet to include pairs or even triplets of

symbols before proceeding with the designed mapping strategy. While this may increase

computational costs, it may prevent having to perform a re-segmentation refinement.



Chapter 5

Experimental Results

In this chapter, we test each of our proposed clustering and top-down recognition ap-

proaches to OCR against several different datasets. Our goal is to assess recognition

performance on real-world data under a variety of scenarios by altering most aspects of

the input document images. This includes (but is not limited to) their length, quality,

orientation, contained symbols, subject matter or domain, layout, fonts, and appearance

of non-textual regions.

5.1 Experimental Setup

The majority of our tests were run against a set of short business letters, and a set

of long legal documents, both of which were taken from datasets produced by UNLV’s

Information Science Research Institute (ISRI)1 and will henceforth be denoted B and

L respectively [42]. All 159 documents from the B dataset (which were 1-2 pages in

length, and averaged 2010 symbols per document) were tested, as were the 10 longest

documents from the L dataset (which were numbered 9460-9469, were 15 pages in length,

and averaged 22,959 symbols per document). Using these datasets has several advantages,

1http://www.isri.unlv.edu
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including the availability of ground truth zone and text information, as well as being

widely used in annual OCR system performance comparisons run throughout the mid-

1990’s [48]. The document images contained in these datasets represent real-world inputs,

and vary widely from one to the next. Both Figure 1.5 and Figure 2.5 show sample

input documents taken from this collection. Several different resolutions of each input

document are available, ranging from compressed 196 dpi fine-mode fax quality up to

400 dpi (all inputs are formatted as TIFF images).

Because our recognition approaches require the ability to perform tasks like dictio-

nary word lookup, issue votes for words matching a particular numerization string, and

estimate reference positional statistics, a large text corpus written in the language being

recognized is required. The Reuters-21578 text news corpus was chosen [34] for several

reasons. First, since the dataset consists of relatively short newswire articles, it will con-

tain many proper nouns, contractions and other words common to the English language

that would not generally appear in a dictionary. Punctuation, digit strings, and other non

alphabetic character symbols like brackets are also present throughout the documents,

allowing us to get some estimate of their frequency. Since these articles would end up

incorporated into newspaper articles, the quality of the spelling and grammar is generally

quite good. Its large size also provides a basis for gathering useful counts and statistics

(we made use of the first 1,000 document chunk stored in the file reut2-000.sgm). The

only processing performed on this text was the removal of the trailing “Reuter” byline

present at the end of each article, which was done to prevent biasing the distributions of

these characters more heavily than would be seen in natural documents. This left us with

a corpus containing 744,522 symbols split over 17,601 unique words. By using newswire

articles as a lexicon to be tested against business and legal documents, we ensure that

our recognition approach must generalize to handle legal jargon or business specific terms

and acronyms that are not present in the corpus.

Since almost all of the previous top-down recognition work has been restricted to
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an examination of the lowercase character symbols alone, we have decided to assess the

impact on performance when a much broader range of symbols is included. In particular,

we make attempts to distinguish between each of the 92 different symbols seen in Table 4.1

when recognizing the glyphs of an input document image.

To test the impact that the clustering performance has on overall recognition rates,

each experiment is carried out both by clustering the input document images, as well as

using a so-called perfect clustering strategy. In this strategy, the ground truth text for

each document is clustered together based on the character ASCII codes (so that each

occurrence of a particular symbol in the document is included under the same cluster,

and no symbol appears in multiple clusters). Furthermore each input code corresponds to

exactly one symbol, so no merged or partial input components are seen. This allows us to

isolate errors that are due to the recognition process alone, instead of also misclassifying

particular components as a result of an error in an earlier segmentation or clustering

phase.

To test the impact that the cluster image or symbol occurrence frequency has on per-

formance, we report recognition results over all the clusters, as well as the change when

we restrict ourselves to those clusters that are seen at least some minimal threshold per-

cent of the time. Since seldom seen clusters provide very little contextual information,

it is important to determine how much they impact overall performance rates. In ex-

periments run, this threshold is set so that each cluster must make up at least .5% of

the total elements found in the document. We also break down experimental results on

a per cluster basis, that is, how well do we recognize the symbol belonging to the most

frequent cluster (when averaged over all documents seen)? How well do we recognize the

10th most frequently seen cluster, and so on.

Several threshold parameters must be set or tuned to ensure reasonable recognition

results. In our implementation, most of these have been determined by hand, through a

trial and error process when tested on various inputs. Automatically determining suitable
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values based on the input remains an area of future work.

Thresholds that are set consistently across all inputs include an input binarization

threshold of 0.5, meaning that the grayscale intensity must be at least half that of the

extreme value representing foreground colour. If black represents foreground (with an

intensity of 0), and white background (with intensity 255), those pixel intensities found

to lie in the range [0,128] are converted to 0, with the remainder converted to a value of

1 during binarization. Handling colour RGB values is done in a similar fashion by first

removing hue and saturation components to create a grayscale image, then binarizing

this resultant image as above.

A quick way of determining which value represents foreground and which background

involves determining the size and number of connected components involving the 0 in-

tensity pixels, and the same for the 1 intensity pixels. Background can be identified by

a few large connected components (possibly with many small components representing

holes in symbols), whereas foreground connected components tend to show much smaller

variation in size and position (they also tend to be more abundant).

When processing connected components, any component found to have an aspect

ratio in which the width exceeds the height (or vice versa) by a factor of 10 is removed.

Some salt and pepper noise or other artifacts in the input documents are removed by

throwing out any connected component that is not at least 2 pixels high or wide, as

well as removing any components that are more than 100 pixels high or wide. When

determining baseline and x-height offsets given a line of binary pixel intensities, the last

row found (when scanned from top-to-bottom) whose foreground pixel density exceeds

20% is selected as the baseline. Starting from this baseline and scanning rows upward

toward the top, the top-most row found whose pixel density exceeds 30% is selected

as the x-height. When determining whether or not to merge separate diacritical mark

components belonging to the same line and horizontally overlapping, the vertical pixel

distance between the two closest edges of these components must not exceed x
28

pixels,
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where x represents the input document resolution (if this is not known ahead of time,

it is assumed to be 200 dpi). Finally, when clustering found connected components, the

initial Euclidean sweep merges cluster centroids found to lie a Euclidean distance at most

.01 times the area of the smaller of the two centroids being compared. Thus for a 12×12

input cluster centroid image being compared with a 15× 12 centroid, this distance must

be less than .01 · 144 = 1.44. When comparing clusters for merging using the Hausdorff

distance, the threshold chosen can greatly affect the overall number and purity of the

clusters. For both UNLV datasets scanned at 196 dpi, it was found that using a threshold

of 1.5 (and taking the maximum of the two directed distances) was conservative enough

to ensure that each cluster remained pure (contained only one type of symbol image),

while generally leaving only one or a small number of clusters for each symbol. When

determining if a candidate centroid should be split into two or three pieces, each of the

pieces split from the cluster must find matches among the other cluster centroids, within

a normalized Euclidean distance at most .015 times the area of the smaller cluster being

compared. For merge refinement, at least 85% of the components belonging to a cluster

must have their adjacent neighbouring component belong to the same separate cluster.

There must be a minimum of 3 components in the cluster, and the distance between

these neighbouring components can be no more than x
60

pixels, where x represents the

input document resolution (defaults to 200 dpi).

Each of the algorithms discussed in this thesis has been implemented in the MATLAB2

programming language, with the exception of a few library calls to existing C applications

that carry out tasks like page deskewing and ground-truth text recognition comparison.

2http://www.mathworks.com

http://www.mathworks.com
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5.2 Measuring Recognition Performance

After clustering, symbol recognition is performed according to the experiment being

run, then the recognized sequence of symbols is compared against the ground-truth text

provided to determine performance accuracy.

The actual means of making this comparison is carried out using the OCRtk set of

tools created by Rice and Nartker [49]. This collection of C applications provides the

ability to align a symbol sequence with ground-truth text, calculate word and character

accuracy reports, determine accuracy statistics, and measure zone location and reading

order performance. Since the recognized text output by our system is placed in separate

flat-text files (one for each textual region identified), we first make use of the accuracy

program to determine character recognition accuracy for that particular region. This

program attempts to find a suitable alignment between the recognized and ground-truth

text by first stripping extraneous space and line breaks from both sets of text. The

Levenshtein or string-edit distance metric [33] is used to determine an optimal alignment

between these two symbol sequences, by breaking the recognized output into matching

and non-matching substrings [47]. Once aligned, the number of mismatched symbols

(based on their type), as well as the incorrectly generated confusion strings are reported

to determine character accuracy. Each of these region accuracy reports are combined

into an overall document character accuracy using the accsum program. Similarly, per

document word accuracy is determined using the wordacc and wordaccsum programs.

5.3 Vote-based Strategy

Starting from a sequence of cluster identifiers, each cluster sequence word has its numer-

ization string evaluated, and the same is done on words in the text corpus. An initial

experiment was carried out whereby for each cluster identifier in each cluster word, the

list of symbols in the same position in corpus words with the same numerization string
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were tallied (with one vote counted for each appearance of that word in the corpus).

Repeating this over each cluster identifier and cluster word, produces a set of votes dic-

tating how many times a particular symbol appeared in the same position as the cluster

identifier. By simply selecting the most voted symbol as the correct symbol for each

identifier, then using this mapping to generate output text, we achieve the results found

in Table 5.1. Note from the table that entry B refers to the 159 document business letter

dataset, and L the 10 document long legal letter dataset. The results reported represent

the recognition accuracy calculated by averaging individual document recognition accu-

racies. Results are reported for overall word and symbol accuracy, then within symbols

the accuracy is further broken down based on type.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 8.27 41.08 37.79 0.52 2.93 1.54

L 15.02 52.94 49.07 0.09 0.15 0.09

Table 5.1: Parallel vote recognition accuracy

This simultaneous assignment results in several cluster identifiers mapping to the same

frequently seen symbol since word occurrence is dominating overall scores. To attempt

to remedy this, experiments were run where after a particular cluster identifier was given

a mapping, the remainder of the matching lexicon words were re-examined and those

found not to list the mapped symbol in positions where the cluster identifier appeared,

were dropped before re-tallying the votes. This mapping scheme was performed in order

starting with the most frequently seen cluster identifier, yielding the results listed in

Table 5.2.

While this approach seems to slightly improve symbol recognition performance for

shorter documents, it doesn’t seem to have much of an effect on longer documents.
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dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 13.38 43.23 40.88 0.74 5.43 1.74

L 18.80 52.46 48.32 0.27 3.75 0.09

Table 5.2: Serial vote recognition accuracy

Inspecting these results still shows many cluster identifiers being mapped to frequently

seen symbols like e, t, a suggesting that employing one vote per word occurrence is

dominating the overall vote total. If we instead ignore the number of occurrences of a

word, and tally just a single vote per unique word, we see results like those found in

Table 5.3.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 3.95 30.92 21.55 0.36 16.27 25.60

L 2.96 37.59 27.54 0.18 12.27 27.57

Table 5.3: One vote per unique word recognition accuracy

This approach shows a marked improvement in digit and other symbol recognition

accuracy, at the expense of character recognition accuracy. This makes sense as lexicon

words that may contain a particular digit string only once, are put on roughly the same

playing field as a frequently appearing character sequence word that happens to have the

same numerization string. This approach is seen to produce a poorer overall word and

character accuracy as it is the character symbols (particularly lowercase characters) that

make up the majority of the total symbols in each document.
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Improvements can be made first by normalizing the vote count. In this approach,

given a single cluster word and its corresponding list of matching lexicon words, the

proportion of the total time a cluster identifier is seen to map to each symbol in the

list is calculated. A single vote “unit” is then divided into fractional values based on

these proportions. By repeating this over each cluster word, and summing these frac-

tional votes, a normalized estimate can be found. A second improvement can be made

to ensure that uppercase letters and punctuation symbols are appropriately represented.

Since a majority of uppercase letters are seen in the first position of the first word of a

sentence, only those lexicon words in which this is the case are currently added to the

proportional mapping counts for a cluster identifier appearing in the first position. Such

mappings are typically underestimated since there are many more valid first letter capi-

talized words than those that happen to be present in the lexicon. To ensure these counts

for uppercase letters are in reasonable proportions, each matching lowercase lexicon word

has its equivalent word (with the first letter capitalized) added to the lexicon list before

determining proportional votes. A similar strategy is employed for handling punctuation

at the end of a word. Words in the lexicon with an equivalent numerization string, but

which are one character shorter than the current word being mapped are also added

with appropriate punctuation symbols applied when considering proportional counts for

cluster identifiers appearing in the last position of a word. Testing this approach against

the datasets yields the results found in Table 5.4.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 51.15 68.68 74.38 21.96 8.84 20.42

L 91.39 92.29 97.75 43.66 14.26 32.51

Table 5.4: Normalized vote recognition accuracy
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These results represent a dramatic improvement in performance on both short and

long documents. The major factor contributing to this improvement is due to the nor-

malization or proportional voting scheme employed (punctuation and uppercase handling

changes produce only a minor improvement, seen in uppercase letter and other symbol

recognition). A comparison of these results relative to other top-down recognition strate-

gies can be found in Figure 5.8.

5.3.1 Vote-based Strategy with Dictionary Lookup

We can augment the vote-based results described in Section 5.3 by treating the predicted

results from the proportional vote strategy (see Table 5.4) for each cluster identifier as an

input ordering to the dictionary word-lookup extension described in Section 4.4.1. Doing

this yields the results reported in Table 5.5.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 51.56 68.36 75.77 21.69 8.20 26.88

L 92.51 91.73 97.81 32.09 9.55 34.56

Table 5.5: Vote with dictionary lookup recognition accuracy

As the results show, adding an explicit dictionary lookup does not significantly alter

performance. This is to be expected as the proportional vote strategy itself makes heavy

use of dictionary word information.

5.3.2 Document Length and Cluster Analysis

To visualize the impact of document length on overall (as well as per symbol) recognition

performance, scatter plots of the B and L dataset accuracies using the normalized vote
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strategy results reported in Table 5.4 were created. These plots can be found in Figure 5.1.

To get some sense of how performance changes when examining the clusters in order

based on frequency, histograms indicating the number of clusters found in each document

were first created (see Figure 5.2). For the 159 documents comprising the B dataset, the

number of clusters found per document ranged from 52 to 426 clusters, with 153.0818

found on average (the median number of clusters was 139). For the 10 documents com-

prising the L dataset, the number of clusters found per document ranged from 134 to

242, with 166.7 found on average (the median number of clusters was 147).

The graphs in Figure 5.3, show the recognition performance for each cluster identifier

number when ordered starting with the most frequent (the recognition results reported

are based on the normalized vote strategy reported in Table 5.4). As these graphs

indicate, recognition performance is generally the best over those clusters occurring most

frequently, and follows a downward trend as clusters are seen fewer and fewer times within

a particular document.

While this general trend holds over both short and long documents, it is interesting

to note that recognition accuracy actually improves again on some of the least frequently

seen clusters. This can be attributed to them appearing so infrequently (generally only

once per document, and from that maybe only once or twice over the entire dataset),

that it is possible to identify those one or two occurrences correctly. For the vote based

approach in which the list of matching lexicon words is recalculated after each assignment,

these lists will be so constrained when it comes time to assign the least frequently seen

cluster, that typically only 1 (or no) lexicon words match. This infrequency also explains

the larger variance in average recognition accuracies when comparing several infrequent

clusters. Getting just one instance correctly identified when a cluster only appears a

handful of times could yield a much higher recognition rate than a neighbouring cluster

in which no occurrences are correctly recognized.
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(a) B dataset

(b) L dataset

Figure 5.1: Vote recognition accuracy as a function of document length
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(a) B dataset (b) L dataset

Figure 5.2: Histogram counts of number of clusters found per document

(a) B dataset (b) L dataset

Figure 5.3: Average vote based recognition accuracy calculated per cluster identifier
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5.3.3 Misclassification Analysis

To see how many of the misclassifications can be attributed to those clusters for which

there is little data (those that appear so infrequently as to represent less than .5% of the

total number of symbols), recognition results are also reported when restricted to those

clusters that meet this frequency threshold. These are denoted by the entries Bfreq and

Lfreq in Table 5.6 for the business, and legal letter datasets respectively. To get a sense

of how many character confusions are attributed to selecting the wrong case equivalent

character (i.e. lowercase when uppercase is required, or vice versa), we have converted

the predicted symbol sequences and ground truth entirely to lowercase before reporting

the recognition results found in Bigcase and Ligcase respectively. Note that since word

accuracy is reported in a case-insensitive manner, these results (as well as those for digits

and punctuation symbols) will not change. To see how many misclassifications are due

to the segmentation and clustering process, the ASCII text codes of the ground truth

text is clustered and decoded. The results of this perfect segmentation and clustering

scheme can be found in rows Bperf and Lperf in Table 5.6.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

Bfreq 58.80 76.09 78.34 13.22 3.68 24.14

Bigcase 51.15 70.43 70.80 n/a 8.84 20.42

Bperf 84.59 89.03 98.68 47.46 9.41 40.79

Lfreq 92.71 95.71 98.17 37.35 n/a 38.20

Ligcase 91.39 93.89 96.38 n/a 14.26 32.51

Lperf 97.51 94.69 100 44.61 13.75 53.16

Table 5.6: Vote frequency, ignored character case, and perfect segmentation recognition

accuracy
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Looking first at the frequency based results, we see that restricting accuracy calcula-

tions to frequently occurring clusters, generally yields slightly improved results. Excep-

tions include digit and upper-case letters, and this is partly caused by the reduction in

the number of such clusters seen in the documents (in fact no digits are seen among the

most frequent clusters in each of the long documents). Misclassifying a single digit or

uppercase letter has a larger impact on reported results since it now represents a larger

portion of the total occurrences of that particular symbol class.

As expected, the overall symbol accuracy improves when ignoring the case of character

symbols during recognition, indicating that at least some of the time the correct character

is predicted, but the wrong case is chosen. The reason why the lowercase accuracy

reported is lower than the results reported in Table 5.4 is because this accuracy now

includes all the former uppercase characters too.

Assuming a perfect segmentation and clustering improves both sets of results signifi-

cantly. In particular, lowercase characters are now recognized with accuracy rates likely

to surpass most shape-based classifiers (though digits, and punctuation would most likely

remain far worse).

5.4 Within-Word Positional Count Strategy

In our positional approach, we first collect positional statistics on words up to 15 char-

acters in length (in both the corpus and the cluster word sequence). The value of 15

was chosen since this was shown to cover over 98% of the unique words seen in a large

collection of varying documents [28]. By occurrence, words of length 15 or less represent

over 99.8% of the total word count. A squared Euclidean distance metric is used to

calculate how similar each cluster identifier’s positional statistics are to each symbol’s

statistics (as estimated from appearances in the corpus). Instead of using the raw count

values at each position (since these could vary drastically if the corpus is much longer
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than the cluster sequence), the counts are normalized to define a distribution over posi-

tional frequency within each particular word length. In our first experiment, histogram

counts of how often each word length appears in the text corpus are used to re-weight the

positional differences as calculated within each word. This will have the effect of strongly

penalizing positional differences in shorter, more frequently seen words, and have much

less of an impact on such differences in extremely long words (for short documents, it

may very well be the case that no words of length 12 or 15 are seen involving a particular

symbol, which could potentially yield a widely different distribution than that estimated

by the symbols corresponding occurrence in a large corpus). To ensure that weights are

correctly determined and counts penalized for symbols that do not appear in particular

word lengths, this initial weight distribution is mixed with a uniform distribution. We

found that a 15% uniform mixing proportion worked well in practice. By calculating this

weighted Euclidean distance between each cluster and each of the symbols then assign-

ing the symbol with the smallest distance to that cluster identifier, we end up with the

recognition results seen in Table 5.7.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 11.31 45.73 44.79 0.44 0.88 4.71

L 59.83 85.59 91.00 1.22 1.47 39.78

Table 5.7: Within-word positional counts using word length re-weighting recognition

accuracy

The first thing to note about these initial positional results is the large disparity in

performance when comparing the short and long documents. For all character types, the

business letter documents are simply lacking enough counts to enable a useful mapping

prediction. The positional counts end up quite skewed from the “expected” distributions



Chapter 5. Experimental Results 112

estimated from the large corpus, which in many cases leads to an incorrect symbol lying

closest in terms of Euclidean distance from the cluster identifier. The bright spot in this

positional attempt is lowercase character recognition accuracy on the long documents,

whose recognition performance can in a large part be attributed to having each cluster

identifier appear in enough words and in enough within-word positions that it can be

distinguished fairly reliably from other symbols.

An alternate and more complex re-weighting strategy can be explored in which weights

are varied depending on the symbol being compared to. Instead of using histograms

of word length counts across all words to generate a set of weights, we can tailor the

histograms to only the words in which a particular symbol is seen to occur, thus producing

a separate set of weights for each symbol. If particular symbols are known to appear much

more readily in particular word lengths than others, this weighting strategy should ideally

be able to exploit this. Re-running against the datasets using this re-weighting approach

(mixed with a 15% uniform distribution) gives the results in Table 5.8

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 8.47 38.33 34.26 0.51 1.76 2.10

L 55.93 83.27 88.95 3.95 2.66 8.18

Table 5.8: Within-word positional counts using word length per symbol re-weighting

recognition accuracy

Interestingly, the per symbol re-weighting strategy ends up performing worse than the

simple per word approach. Inspecting some of the generated results, shows the largest

drop in performance stems from incorrectly mapping some of the most frequently seen

(lowercase character) cluster identifiers. Misclassifying even one of these clusters can

have a large impact on overall performance, simply because they often represent symbols
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like e or t that appear in a large proportion of words in the English language.

Since the positional approach seems to suffer from a lack of counts for the majority

of the cluster identifiers, this data can be regularized by adding prior “pseudocounts”.

In essence this approach assumes that each cluster identifier appears more times than

it actually is seen in particular word lengths in an effort to smooth positional count

distributions. Choosing how and where to add these positional counts for each cluster

becomes very difficult to do without assuming any knowledge of the symbol that it is

expected to map to. One approach that makes use of weak shape information in the form

of line offset position, involves adding counts to that identifier in proportion to the counts

seen for symbols that have roughly similar offsets. So for instance, if the cluster identifier

being mapped actually represents a symbol that descends below the baseline (like a j

for example), then positional counts are averaged over all those symbols that descend

below the baseline (this would include symbols like j, g, q, p, etc.) and are then

added to the positional statistics actually found for that identifier before normalizing or

re-weighting. Selecting the amount of prior information to add could have a significant

impact on performance as too few counts will still leave many clusters underestimated,

whereas adding too many may lead to having the prior counts dominate the distributions

so there will be little or no difference seen among each of the clusters (which will result

in many of the clusters mapping to the same symbol). Since we average symbol count

distributions to determine prior proportions, each prior “count” in this case represents

a multiple of this average (and so raw positional counts may end up being fractional).

We have run experiments using simple per word re-weighting combined with 1, 3, and

30 prior “counts”, with the results reported in Table 5.9.

As these results indicate, using prior counts actually harms performance for each of

the counts tried. Extremely low word accuracy scores found for some of the legal dataset

experiments (even though character recognition is reasonable) are caused by misclassify-

ing the cluster identifier representing the space symbol in most of the documents.
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dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B1 1.02 35.69 47.44 0.40 5.68 18.67

B3 1.04 32.64 42.96 0 5.25 21.17

B30 0.96 20.55 25.29 0 5.53 22.30

L1 0.60 70.15 88.99 2.47 5.13 50.63

L3 59.83 85.59 91.00 1.22 1.47 39.78

L30 0.40 59.54 75.91 0 6.85 20.97

Table 5.9: Within-word positional counts using prior counts and word length re-weighting

recognition accuracy

5.4.1 Within-Word Positional Count Strategy with Dictionary

Lookup

In an effort to boost recognition scores (particularly for short documents), the Euclidean

distances found between clusters and symbols via positional statistics can be used to

define an input ordering that can be refined using our explicit dictionary lookup strategy

discussed in Section 4.4.1. Doing this starting with the simple per-word re-weighted

15% uniform mixture with no prior counts (see Table 5.7 yields the results reported in

Table 5.10.

As expected, incorporating dictionary word lookup significantly improves the perfor-

mance in both datasets, particularly for the shorter business documents. Furthermore,

the performance of this lookup based positional approach is shown to be roughly the

same as the best normalized vote-based strategy (see Figure 5.8 for a comparison). The

vote strategy seems to perform slightly better on shorter documents, as well as on dig-

its and upper case letters in the longer dataset, however the positional approach shows
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dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 44.85 64.52 68.34 11.45 7.29 23.00

L 92.69 91.54 97.81 24.83 6.88 34.47

Table 5.10: Within-word positional counts with dictionary lookup recognition accuracy

improvements in word and other symbol accuracy on long documents (both approaches

are seen to perform identically well on lowercase characters).

5.4.2 Document Length and Cluster Analysis

To visualize the impact of document length on overall (as well as per symbol) recognition

performance, scatter plots of the B and L dataset accuracies using the simple re-weighted

positional statistics with dictionary lookup strategy results reported in Table 5.10 were

created. These plots can be found in Figure 5.4.

To get some sense of how performance changes when examining the clusters in order

based on frequency, the graphs in Figure 5.5 were created. Just like for the vote based

strategy, there is a general downward trend as we examine less frequently seen clusters

using the within word positional strategy. Also like the vote strategy, as the frequency

further decreases the variance of the results increases, and there is a slight upward trend

in the accuracy of the least frequently seen clusters (this is due to these clusters identifiers

not being present in every document). The positional strategy seems to generate better

recognition accuracies for the less frequently seen clusters than the vote based strategy

(for both the short and long documents).



Chapter 5. Experimental Results 116

(a) B dataset

(b) L dataset

Figure 5.4: Positional count recognition accuracy as a function of document length
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(a) B dataset (b) L dataset

Figure 5.5: Average positional count based recognition accuracy calculated per cluster

identifier

5.4.3 Misclassification Analysis

To get some handle on where misclassifications are made using the positional statistics

approach, a perfect cluster segmentation is simulated, as are the original cluster results

when recognition performance is calculated only on those symbols that make up at least

.5% of the total elements found in the document, and the results calculated when char-

acter case is ignored. These experimental results can be found in Table 5.11.

Examining the frequency based results shows a marked drop in performance over

accuracies calculated using the entire dataset. For uppercase characters and digits, these

symbols only appear in the most frequent documents in a handful of documents, and in

almost every case they were incorrectly recognized a majority of the time.

Ignoring character case shows small improvements in overall character accuracy in

both short and long documents, indicating that at least some of the time, the correct

character is identified, but its case is incorrect.

Like the vote-based strategy, a perfect segmentation drastically improves performance

over each symbol type for the positional statistic strategy. Lowercase character recogni-

tion is perfect over each of the long documents, and on-par with shape-based classifiers
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dataset

recognition accuracy

word
symbol

overall low char upper char digit other

Bfreq 15.25 52.96 49.02 0.46 1.16 6.24

Bigcase 44.85 66.06 64.43 n/a 7.29 23.00

Bperf 83.32 87.41 98.60 22.28 11.70 42.25

Lfreq 70.87 91.10 92.89 0.13 n/a 50.46

Ligcase 92.69 94.06 96.63 n/a 6.88 34.47

Lperf 95.30 96.07 100 65.66 23.64 26.55

Table 5.11: Within-word positional frequency, ignored character case, and perfect seg-

mentation recognition accuracy

on shorter documents. Other symbols tend to perform poorer because they do not occur

very frequently, and do not exhibit a lot of contextual information.

5.5 Cross-Word Constraint Strategy

When employing our cross-word constraint based strategy to determine the mapping

from each cluster identifier to an associated symbol, we see initial recognition accuracy

results reported in Table 5.12.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 37.22 56.47 58.82 5.41 13.79 15.56

L 77.96 86.14 91.72 2.72 17.93 32.62

Table 5.12: Cross-word constraint recognition accuracy
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Inspecting these results shows that many mistakes are made on uppercase letter

clusters as they are instead recognized as their equivalent lowercase character value.

Similarly, there are a lot of confusions between punctuation characters (periods swapped

for comma’s for instance). A simple expansion of the lexicon to include words in which

the first symbol is uppercase (along with any existing words that begin with a lowercase

symbol), should ideally improve performance. A similar type of extension can be carried

out for words that do not end in punctuation symbols. The resultant accuracies found

when doing this is shown in Table 5.13.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 38.80 58.28 60.21 7.09 14.92 22.02

L 89.55 90.79 97.55 2.72 19.93 29.63

Table 5.13: Cross-word constraint with upper case character and punctuation handling

recognition accuracy

While adding punctuation and uppercase letter symbols to the lexicon words is shown

to improve overall performance (particularly for longer documents), it does not generate

much improvement on uppercase letters. A major source of errors in this cross-word

constraint approach stems from not being able to find a single “valid” lexical match for

cluster words in which some of the less frequently seen cluster identifiers appear. As

clusters are mapped, there are fewer lexical matches that satisfy each of the constraints,

and eventually a point is reached in which each of the cluster words that a particular

identifier appears, has no simultaneously satisfied lexical matches. Under such a scenario,

our strategy is to arbitrarily map the first symbol that has not been invalidated by prior

constraints. Since our symbol alphabet is constructed with the digits listed first, this ends

up with many character and punctuation symbols mapped incorrectly to digits. When
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comparing the cross-word constrained word lookup approach with the positional statistic

and vote-based approaches (see Figure 5.8), we find that while the cross-word constraint

approach generally performs better on digits, the other approaches outperform it overall

(particularly on upper case letters).

Note that we cannot perform an explicit dictionary word lookup using this strategy,

since doing so requires an input ordering over symbols for each cluster identifier (and

this strategy simply determines the most likely mapping). As in the vote-based strategy,

dictionary lookup information is already included as part of the recognition process, so

it would be unlikely to provide much additional benefit.

5.5.1 Document Length and Cluster Analysis

To visualize the impact of document length on overall (as well as per symbol) recogni-

tion performance, scatter plots of the B and L dataset accuracies using the cross-word

constraint with uppercase and punctuation character handling strategy reported in Ta-

ble 5.13 were created. These plots can be found in Figure 5.6.

To get some sense of how performance changes when examining the clusters in order

based on frequency, the graphs in Figure 5.7 were created. Again these results show the

same general patterns as the previous two strategies (a general downward trend with the

most frequent clusters being recognized most accurately). The graphs are most like those

found in the vote based strategy in the least frequent clusters, and tend not to vary as

much as those in the positional statistic strategy.

5.5.2 Misclassification Analysis

To determine where misclassifications are made using the cross-word constraint approach,

a perfect cluster segmentation is simulated, as are the original cluster recognition results

when restricted to those clusters that make up at least .5% of the total elements found

in the document, and the results when ignoring character case. The results can be found



Chapter 5. Experimental Results 121

(a) B dataset

(b) L dataset

Figure 5.6: Cross-word constraint recognition accuracy as a function of document length
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(a) B dataset (b) L dataset

Figure 5.7: Average cross-word constraint recognition accuracy calculated per cluster

identifier

in Table 5.14.

The frequency based results end up being identical to those determined via the po-

sitional statistic strategy. This has come about because both approaches have predicted

the exact same symbols for each of these frequent clusters.

Ignoring character case yields noticeable improvements in both short and long docu-

ments, indicating that several character symbols were correctly identified but the wrong

case was predicted.

Like the previous two approaches, assuming a perfect segmentation and clustering

proves to be extremely beneficial for recognition performance, suggesting that many of the

underlying errors actually stem from problems occurring before symbols are recognized.

5.6 Shape-Based Classification

For comparison purposes, a shape-based OCR system was also run through each of the

dataset documents. The open-source Tesseract3 recognition engine was used as a basis

3http://code.google.com/p/tesseract-ocr

http://code.google.com/p/tesseract-ocr
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dataset

recognition accuracy

word
symbol

overall low char upper char digit other

Bfreq 15.25 52.96 49.02 0.46 1.16 6.24

Bigcase 38.80 62.80 56.75 n/a 14.92 22.02

Bperf 77.64 83.09 92.09 20.73 18.59 41.38

Lfreq 70.87 91.10 92.89 0.13 n/a 50.46

Ligcase 89.55 93.23 95.54 n/a 19.93 29.63

Lperf 93.53 93.07 99.98 4.11 19.94 42.85

Table 5.14: Cross-word constraint frequency, ignored case, and perfect segmentation

recognition accuracy

for comparison, with the individual textual regions of each page passed to the recognizer

one at a time. The results from using this system are shown in Table 5.15.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

B 94.05 97.44 98.02 93.11 92.16 91.97

L 99.03 99.23 99.93 95.02 75.20 94.42

Table 5.15: Shape-based classifier recognition accuracy

As the results show, performance is excellent for all symbols and all document lengths.

As indicated in Figure 5.8, the shape-based classifier outperforms each of the top-down

strategies, particularly in places where there are few occurrences or minimal contextual

information (like digits or uppercase characters). Only on perfectly segmented and clus-

tered lowercase character symbols, do the top-down approaches perform better than the
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shape-based approach. It should also be noted that most if not all of the documents

in these datasets are set in standard font faces and sizes, which means that Tesseract’s

symbol classifier will most likely have seen these fonts as part of a prior training process.

5.7 Atypical Font Results

While shape-based classifiers have been shown to outperform the top-down strategies

for the most part on the UNLV B and L datasets, it is worth exploring performance on

datasets written in fonts in which a shape-based classifier has not previously been trained.

To test this, we ran each of our top-down classifiers through the synthetically generated

italicized Reuters document discussed in Chapter 1, a sample page of this dataset can

be seen in Figure 1.4. This document contains 19,635 symbols spread over eight pages.

The results of running each of our approaches (using the best found normalizations and

other settings) is shown in Table 5.16.

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

Reutvote 92.33 94.64 97.86 93.17 84.28 100

Reutpos 92.54 94.67 97.87 92.46 84.28 100

Reutconst 92.11 92.99 98.21 92.10 41.02 100

Table 5.16: Top-down synthetic document recognition accuracy

When compared with the results in Table 1.2 we see that for lowercase letters, each

of our top-down approaches outperforms all but one of the commercial systems (see

Figure 5.10a). Our approaches also outperform all of these systems on punctuation and

other symbols. For uppercase letter, and especially digit performance, it seems that

the shape-based classifiers still perform better. As can be seen from Figure 5.9, several
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cluster centroids were not split apart during the clustering process, resulting in many of

the recognition errors seen. If we assume a perfect clustering we obtain the results shown

in Table 5.17.

Figure 5.9: Synthetic document cluster averages

dataset

recognition accuracy

word
symbol

overall low char upper char digit other

Reutvote 99.79 99.97 100 99.04 100 100

Reutpos 99.79 99.96 100 98.80 100 100

Reutconst 99.79 97.75 100 98.80 49.02 100

Table 5.17: Top-down perfectly clustered synthetic document recognition accuracy

As this table and Figure 5.10b show, each of the top-down approaches performs

extremely well, outperforming each of the shape-based approaches on each symbol type

(with the exception of the cross-word constraint approach applied to digits). Lowercase
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letter, and punctuation symbol recognition is perfect, something which none of the shape-

based classifiers was shown to achieve.
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(b) Perfectly clustered Reuters italicized documents

Figure 5.10: Recognition accuracy comparison between top-down and shape-based strate-

gies on Reuters document images
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Conclusions

The work in this thesis has explored an alternate approach to symbol recognition that

is currently under-represented in OCR system research and development. As the ex-

perimental results presented in Chapter 5 show, our top-down decoding strategies can

perform roughly equivalent to shape based classifiers when presented with enough well

segmented input data.

6.1 Benefits of our Approach

Performing character recognition using purely contextual cues, after clustering similar

shaped-symbols together offers several advantages and benefits over the traditional shape-

based classifier approach. First and foremost, our approach is font independent, and able

to adapt or generalize to any consistently presented fonts given as input (regardless of

how unique they may be). Assuming the same level of noise and content, the symbols

of documents written uniformly in arbitrarily different font faces will be recognized with

exactly the same accuracy, something that will not hold for shape-based classifiers if at

least one of the fonts was not part of the original training set.

Another advantage of a top-down recognition strategy involves the ease with which

such a system can be re-targeted to work with documents written in other phonetic

129
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languages. By simply switching the corpus and symbol alphabet with those of the new

language to be recognized, the rest of the process remains unchanged. Such an approach

can even be extended to niche applications like the recognition of bank cheques, sheet

music, or chess moves in which the list of symbols seen and “language” lexicon are suitably

constrained (assuming that these atomic symbols can be segmented and appear as part

of a hierarchical “word-like” structure).

Finally, our top-down approach is able to exploit modern symbolic compression

schemes like JBIG2 [24], and perform recognition on these compressed document im-

ages directly. Symbolic compression schemes are designed to operate on binary images,

and take advantage of repeatedly seen sub-image patterns (which are bountiful in textual

documents). JBIG2 is an industry standard compression scheme that is used by several

popular image formats including Adobe’s PDF format (DjVu actually uses a slightly dif-

ferent symbolic compression scheme known as JB2). These schemes work by calculating

the connected components in an uncompressed document image, then they attempt to

find similar shaped components elsewhere in the image (much like our clustering pro-

cedure described in Chapter 3). For lossless compression schemes, a single template

sub-image is stored, and everywhere else that a roughly similar shape appears, its off-

set co-ordinates in the document are stored. Finally, the residual or difference between

the template and the similar shaped occurrence is stored. In contrast, lossy versions of

this compression scheme simply throw away these residuals during compression (but are

otherwise identical to lossless schemes). Not only can our recognition approach work

directly with these compressed inputs and offset locations, they actually work faster on

these documents than on their uncompressed equivalents. The reason for this is that the

clustering stage of our approach represents a significant portion of the overall processing

time required. Starting from a set of templates and their corresponding offsets, this initial

clustering can be used as a starting point for the top-down recognition process, though

a split or merge refinement is often necessary to ensure that components correspond to
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individual symbol images.

6.2 Future Work

As our work was largely exploratory in nature, there remain several areas for further

pursuit. We have chosen to binarize colour or grayscale documents prior to further

processing, largely for computational efficiency reasons. In doing so we lose useful in-

formation initially present in the document that could potentially harm clustering and

subsequent recognition performance. As an example, consider a synthetic font which

happens to be designed so that the glyphs are composed of pixel intensity gradients that

shift from dark to light (as some logotypes do, to indicate motion). Under our current

approach, these gradient intensities are simply chopped at a fixed point, which could

yield a partial symbol. If this is done consistently over the entire document this is less

of a problem, but if done for only some occurrences of a particular symbol, grouping all

occurrences under the same cluster becomes difficult (other problems arise when looking

for potential split points if such a component is actually composed of multiple symbols).

As the experimental results in Chapter 5 indicate, a significant portion of misclassifi-

cation errors are originally caused by errors in the clustering process, in particular many

fused symbols remain even after split refinement procedures. This biases the positional

statistics and yields invalid numerization strings which ultimately ends in incorrect or

non-existent corpus dictionary words to determine the mappings from. When mappings

are assigned one-by-one, the first incorrect mapping can skew or incorrectly constrain

further word lookup, and thus subsequent recognition assignments (i.e. after the first

mistake, the problem snowballs). As alluded to in Chapter 4, an improvement would be

to use the information found from an initial recognition of the cluster identifiers, to go

back and look for clusters that should be re-segmented.

Another simple correction that ideally should be implemented involves handling words
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that are hyphenated and split over multiple lines. Some sort of pre-processing should be

carried out prior to recognition to try and identify sub-words that have been hyphenated

and split. Hyphen symbols are fairly consistent in terms of baseline and x-height offset,

aspect ratio and density so identifying them in a font-free manner should be possible.

Looking for components with no right neighbouring component (within a reasonable

distance) that are much wider than they are taller, and whose bottom bounding box

co-ordinate lies above the baseline should allow one to identify the hyphens, which can

then be used to glue together the adjacent word halve on the next line prior to cluster

word statistic gathering and contextual recognition.

More detailed statistical models could also be employed to improve the recognition

results, particularly for infrequently seen clusters. For long documents, most of the

lowercase character symbols can be recognized quite accurately, however for a lot of

individuals, scanning is typically done on short one or two page documents. Even for

longer documents, symbols that are seldom seen, or those for which there is almost no

contextual information will require alternate strategies to be recognized correctly. As an

example, if given an input string of the form 45x69, where x remains the only unknown

mapped symbol, even if it was guaranteed that x was a digit, the probability of which

particular digit x represented is essentially uniform. While 0,1,9 may be slightly more

common in large corpora (because of things like prices, and the human tendency of

rounding discussed digit strings to whole numbers), context alone can not distinguish

the correct digit for x.

Our implementation also currently relies on setting several threshold parameters by

hand, prior to segmenting, clustering, and recognizing document images. Ideally, these

parameters should be tuned or learned automatically, using information found in earlier

stages of the process. For instance, during the clustering phase, the mean or modal aspect

ratio of the connected components can be combined with variance, density, or other pixel

measures to determine suitable cluster matching distance thresholds.
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