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The unitary synthesis problem

Can every n-qubit unitary U be approximately implemented in
poly(n) time using an appropriate classical oracle Oy? [AK'07]
> If yes, then upper bound for Oy = upper bound for U.

» Interesting because we know more about how to compute
boolean functions than unitaries.

» Trivial 5(4”) time solution: oracle encodes a circuit for U.

> @(2"/2) time solution [R'21].
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Implementing unitaries in low depth

What's the minimum depth required to exactly implement any
n-qubit unitary using one- and two-qubit gates (and ancillae)?

» Depth = parallel computation time.

> Trivial O(4") upper bound.

> 5(2”) upper bound [STYYZ'21].

> O(2"/2) upper bound (with O(4") ancillae) [R'21].
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Constructing states = implementing unitaries

» Main definition: If U is an n-qubit unitary, call a 2n-qubit
unitary A a U-gRAM if for all x € {0,1}",

Alx,0") = |x) ® U|x).

Alx, y) is unspecified for y # 0".

» Think of A as constructing the state U|x) controlled on the
classical key x, while preserving x.

» Can implement U in 5(2”/2) time with A and Af
oracles [R'21].
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How this all fits together

» Right column follows from the left column:

Constructing states | Implementing unitaries

Runtime with | poly(n) [Asronsonie] | O(27?) [R21]

L. O(n) [R'21, ~ 2 ,
Circuit depth STYY(Z%:L[, ZLY"22] 0(2"?) [R21]

> Also: matching Q(2"/2) query lower bound for approximately
implementing Haar random U given A and AT oracles [R'21].
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Implementing U with A and AT oracles

» By linearity, assume the input is a standard basis state |x).
» First apply A to obtain |x) ® U|x).
> (We can't just trace out x because in general these registers
are entangled.)

G = A(l, @ (I, —2|0")(0"]))AT can be efficiently implemented.
G(Ih, ® Ulx)) = (In — 2|x){(x]) ® U|x).

» Run exact Grover search in reverse to uncompute x.

vy

6/11



Lower bound warmup: permutation matrices

» Grover is optimal for unstructured search, but can we do
better than simulating unstructured search?

» For a permutation o of {0,1}", let U,|x) = |o(x)) and
Aslx,y) = Ix,y @ a(x)).

> It takes Q(2"/2) quantum queries to A, (= A}) to implement
Uy for random o [Ambainis'02, Nayak'11].

» Unsatisfying because U, is easy to implement in other models.
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Why is the Haar random case interesting?

» For fixed U and Haar random R,

U= UR- R .
~— ~~

Haar random Haar random

» = If Haar random unitaries have “low complexity” w.h.p.
then all unitaries have low (nonuniform) complexity.

» Contrapositive: If any unitary has high complexity, then so
does a Haar random unitary w.h.p.
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Lower bound for Haar random unitaries

Theorem: Let C be such that w.h.p. over Haar random R, for all
R-qRAMs A, the circuit C(AA") approx. implements R. Then C
makes Q(2”/2) queries.

» Proof overview: combine previous two slides.

» Fix U, let Abe a U-qRAM (e.g. U= U,,A=A,).

» (I, ® R)Ais an RU-qRAM.

» If R is Haar random then so is RU.

> = C((h@RAAT(LERN) approx. implements RU w.h.p. over R.

>

Prepending R yields an implementation of U using the same
number of A and AT queries as C.
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Warmup: sampling s ~ {0,1}" in O(n) depth

» For each string x of length < n, independently sample
b, ~ Bernoulli(IP(s begins with x1 | s begins with x)).

» For k from 1 to n, if the first k — 1 output bits are the string
x, then the k'th output bit is by.

» Computing the output in O(n) depth:

i'th output bit = \/ /\ (beyt, o = t)-

te{0,1}" 1<k<n
ti=1
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Constructing (g 1y» @x|x) in O(n) depth

» Replace independent Bernoulli random variables with
unentangled one-qubit states.

v

Results in ), ax|x)|garbage,).

v

|garbage, ) factors as a tensor product of one-qubit states,
each of which has a succinct description as a function of x.

» = can efficiently uncompute |garbage, ) controlled on x.

v

Remark: construction works in QAC?.
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