Math Puzzles

Gregory Rosenthal

February 1, 2020

Abstract

I hope, but do not necessarily expect, to update this list indefinitely with new math puzzles that I come up with (and solve). For now, here are two that were easy to extract from likely dead ends in a research problem I'm working on. Certain mathematical knowledge ${ }^{1}$ is likely to be useful. Solutions are available here for Problem 1 and here for Problem 2.

1. Let $A \in\{0,1\}^{n \times n}$, and let σ be a uniform random permutation of $[n] .{ }^{2}$ Prove that for all $t \geq 0$,

$$
P\left(\sum_{j=1}^{n}\left(A_{\sigma(j), j}-\frac{1}{n} \sum_{i=1}^{n} A_{i, j}\right) \geq t\right) \leq \exp \left(-t^{2} / O(n)\right)
$$

and

$$
P\left(\sum_{j=1}^{n}\left(A_{\sigma(j), j}-\frac{1}{n} \sum_{i=1}^{n} A_{i, j}\right) \leq-t\right) \leq \exp \left(-t^{2} / O(n)\right) .
$$

2. Given $s \in\left[2^{n}\right]$, find, up to a constant factor, the maximum value of $\left\|\frac{1}{s} \sum_{x \in A} x\right\|_{2}^{2}$ over all sets $A \subseteq\{ \pm 1\}^{n}$ of size $s .{ }^{3}$
[^0]
[^0]: ${ }^{1}$ A subset of this, more or less. Nothing too obscure.
 ${ }^{2}[n]=\{1, \ldots, n\}$
 ${ }^{3}$ Thanks to Deeksha Adil, Lily Li and Ian Mertz for feedback on the wording of this.

