Math Puzzles

Gregory Rosenthal

February 1, 2020

Abstract

I hope, but do not necessarily expect, to update this list indefinitely with new math puzzles that I come up with (and solve). For now, here are two that were easy to extract from likely dead ends in a research problem I'm working on. Certain mathematical knowledge¹ is likely to be useful. Solutions are available here for Problem 1 and here for Problem 2.

1. Let $A \in \{0,1\}^{n \times n}$, and let σ be a uniform random permutation of $[n]^{2}$. Prove that for all $t \ge 0$,

$$P\left(\sum_{j=1}^{n} \left(A_{\sigma(j),j} - \frac{1}{n} \sum_{i=1}^{n} A_{i,j}\right) \ge t\right) \le \exp\left(-t^2/O(n)\right)$$

and

$$P\left(\sum_{j=1}^{n} \left(A_{\sigma(j),j} - \frac{1}{n}\sum_{i=1}^{n} A_{i,j}\right) \le -t\right) \le \exp\left(-t^2/O(n)\right).$$

2. Given $s \in [2^n]$, find, up to a constant factor, the maximum value of $\left\|\frac{1}{s}\sum_{x\in A}x\right\|_2^2$ over all sets $A \subseteq \{\pm 1\}^n$ of size s.³

¹A subset of this, more or less. Nothing too obscure.

 $^{{}^{2}[}n] = \{1, ..., n\}$ ³Thanks to Deeksha Adil, Lily Li and Ian Mertz for feedback on the wording of this.