Bounds on the QAC⁰ Complexity of Approximating Parity

Gregory Rosenthal

University of Toronto

ITCS 2021

<ロト <四ト <注入 <注下 <注下 <

 QAC^0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

constant depth

QAC

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

 AC^0

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- ► Is fanout in QAC⁰?
- ► Fanout ~ Parity [GHMP'02]
- ▶ Parity \notin AC⁰ [H'86]
- ► $TC^0 \subseteq QAC^0$ [parity/fanout] [HS'05,TT'16]

- ► Is fanout in QAC⁰?
- ► Fanout ~ Parity [GHMP'02]
- ▶ Parity \notin AC⁰ [H'86]
- ► $TC^0 \subseteq QAC^0$ [parity/fanout] [HS'05,TT'16]

- Is fanout in QAC⁰?
- ► Fanout ~ Parity [GHMP'02]
- ▶ Parity \notin AC⁰ [H'86]
- ► $TC^0 \subseteq QAC^0$ [parity/fanout] [HS'05,TT'16]

- ▶ Is fanout in QAC⁰?
- ► Fanout ~ Parity [GHMP'02]
- ▶ Parity \notin AC⁰ [H'86]
- ► $TC^0 \subseteq QAC^0$ [parity/fanout] [HS'05,TT'16]

- Is fanout in QAC⁰?
- ► Fanout ~ Parity [GHMP'02]
- ▶ Parity \notin AC⁰ [H'86]
- ► $TC^0 \subseteq QAC^0$ [parity/fanout] [HS'05,TT'16]

- ▶ Is fanout in QAC⁰?
- ► Fanout ~ Parity [GHMP'02]
- Parity ∉ AC⁰ [H'86]
- ► TC⁰ ⊆ QAC⁰[parity/fanout] [HS'05,TT'16]

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	1-arepsilon
L.B.	\sim tight fo	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

Bounds for $\mathsf{Parity}/\mathsf{Fanout}$

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	1-arepsilon
L.B.	\sim tight fo	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	1-arepsilon
L.B.	\sim tight fo	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	1-arepsilon
L.B.	\sim tight fo	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	1-arepsilon
L.B.	\sim tight fo	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	1-arepsilon
L.B.	\sim tight fo	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$1-\varepsilon$
L.B.	\sim tight f	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$1-\varepsilon$
L.B.	\sim tight fo	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$1-\varepsilon$
L.B.	\sim tight f	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

Prior Results

	Depth [*]	Size*	Ancillae	
U.B.	$\sim \log n$	<i>O</i> (<i>n</i>)	O(n)	[GHMP'02]
L.B.	$\sim \log(n/(a+1))$	∞	а	[FFGHZ'06]
L.B.	2	∞	∞	[PFGT'20]

Our Results

	$Depth^*$	Size [*]	Ancillae	Approx.
U.B.	$d \ge 7$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	$e^{n^{O(1/d)}\log(n/\varepsilon)}$	1-arepsilon
L.B.	\sim tight fo	or a certain gene	ralization of the	U.B. circuit
L.B.	d	0.2n/(d+1)	∞	$ 1/2 + e^{-\Omega(n/d)}$
L.B.	2	∞	∞	$1/2 + e^{-\Omega(n)}$

- I.e. some n qubits of a nekomata measure to 0ⁿ and 1ⁿ each with probability 1/2.
- $\Rightarrow [\mathsf{GHMP'02}]: \\ \mathsf{Fanout}\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}|0\rangle^{n-1}\right) = \frac{1}{\sqrt{2}}\sum_{b=0}^{1}\mathsf{Fanout}\left(|b\rangle|0\rangle^{n-1}\right) = |\mathfrak{B}\rangle.$

► ⇐: Next slide.

- I.e. some n qubits of a nekomata measure to 0ⁿ and 1ⁿ each with probability 1/2.
- $\Rightarrow [\mathsf{GHMP'02}]:$ $\mathsf{Fanout}\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}|0\rangle^{n-1}\right) = \frac{1}{\sqrt{2}}\sum_{b=0}^{1}\mathsf{Fanout}\left(|b\rangle|0\rangle^{n-1}\right) = |\mathfrak{B}\rangle.$

► ⇐: Next slide.

- I.e. some n qubits of a nekomata measure to 0ⁿ and 1ⁿ each with probability 1/2.
- $\Rightarrow [\mathsf{GHMP'02}]: \\ \mathsf{Fanout}\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}|0\rangle^{n-1}\right) = \frac{1}{\sqrt{2}}\sum_{b=0}^{1}\mathsf{Fanout}\left(|b\rangle|0\rangle^{n-1}\right) = |\mathfrak{B}\rangle.$

► ⇐: Next slide.

- I.e. some n qubits of a nekomata measure to 0ⁿ and 1ⁿ each with probability 1/2.
- $\Rightarrow [\mathsf{GHMP'02}]: \\ \mathsf{Fanout}\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}|0\rangle^{n-1}\right) = \frac{1}{\sqrt{2}}\sum_{b=0}^{1}\mathsf{Fanout}\left(|b\rangle|0\rangle^{n-1}\right) = |\mathfrak{B}\rangle.$
- ► ⇐: Next slide.

- I.e. some n qubits of a nekomata measure to 0ⁿ and 1ⁿ each with probability 1/2.
- $\Rightarrow [\mathsf{GHMP'02}]:$ $\mathsf{Fanout}\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}|0\rangle^{n-1}\right) = \frac{1}{\sqrt{2}}\sum_{b=0}^{1}\mathsf{Fanout}\left(|b\rangle|0\rangle^{n-1}\right) = |\varnothing\rangle.$ $\Leftarrow: \mathsf{Next slide}.$

- I.e. some n qubits of a nekomata measure to 0ⁿ and 1ⁿ each with probability 1/2.
- $\Rightarrow [\mathsf{GHMP'02}]: \\ \mathsf{Fanout}\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}|0\rangle^{n-1}\right) = \frac{1}{\sqrt{2}}\sum_{b=0}^{1}\mathsf{Fanout}\left(|b\rangle|0\rangle^{n-1}\right) = |\mathfrak{B}\rangle.$

 \blacktriangleright \Leftarrow : Next slide.

Nekomata \Rightarrow Parity

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Upper Bounds for Approximate Parity/Fanout

DepthSizeAncillaeApprox.U.B.
$$d \ge 7$$
 $e^{n^{O(1/d)}\log(n/\varepsilon)}$ $e^{n^{O(1/d)}\log(n/\varepsilon)}$ $1-\varepsilon$

- ▶ Depth-2 exponential-size U.B. for approximate nekomata ⇒ depth-11 U.B.
- Further optimization \Rightarrow depth-7 U.B.
- ▶ Downward self-reducibility of parity \Rightarrow depth-d U.B.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Upper Bounds for Approximate Parity/Fanout

DepthSizeAncillaeApprox.U.B.
$$d \ge 7$$
 $e^{n^{O(1/d)}\log(n/\varepsilon)}$ $e^{n^{O(1/d)}\log(n/\varepsilon)}$ $1-\varepsilon$

- ▶ Depth-2 exponential-size U.B. for approximate nekomata ⇒ depth-11 U.B.
- Further optimization \Rightarrow depth-7 U.B.
- ▶ Downward self-reducibility of parity \Rightarrow depth-d U.B.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Upper Bounds for Approximate Parity/Fanout

DepthSizeAncillaeApprox.U.B.
$$d \ge 7$$
 $e^{n^{O(1/d)}\log(n/\varepsilon)}$ $e^{n^{O(1/d)}\log(n/\varepsilon)}$ $1-\varepsilon$

- ▶ Depth-2 exponential-size U.B. for approximate nekomata ⇒ depth-11 U.B.
- Further optimization \Rightarrow depth-7 U.B.
- Downward self-reducibility of parity \Rightarrow depth-d U.B.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Bounds for Nekomata in "Mostly Classical" Circuits

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Approx. = max $|\langle \nu | C | \overline{0} \rangle|^2$ over all nekomata $|\nu \rangle$.

Bounds for Nekomata in "Mostly Classical" Circuits

• Approx. = max $|\langle \nu | C | \overline{0} \rangle|^2$ over all nekomata $|\nu \rangle$.

Bounds for Nekomata in "Mostly Classical" Circuits

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Approx. = max $|\langle \nu | C | \overline{0} \rangle|^2$ over all nekomata $|\nu \rangle$.

Upper Bound:

• Goal: sample 0^n and 1^n each with probability $\approx 1/2$.

1. In each column, independently sample 1^n with probability $\exp(-\Theta(n))$ and 0^n otherwise.

•
$$(I-2\left|\tilde{1}^n\right\rangle\!\!\left\langle\tilde{1}^n\right|)|0^n\rangle$$
 where $\left|\tilde{1}\right\rangle\approx|1\rangle$

2. Compute the OR of each row.

Lower Bound:

Concentration inequality for Hamming weight, via [GLSS'15].

Upper Bound:

• Goal: sample 0^n and 1^n each with probability $\approx 1/2$.

1. In each column, independently sample 1^n with probability $\exp(-\Theta(n))$ and 0^n otherwise.

•
$$(I-2\left|\tilde{1}^n\right\rangle\!\!\left\langle\tilde{1}^n\right|)|0^n\rangle$$
 where $\left|\tilde{1}\right\rangle\approx|1\rangle$

2. Compute the OR of each row.

Lower Bound:

Concentration inequality for Hamming weight, via [GLSS'15].

Upper Bound:

• Goal: sample 0^n and 1^n each with probability $\approx 1/2$.

1. In each column, independently sample 1^n with probability $\exp(-\Theta(n))$ and 0^n otherwise.

• $(I-2\left|\tilde{1}^n\right\rangle\!\!\left\langle\tilde{1}^n\right|)|0^n\rangle$ where $\left|\tilde{1}\right\rangle\approx|1\rangle$

2. Compute the OR of each row.

Lower Bound:

Concentration inequality for Hamming weight, via [GLSS'15].

Upper Bound:

• Goal: sample 0^n and 1^n each with probability $\approx 1/2$.

1. In each column, independently sample 1^n with probability $\exp(-\Theta(n))$ and 0^n otherwise.

•
$$(I-2\left|\tilde{1}^n\left<\tilde{1}^n\right|)|0^n\right>$$
 where $\left|\tilde{1}\right>pprox|1>$

2. Compute the OR of each row.

Lower Bound:

Concentration inequality for Hamming weight, via [GLSS'15].

Upper Bound:

• Goal: sample 0^n and 1^n each with probability $\approx 1/2$.

1. In each column, independently sample 1^n with probability $\exp(-\Theta(n))$ and 0^n otherwise.

•
$$(I-2\left|\tilde{1}^n\left<\tilde{1}^n\right|)|0^n\right>$$
 where $\left|\tilde{1}\right>\approx|1\right>$

2. Compute the OR of each row.

Lower Bound:

Concentration inequality for Hamming weight, via [GLSS'15].

Upper Bound:

• Goal: sample 0^n and 1^n each with probability $\approx 1/2$.

1. In each column, independently sample 1^n with probability $\exp(-\Theta(n))$ and 0^n otherwise.

•
$$(I-2\left|\tilde{1}^{n}\right\rangle\!\!\left\langle\tilde{1}^{n}\right|)|0^{n}
ight
angle$$
 where $\left|\tilde{1}\right\ranglepprox|1
ight
angle$

2. Compute the OR of each row.

Lower Bound:

Concentration inequality for Hamming weight, via [GLSS'15].

Remaining Proof Summaries & Result Clarifications

Depth-*d*, Size-0.2n/(d+1) Circuits *C*:

- Normal form (see next slide) & triangle inequality => L.B. for nekomata:
- $\blacktriangleright |\langle \nu | C | \overline{0} \rangle|^2 \leq 1/2 + e^{-\Omega(n/d)} \text{ for all nekomata } |\nu\rangle.$
- Implies L.B. for parity/fanout.

Depth-2 Circuits C:

Measure ancillae to kill off gates, apply (a generalization of) the above theorem ⇒ L.B. for |\Brack\]:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\blacktriangleright |\langle {\ensuremath{\boxtimes}}, \psi \big| C \big| \overline{0} \big\rangle |^2 \leq 1/2 + e^{-\Omega(n)} \text{ for all states } |\psi \rangle.$

Implies L.B. for parity/fanout.

Remaining Proof Summaries & Result Clarifications

Depth-*d*, Size-0.2n/(d+1) Circuits *C*:

- Normal form (see next slide) & triangle inequality => L.B. for nekomata:
- $\blacktriangleright |\langle \nu | C | \overline{0} \rangle|^2 \leq 1/2 + e^{-\Omega(n/d)} \text{ for all nekomata } |\nu\rangle.$
- Implies L.B. for parity/fanout.

Depth-2 Circuits C:

- Measure ancillae to kill off gates, apply (a generalization of) the above theorem ⇒ L.B. for |\vec{B}⟩:
- $\blacktriangleright |\langle \mathfrak{S}, \psi | C | \overline{0} \rangle|^2 \leq 1/2 + e^{-\Omega(n)} \text{ for all states } |\psi\rangle.$

Implies L.B. for parity/fanout.

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

・ロト・日本・日本・日本・日本・日本

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

- eigenvalues 1,...,1,-1
- -1 eigenvector is product of one-qubit states

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

- eigenvalues $1, \ldots, 1, -1$
- -1 eigenvector is product of one-qubit states

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙