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Abstract

We transcribe a series of four lectures by Ramon van Handel titled “Remarks on
the Discrete Cube” [8], the content of which is summarized below.

Lecture 1

The “discrete cube” is the set {−1, 1}n. We will consider the following classes of functions
on the cube, in increasing order of generality:

f : {−1, 1}n → {0, 1} (boolean functions),

f : {−1, 1}n → R (real-valued functions),

f : {−1, 1}n → (X, ‖ · ‖X) (vector-valued functions),

where X is an arbitrary Banach space with norm ‖ · ‖X .
A fundamental fact about real-valued functions on the cube is the Poincaré inequality,

which will be stated shortly. In these lectures we will do the following:

1. Prove Lp analogues of the Poincaré inequality for vector-valued functions on the cube.
This result is due to Ivanisvili, van Handel and Volberg [10], as is the proof given here.

2. Prove a certain strengthening of the Poincaré inequality for boolean functions on the
cube. This result is due to Eldan and Gross [4], and generalizes previous results of
Kahn, Kalai and Linial [11] and Talagrand [17]. The proof given by Eldan and Gross
uses stochastic calculus, but here we present a new simplification of their proof which
uses techniques of Ivanisvili, van Handel and Volberg in place of stochastic calculus.

Real-valued functions on the cube are commonly analyzed using (discrete) Fourier anal-
ysis [14, 7], and the Poincaré inequality is easy to prove in this way. In contrast, except for
a single application of hypercontractivity near the end, in these lectures we will use only
elementary probability and calculus, and in particular no Fourier analysis.
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For f : {−1, 1}n → (X, ‖ · ‖X) let Ef = 2−n
∑

ε∈{−1,1}n f(ε) denote the expectation

of f under the uniform distribution, and if f is real-valued then let Var f = Ef2 − (Ef)2

denote the variance of f under the uniform distribution. (We also use E to denote expected
value more generally.) For 1 ≤ i ≤ n define the i’th “discrete derivative” of a function
f : {−1, 1}n → (X, ‖ · ‖X) as follows: for all ε = (ε1, . . . , εn) ∈ {−1, 1}n,

Dif(ε) =
f(ε)− f(ε1, . . . , εi−1,−εi, εi+1, . . . , εn)

2
.

Theorem 1 (Poincaré inequality). Let f : {−1, 1}n → R; then Var f ≤ E
∑n

i=1(Dif)2.

Let Df = (D1f, . . . ,Dnf) and let ‖ · ‖ denote the Euclidean norm. Then we may also
write the Poincaré inequality as Var f ≤ E‖Df‖2, so one interpretation of the Poincaré
inequality is that “Lipschitz” functions have constant variance.

If f takes values in {−1, 1} then (Dif(ε))2 = 1f(ε) 6=f(ε1,...,−εi,...,εn). Therefore another
interpretation of the Poincaré inequality is that if f represents a voting rule in a two-
candidate election, and if votes are independent and uniform random, then on average
there are at least Var f voters i such that flipping only the i’th vote would change the
outcome of the election. If both candidates have probability 1/2 of winning the election
then Var f = 1, in which case at least one voter has probability at least 1/n of casting
a decisive vote. The previously mentioned result of Kahn, Kalai and Linial [11] improves

this 1/n lower bound to Ω
(

logn
n

)
.

We begin by proving the Poincaré inequality, in a manner which is much less efficient
than the Fourier-analytic proof but which introduces machinery used to prove the main
results of these lectures. Suppose we have a smooth function ϕ : [0,∞) → R such that
ϕ(0) = Ef2 and ϕ(∞) := limt→∞ ϕ(t) = (Ef)2. Then,

Var f = Ef2 − (Ef)2 = ϕ(0)− ϕ(∞) = −
∫ ∞

0

dϕ(t)

dt
dt,

so it suffices to bound dϕ(t)/dt.
For t ≥ 0 let ξ(t) = (ξ1(t), . . . , ξn(t)) ∈ {−1, 1}n be a random variable where each ξi(t)

is independently 1 with probability 1+e−t

2 and -1 with probability 1−e−t

2 , i.e. Eξξi(t) = e−t.
For ε ∈ {−1, 1}n let Ptf(ε) = Eξf(εξ(t)) where εξ(t) := (ε1ξ1(t), . . . , εnξn(t)). Then
P0f = f and P∞f = Ef , so we may define ϕ(t) := E[(Ptf)2], implying that

Var f = −
∫ ∞

0

d

dt
E[(Ptf)2]dt = −2

∫ ∞
0

E

[
Ptf

d

dt
Ptf

]
dt.

Remark. For intuition’s sake, we now give an equivalent definition of Ptf in terms of the
following continuous-time random walk Y (t) = (Y1(t), . . . , Yn(t)) on the cube, where t ≥ 0
represents time. To each coordinate from 1 to n, assign a “clock” which “ticks” at times
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determined by a rate-1 Poisson process,1 independently of the other n−1 clocks. Whenever
the i’th clock ticks, resample Yi uniformly at random. If Y (0) = ε then Y (t) is distributed
identically to εξ(t), because the i’th clock ticks before time t with probability 1− e−t, and
because Yi(t) equals εi before the i’th clock’s first tick and is uniform random after the i’th
clock’s first tick. Therefore Ptf(ε) = E[f(Y (t)) | Y (0) = ε].

It is easy to verify that D2
i = Di and DiDj = DjDi. Let ∆ = −

∑n
i=1Di. In the next

lecture we will prove the following:

Lemma 2. For all f : {−1, 1}n → (X, ‖ · ‖X),

0. EPtf = Ef ,

1. d
dtPtf = ∆Ptf ,

2. DiPtf = PtDif ,

and for all f, g : {−1, 1}n → R,

3. E[f∆g] = −
∑n

i=1 E[Dif ·Dig],

4. (DiPtf)2 ≤ e−2tPt(Dif)2 pointwise.

Remark. The case of Items 0 to 2 where X = R is sufficient for our proof of the Poincaré
inequality, and can be proved perhaps more easily using Fourier analysis,2 but we will use
the generalization to arbitrary Banach spaces later in these lectures.

Item 1 is called the heat equation. The transformation ∆ is called the Laplacian because
it equals −

∑n
i=1D

2
i , analogous to the standard calculus definition of the Laplacian. Item 3

is analogous to integration by parts, since ∆ = −
∑n

i=1D
2
i .

Proof of the Poincaré inequality. By Lemma 2,

Var f = −2

∫ ∞
0

E

[
Ptf

d

dt
Ptf

]
dt (proved above)

= −2

∫ ∞
0

E[Ptf∆Ptf ]dt (Item 1)

= 2

∫ ∞
0

∑
i

E[(DiPtf)2]dt (Item 3)

≤ 2

∫ ∞
0

∑
i

E[e−2tPt(Dif)2]dt (Item 4)

1I.e. the times between ticks of any given clock are independent rate-1 exponential random variables.
2For S ⊆ {1, . . . , n} let χS(ε) =

∏
i∈S εi. Then DiχS = 1i∈SχS , and ∆χS = −|S|χS , and PtχS =

e−t|S|χS , from which Items 0 to 3 follow easily using the Fourier expansion of f .
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=

∫ ∞
0

2e−2t
∑
i

E[(Dif)2]dt (Item 0)

=
∑
i

E[(Dif)2].

Lecture 2

We now prove Lemma 2:

Proof of Item 0. For any fixed ξ ∈ {−1, 1}n, if ε is uniform random on {−1, 1}n then so is
εξ, so EPtf = Eξ,εf(εξ(t)) = EξEf = Ef .

Proof of Item 1. By applying the definition of Ptf and again substituting εξ for ξ,

Ptf(ε) =
∑

ξ∈{−1,1}n

n∏
j=1

1 + ξje
−t

2
f(εξ) =

∑
ξ∈{−1,1}n

n∏
j=1

1 + εjξje
−t

2
f(ξ),

so by the product rule,

d

dt
Ptf(ε) = −

n∑
i=1

∑
ξ∈{−1,1}n

εiξie
−t

2

∏
j 6=i

1 + εjξje
−t

2
f(ξ) = −

n∑
i=1

DiPtf(ε).

Proof of Item 2. Let ei ∈ {−1, 1}n have a -1 in position i and 1s elsewhere, i.e. Dif(ε) =
f(ε)−f(εei)

2 . Then,

DiPtf(ε) =
Ptf(ε)− Ptf(εei)

2
= Eξ

f(εξ(t))− f(εeiξ(t))

2
= EξDif(εξ(t)) = PtDif(ε).

Remark. When f is real-valued, the following is an alternate proof of Item 2. Interpret Pt
and ∆ as 2n × 2n real matrices, acting on the space of functions from {−1, 1}n to R. We
just proved that d

dtPt = ∆Pt, and since P0 is the identity it follows that Pt = et∆. Since
D1, . . . , Dn commute it then follows that Pt =

∏n
i=1 e

−tDi , so Pt and Di commute.

Proof of Item 3. Define ei as in the proof of Item 2. If ε is uniform random on {−1, 1}n
then so is εei, and clearly Dig(ε) is antisymmetric in εi, so

E[f∆g] = −
n∑
i=1

Eε[f(εei)Dig(εei)] =
n∑
i=1

Eε[f(εei)Dig(ε)].

Therefore,

E[f∆g] =
E[f∆g] + E[f∆g]

2
=

n∑
i=1

Eε

[
f(εei)− f(ε)

2
Dig(ε)

]
= −

n∑
i=1

Eε[Dif(ε)Dig(ε)].
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Proof of Item 4. The value εiDif(ε) does not depend on εi, because

εiDif(ε) =
f(ε1, . . . , εi−1, 1, εi+1, . . . , εn)− f(ε1, . . . , εi−1,−1, εi+1, . . . , εn)

2
.

Therefore, for all ε ∈ {−1, 1}n,

DiPtf(ε) = PtDif(ε) = EξDif(εξ(t)) = Eξ[εiξi(t) · εiξi(t)Dif(εξ(t))]

= Eξ[εiξi(t)] ·Eξ[εiξi(t)Dif(εξ(t))] = e−tEξ[ξi(t)Dif(εξ(t))],

so by Jensen’s inequality,

(DiPtf(ε))2 ≤ e−2tEξ[(Dif(εξ(t)))2] = Pt(Dif)2(ε).

Finally, we remark that the Poincaré inequality is sharp for linear functions: if a1, . . . , an ∈
R and f(ε) =

∑n
i=1 aiεi then Var f =

∑n
i=1 a

2
i =

∑n
i=1(Dif)2.

We now consider analogues of the Poincaré inequality for vector-valued functions on
the cube, i.e. for f : {−1, 1}n → (X, ‖ · ‖X). A natural hypothesis is that

E‖f −Ef‖2X
?
≤ C

n∑
i=1

E‖Dif‖2X , (1)

where each occurrence of C throughout these lectures represents a distinct positive universal
constant. For example, the Poincaré inequality says that Eq. (1) holds when (X, ‖ · ‖X) =
(R, | · |). When specialized to linear functions, Eq. (1) would imply that Eε ‖

∑n
i=1 εixi‖

2
X ≤

C
∑n

i=1 ‖xi‖2X for all x1, . . . , xn ∈ X. However, if (X, ‖ · ‖X) = (Rn, ‖ · ‖1) and xi is the

i’th standard basis vector, then ‖
∑n

i=1 εixi‖
2
1 = ‖ε‖21 = n2 and

∑n
i=1 ‖xi‖21 = n, so Eq. (1)

is not universally true.
This raises the following question: can we prove an analogue of the Poincaré inequality

for arbitrary functions from {−1, 1}n to (X, ‖ · ‖X) in terms of the behavior of linear
functions from {−1, 1}n to (X, ‖ · ‖X)? More concretely, for p ≥ 1 let (X, ‖ · ‖X) have type
p if Eε ‖

∑n
i=1 εixi‖

p
X ≤ C

∑n
i=1 ‖xi‖

p
X for all x1, . . . , xn ∈ X. For example, every space has

type 1 by the triangle inequality, Hilbert spaces have type 2, and no space has type greater
than 2 due to the case where x1 = · · · = xn 6= 0. One may also verify that every space
with type q has type p for p ≤ q,3 and that if p ≤ 2 then (Rn, ‖ · ‖p) has type p.4

Theorem 3 (Conjectured by Enflo [5], proved by Ivanisvili, van Handel and Volberg [10]).
If (X, ‖ · ‖X) has type p, then E‖f −Ef‖pX ≤ C

∑n
i=1 E‖Dif‖pX for all f : {−1, 1}n → X.

3Take 1/q’th powers on both sides of the definition of type q, and apply the monotonicity in p of Lp and
`p norms.

4Reduce to the one-dimensional case, and apply the Khintchine inequality. To see that (Rn, ‖ · ‖p) does
not have type greater than p when n is large, let xi be the i’th standard basis vector.
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For example, Enflo’s conjecture trivially holds for linear functions, and implies that
Eq. (1) holds for spaces of type 2.

When trying to prove a conjecture about functions on the cube, one approach is to
first prove a similar statement for functions with n independent standard Gaussian inputs,
and then modify the proof to hold for functions on the cube. For a function f on Rn let
Ef denote the expectation of f under this input distribution, and let ∂if denote the i’th
partial derivative of f .

Theorem 4 (Pisier [15, Theorem 2.2]). Let f : Rn → (X, ‖ ·‖X) be a “sufficiently smooth”
function such that Ef exists. Let g = (g1, . . . , gn), g′ = (g′1, . . . , g

′
n) where g1, . . . , gn, g

′
1, . . . , g

′
n

are independent standard Gaussians. Then for all p ≥ 1,

E ‖f −Ef‖pX ≤
(π

2

)p
E

∥∥∥∥∥
n∑
i=1

g′i∂if(g)

∥∥∥∥∥
p

X

.

Note that Pisier’s inequality does not require (X, ‖ · ‖X) to have type p. If (X, ‖ · ‖X)
has “Gaussian type p”, i.e. if E‖

∑n
i=1 gixi‖

p
X ≤ C

∑n
i=1 ‖xi‖

p
X for all x1, . . . , xn ∈ X, then

conditioning on g in Pisier’s inequality gives E‖f −Ef‖pX ≤ C
(
π
2

)p∑n
i=1 E‖∂if‖

p
X , which

is a Gaussian analogue of Enflo’s conjecture. Pisier’s inequality is tight for linear functions
up to a factor of

(
π
2

)p
, and even the factor

(
π
2

)p
is sharp in certain cases as well.5 Before

proving Pisier’s inequality we apply it to two more examples:

Example. Let (X, ‖ · ‖X) = (R, | · |). If g is fixed then
∑n

i=1 g
′
i∂if(g) is Gaussian with mean

0 and variance
∑n

i=1(∂if(g))2 = ‖∇f(g)‖2, or equivalently ‖∇f(g)‖ times a standard
Gaussian, so E|f − Ef |p ≤

(
π
2

)p
E|Z|p · E‖∇f‖p where Z denotes a standard Gaussian.

For example, since E|Z| =
√

2/π, taking p = 1 gives E|f −Ef | ≤
√
π/2 ·E‖∇f‖.

Example. The noncommutative Khintchine inequality [9] states that E ‖
∑n

i=1 giAi‖op ≤
O
(√

log d
) ∥∥∑n

i=1A
2
i

∥∥1/2

op
for A1, . . . , An ∈ Rd×dsym , where “op” and “sym” are short for

“operator norm” and “symmetric” respectively. Therefore, for all “nice” f : Rn → Rd×dsym ,

E‖f −Ef‖op ≤
π

2
E

∥∥∥∥∥
n∑
i=1

g′i∂if(g)

∥∥∥∥∥
op

≤ O
(√

log d
)
·E

∥∥∥∥∥
n∑
i=1

(∂if(g))2

∥∥∥∥∥
1/2

op

.

Proof of Pisier’s inequality. Let g(θ) = g cos θ + g′ sin θ and g′(θ) = dg(θ)/dθ = −g sin θ +
g′ cos θ. By the fundamental theorem of calculus and the chain rule,

f(g′)− f(g) =

∫ π/2

0

d

dθ
f(g(θ))dθ =

∫ π/2

0

n∑
i=1

∂if(g(θ))g′i(θ)dθ,

5E.g. let (X, ‖ · ‖X) = (R, | · |), p = 1, n = 1, f(x) = max(min(Kx, 1), 0) and let K →∞.
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so by the triangle inequality and Jensen’s inequality,

‖f(g′)− f(g)‖pX ≤

(
2

π

∫ π/2

0

π

2

∥∥∥∥∥
n∑
i=1

∂if(g(θ))g′i(θ)

∥∥∥∥∥
X

dθ

)p

≤ 2

π

∫ π/2

0

(
π

2

∥∥∥∥∥
n∑
i=1

∂if(g(θ))g′i(θ)

∥∥∥∥∥
X

)p
dθ.

The pairs (g(θ), g′(θ)) and (g, g′) are identically distributed, because(
g(θ)
g′(θ)

)
=

(
cos θ · I sin θ · I
− sin θ · I cos θ · I

)(
g
g′

)
and the standard multivariate Gaussian distribution is invariant under orthogonal trans-
formations. Therefore,

E‖f(g′)− f(g)‖pX ≤
(π

2

)p
E

∥∥∥∥∥
n∑
i=1

∂if(g)g′i

∥∥∥∥∥
p

X

.

Finally, by the triangle inequality and Jensen’s inequality,

Eg′
∥∥f(g′)−Egf(g)

∥∥p
X
≤ Eg′

(
Eg
∥∥f(g′)− f(g)

∥∥
X

)p ≤ Eg′Eg
∥∥f(g′)− f(g)

∥∥p
X
.

Lecture 3

Recall that we want an analogue of Pisier’s inequality for functions f : {−1, 1}n → (X, ‖ ·
‖X). Fix some p ≥ 1. A natural hypothesis is that if ε, δ ∈ {−1, 1}n are independent and
uniform random then

E‖f −Ef‖pX
?
≤ CE

∥∥∥∥∥
n∑
i=1

δiDif(ε)

∥∥∥∥∥
p

X

, (2)

from which Enflo’s conjecture (Theorem 3) would follow by conditioning on ε and applying
the definition of type p. An obstacle to mimicking the proof of Pisier’s inequality is that the
cube {−1, 1}n is not rotationally invariant in continuous space. Encouragingly, Pisier [15]
proved that Eq. (2) holds for some C ≤ O(logp n), despite this obstacle. However, Tala-
grand [17, Section 6] proved that when (X, ‖ · ‖X) = (R2n , ‖ · ‖∞) there exists f such that
Eq. (2) holds only when C ≥ Ω(logp n).6

6See the original lecture [8, Lecture 3, 9:00–10:30 and 40:45–42:20] for a description of Banach spaces
for which Eq. (2) holds with C = Θ(1).
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Remark. Efraim and Lust-Piquard [3] used ideas from quantum information to adopt
Pisier’s proof to real-valued functions on the cube, by associating each {−1, 1}-valued
coordinate of the cube with a measurement of a σx or σz observable, and rotating contin-
uously between these noncommuting observables. However, this approach does not seem
to generalize to vector-valued functions.

Therefore we formulate a different analogue of Pisier’s inequality for functions on the
cube. Recall from Lecture 1 that ξ1(t), . . . , ξn(t) ∈ {−1, 1} are i.i.d. random variables with

distribution P(ξi(t) = ±1) = 1±e−t

2 , and that Ptf(ε) = Eξf(εξ(t)). Also let

δi(t) =
ξi(t)−Eξi(t)

Var1/2 ξi(t)
=
ξi(t)− e−t√

1− e−2t
.

Let µ(dt) = 2
π

e−t
√

1−e−2t
dt, and note that µ is a probability measure on [0,∞) because∫ ∞

0

√
e−2t

1− e−2t
· dt =

∫ 0

1

√
u

1− u
· du
−2u

=

∫ 1

0

du

2
√
u(1− u)

= − arcsin(
√

1− u)
∣∣1
0

=
π

2
.

Theorem 5 (Ivanisvili, van Handel and Volberg [10]). For all f : {−1, 1}n → (X, ‖ · ‖X)
and p ≥ 1,

(
E‖f −Ef‖pX

)1/p ≤ π

2

∫ (
E

∥∥∥∥∥
n∑
i=1

δi(t)Dif(ε)

∥∥∥∥∥
p

X

)1/p

µ(dt),

where ε ∈ {−1, 1}n is uniform random and independent of δ(t).

Taking p’th powers and applying Jensen’s inequality yields a statement identical to
Eq. (2), except that the distribution of δ is different. Enflo’s conjecture then follows from a
routine symmetrization argument [10, Section 3], which is not presented here. It is also an
easy exercise to derive Pisier’s inequality from Theorem 5 using the central limit theorem.

Proof. By observations from Lecture 1 and the beginning of Lecture 2,

f(ε)−Ef = P0f(ε)− P∞f(ε) = −
∫ ∞

0

d

dt
Ptf(ε)dt =

∫ ∞
0

n∑
i=1

DiPtf(ε)dt,

and

DiPtf(ε) = D2
i Ptf(ε) = DiPtDif(ε) = Di

 ∑
ξ∈{−1,1}n

n∏
j=1

1 + εjξje
−t

2
Dif(ξ)


=

∑
ξ∈{−1,1}n

n∏
j=1

1 + εjξje
−t

2
· εiξie

−t

1 + εiξie−t
Dif(ξ)

8



= Eξ

[
Dif(εξ(t)) · ξi(t)e

−t

1 + ξi(t)e−t

]
,

and

ξi(t)e
−t

1 + ξi(t)e−t
=

ξi(t)e
−t(1− ξi(t)e−t)

(1 + ξi(t)e−t)(1− ξi(t)e−t)
=
e−t(ξi(t)− e−t)

1− e−2t
=

e−t√
1− e−2t

δi(t),

so

f(ε)−Ef =

∫ ∞
0

Eξ

[
n∑
i=1

Dif(εξ(t)) · δi(t)

]
e−t√

1− e−2t
dt

=
π

2

∫
Eξ

[
n∑
i=1

Dif(εξ(t)) · δi(t)

]
µ(dt).

By the triangle inequality,

‖f(ε)−Ef‖X ≤
π

2

∫
Eξ

∥∥∥∥∥
n∑
i=1

Dif(εξ(t)) · δi(t)

∥∥∥∥∥
X

µ(dt),

so by Minkowski’s inequality and then Jensen’s inequality,

(
Eε‖f(ε)−Ef‖pX

)1/p ≤ π

2

∫ (
Eε

(
Eξ

∥∥∥∥∥
n∑
i=1

Dif(εξ(t)) · δi(t)

∥∥∥∥∥
X

)p)1/p

µ(dt)

≤ π

2

∫ (
Eε,ξ

∥∥∥∥∥
n∑
i=1

Dif(εξ(t)) · δi(t)

∥∥∥∥∥
p

X

)1/p

µ(dt).

Finally, the result follows because εξ(t) is uniform random conditioned on ξ(t).

Remark. Implicit above is that

DiPtf(ε) = Eξ

[
f(εξ(t)) · ξi(t)e

−t

1 + ξi(t)e−t

]
for all f : {−1, 1}n → (X, ‖ · ‖X). (We proved this with Dif in place of f on the right, but
the argument generalizes easily.) This is analogous to the well-known formula

∂i(ϕ ∗ f)(x) = ∂i

∫
Rn

ϕ(x− y)f(y)dy1 · · · dyn =

∫
Rn

yi − xi
a

ϕ(x− y)f(y)dy1 · · · dyn

for all “nice” functions f : Rn → R, where ϕ(x) = (2πa)−n/2e−‖x‖
2/2a is the density at

x of the multivariate Gaussian distribution with mean 0 and covariance matrix aI, and ∗
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denotes convolution. In particular, using the triangle inequality, both formulas allow us to
bound the “smoothness” (i.e. some norm of the derivatives) of Ptf or ϕ ∗ f in terms of the
values of f itself rather than f ’s derivatives. Additionally, if f : Rn → R is differentiable
then ∂i(ϕ ∗ f) = ϕ ∗ ∂if (since convolution is commutative), analogous to the fact that Di

and Pt commute.

Recall that we used Pisier’s inequality to prove that if f : Rn → R is “nice” and takes
n independent standard Gaussian inputs then E|f −Ef | ≤

√
π/2 ·E‖∇f‖. By Theorem 5

an analogous inequality holds for functions f : {−1, 1}n → R:

E|f −Ef | ≤ π

2

∫
E

∣∣∣∣∣
n∑
i=1

δi(t)Dif(ε)

∣∣∣∣∣µ(dt) ≤ π

2

∫
Eε

√√√√Eδ

∣∣∣∣∣
n∑
i=1

δi(t)Dif(ε)

∣∣∣∣∣
2

· µ(dt)

=
π

2

∫
Eε‖Df(ε)‖µ(dt) =

π

2
E‖Df‖. (3)

Eq. (3) was first proved by Efraim and Lust-Piquard [3] (using noncommutative probability,
as previously discussed). The constant π/2 can be slightly improved using a tighter bound
than Jensen’s inequality for the second inequality above, but it is unknown whether the
constant can be improved all the way to

√
π/2 like in the Gaussian inequality.

We now turn our attention to the second main topic of these lectures, namely a
strengthening of the Poincaré inequality for boolean functions on the cube. For f :
{−1, 1}n → {0, 1}, the value ‖Df(ε)‖2 equals 1/4 times the number of coordinates i
such that f(ε1, . . . , εi−1, 1, εi+1, . . . , εn) 6= f(ε1, . . . , εi−1,−1, εi+1, . . . , εn). Therefore the
Poincaré inequality (Var f ≤ E‖Df‖2) may be far from tight for f , because Var f ≤ 1/4
whereas E‖Df‖2 may be arbitrarily large as n goes to infinity. For example, if f is the
majority function (f(ε) = 1∑n

i=1 εi>0) then ‖Df(ε)‖2 = Θ(n) · 1∑n
i=1 εi≈0, so E‖Df‖2 =

Θ
(

2−n
(
n
n/2

)
n
)

= Θ(
√
n) by Stirling’s approximation.

To obtain a tighter bound for arbitrary f : {−1, 1}n → {0, 1}, note that Var f =
Ef(1 − Ef) = 1

2E|f − Ef |, so it follows from Eq. (3) that Var f ≤ π
4E‖Df‖. This

inequality is tight up to a constant factor for the majority function, and was first proved
by Talagrand [17] with

√
2 in place of π/4.

Lecture 4

The following inequality also improves on the Poincaré inequality in certain cases:

Theorem 6 (Falik and Samorodnitsky [6]7). For all f : {−1, 1}n → R,

Var f · log

(
Var f∑n

i=1 E[|Dif |]2

)
≤ 2E‖Df‖2.

7Defining E(f, f) and di as in [6, Section 2], it is easy to verify that E(f, f) = 4E‖Df‖2 and E|di| ≤
E|Dif |. Theorem 6 then follows from [6, Theorem 2.2] with the constant C = 2 from [6, Section 3.1].
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Similar bounds were previously obtained by Kahn, Kalai and Linial [11], Talagrand [19],
Benjamini, Kalai and Schramm [1], and Rossignol [16], in this order chronologically. The-
orem 6 is tight up to a constant factor for the tribes function, i.e. the function f :
{−1, 1}w×s → {0, 1}, f(ε) =

∨s
i=1

∧w
j=1 εij where s = Θ(2w) is such that Ef ≈ 1/2.

However, Theorem 6 is far from tight for the majority function. In contrast, the bound
Var f ≤ CE‖Df‖ for boolean functions f (proved above) is tight for majority but not for
tribes.

In this lecture we will prove the following inequality, which (for boolean functions f ,
and up to constants) implies both the bound Var f ≤ CE‖Df‖ and the Var f = Θ(1) case
of Theorem 6, and hence is tight for both majority and tribes:

Theorem 7 (Conjectured by Talagrand [18], proved by Eldan and Gross [4]). For all
f : {−1, 1}n → {0, 1},

Var f ·

√
log

(
1 + C +

C∑n
i=1 E[|Dif |]2

)
≤ CE‖Df‖.

We break the proof down into components as follows:

Claim 8. For all f : {−1, 1}n → {0, 1} and t ≥ 0,

1. Var f = 1
2E|f − Ptf |+ VarPt/2f ,

2. E|f − Ptf | ≤ C
√
t ·E‖Df‖,

3. VarPtf ≤ Var f ·
(
4
∑n

i=1 E[|Dif |]2
)θ(t)/2

for θ(t) := 1−e−2t

1+e−2t .

Bibliographic notes. Item 1 is well known, e.g. [13, Eq. 7]. Pisier [15] proved an analogue
of Item 2 in the Gaussian case, using Theorem 4. Item 3 strengthens a result of Eldan and
Gross [4], which itself strengthens a result of Keller and Kindler [12].

Remark. Item 1 generalizes the observation that Var f = 1
2E|f−Ef |, which we have already

seen. Our proof of Item 2 holds even if f is real-valued rather than boolean. Item 3 may be
of independent interest. The function θ equals tanh, but we use the θ notation for brevity.

Remark. For a different bound on Var f −VarPtf , note that since

d

dt
VarPtf =

d

dt

(
E(Ptf)2 − (EPtf)2

)
=

d

dt

(
E(Ptf)2 − (Ef)2

)
=

d

dt
E(Ptf)2,

evaluating the integral from Lecture 1 up to t rather than up to infinity reveals that

Var f −VarPtf ≤ 2tE‖Df‖2.

Thus, if VarPtf is small for some t ≤ o(1), then we obtain the bound Var f . 2tE‖Df‖2
which improves on the Poincaré inequality.
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Proof of Theorem 7 assuming Claim 8. Let K =
∑n

i=1 E[|Dif |]2. If K > 0.01 then the
result follows because Var f ≤ CE‖Df‖, so we may assume that K ≤ 0.01. First we
give an informal argument using the small t approximation θ(t) ≈ t (unfortunately, the
inequality θ(t) ≤ t is in the wrong direction for this to be rigorous), and then we give a
rigorous proof. By Claim 8,

Var f . C
√
t ·E‖Df‖+ Var f · (4K)t/2,

so plugging in t = log(4)/ log(1/4K) gives

Var f . C
√

1/ log(C/K) ·E‖Df‖+
1

2
Var f,

and the result follows by subtracting 1
2 Var f from both sides.

To make this rigorous it suffices to prove that if t = C/ log(1/4K) (for an appropri-
ate constant C) then (4K)θ(t)/2 ≤ 1/2. Let c1 > 0 be a universal constant such that
0.04θ(c1)/2 ≤ 1/2. Let c2 > 0 be a universal constant such that θ(t) ≥ c2t for all 0 ≤ t ≤ c1;

to see that such a constant exists, note that θ(t) ≥ 1−e−2t

2 , and that e−2t ≤ 1 − Ct for

all 0 ≤ t ≤ c1 and an appropriate constant C. Now let t = 2 log(2)/c2
log(1/4K) : if t ≥ c1 then

(4K)θ(t)/2 ≤ 0.04θ(c1)/2 ≤ 1/2, and if t ≤ c1 then (4K)θ(t)/2 ≤ (4K)c2t/2 = 1/2.

Proof of Item 1. Since Ptf(ε) is a convex combination of values of f , we have 0 ≤ Ptf ≤ 1.
Therefore, if f = 1 then |f − Ptf | = 1− Ptf , and if f = 0 then |f − Ptf | = Ptf , so

|f − Ptf | = f(1− Ptf) + (1− f)Ptf = f + Ptf − 2fPtf.

We now use the fact that E[f · Ptf ] = E(Pt/2f)2. (Here is one way to see this: first

recall from a remark early in Section 2 that Pt = et∆, so Pt = P 2
t/2. Next observe that

E[f · Pt/2g] = E[Pt/2f · g] for all g : {−1, 1}n → R.) Recalling that EPtf = Ef , we obtain

1

2
E|f −Ptf | = Ef −E(Pt/2f)2 = Ef −E(Pt/2f)2− (Ef)2 +(EPt/2f)2 = Var f −VarPt/2f.

Proof of Item 2. By the same reasoning as in Lecture 3,

f(ε)− Ptf(ε) = −
∫ t

0

d

ds
Psf(ε)ds =

∫ t

0

e−s√
1− e−2s

·Eξ

[
n∑
i=1

δi(s)Dif(εξ(s))

]
ds,

so

E|f − Ptf | ≤
∫ t

0

e−s√
1− e−2s

·E

∣∣∣∣∣
n∑
i=1

δi(s)Dif(ε)

∣∣∣∣∣ ds ≤ E‖Df‖ ·
∫ t

0

e−s√
1− e−2s

ds.

Finally, ∫ t

0

e−s√
1− e−2s

ds =

∫ t

0

ds√
e2s − 1

≤
∫ t

0

ds√
2s

= C
√
t.
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All that remains is to prove Item 3. We use without proof the following case of hyper-
contractivity (see e.g. [14, Chapters 9-10]), where ‖f‖p denotes (E|f |p)1/p:

Fact 9 (Hypercontractivity). Let f : {−1, 1}n → R and t ≥ 0; then ‖Ptf‖2 ≤ ‖f‖1+e−2t.

Remark. The intuition behind our use of hypercontractivity is as follows. Results from
Lecture 1 imply that d

dt VarPtf = −2E‖DPtf‖2 ≤ −2 VarPtf (where the inequality is the
Poincaré inequality8), so VarPtf ≤ e−2t Var f . This can be rewritten as

E(Ptf)2 ≤ e−2tE[f2] + (1− e−2t)E[f ]2,

i.e. the quantity E(Ptf)2 interpolates between E[f2] and E[f ]2 according to an arithmetic
mean. We use hypercontractivity to improve this to a geometric mean when f ≥ 0. This is
a major improvement, because it shows that when E[f ]2 ≤ o(E[f2]), the quantity E(Ptf)2

halves in time o(1).

Corollary 10 (AM-GM principle). For all f : {−1, 1}n → R and t ≥ 0,

E[(Ptf)2] ≤ E[f2]1−θ(t)E[|f |]2θ(t).

Proof. Note that 1 + e−2t = 2(1− s) + s for s = 1− e−2t. By Hölder’s inequality,

E[|f |1+e−2t
] = E[|f |2(1−s)|f |s] ≤ E[f2]1−sE[|f |]s,

so by Fact 9,
‖Ptf‖22 ≤ ‖f‖21+e−2t ≤ E[f2]1−θ(t)E[|f |]2θ(t).

Falik and Samorodnitsky [6] and Rossignol [16] observed that such principles can be
tensorized. These authors did this at the level of the log-Sobolev inequality, but here we
do it directly:

Lemma 11 (Essentially Falik–Samorodnitsky/Rossignol). For all f : {−1, 1}n → R,

VarPtf ≤ (Var f)1−θ(t)

(
n∑
i=1

E[|Dif |]2
)θ(t)

.

Proof. We use a standard argument involving the Doob martingale, e.g. like in the proof
of the Efron-Stein inequality [2]. Let Eif(ε) = Eδi+1,...,δnf(ε1, . . . , εi, δi+1, . . . , δn) (where
the δj are independent and uniform random) and Γif = Eif − Ei−1f , and note that
f −Ef =

∑n
i=1 Γif . Observe that Var f =

∑n
i=1 E(Γif)2, because for all i < j,

E[Γif · Γjf ] = Eε1,...,εi [Γif(ε)Eεi+1,...,εjΓjf(ε)] = 0.

8After first proving Item 3 without assuming Theorem 6, we will then show what happens if we use
Theorem 6 in place of the Poincaré inequality here.
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Furthermore, an easy generalization of the proof that EPtf = Ef implies that EiPtf =
PtEif , so ΓiPtf = PtΓif . Therefore, by Corollary 10 and Hölder,

VarPtf =
n∑
i=1

E[(PtΓif)2] ≤
n∑
i=1

E[(Γif)2]1−θ(t)E[|Γif |]2θ(t) ≤ (Var f)1−θ(t)

(
n∑
i=1

E[|Γif |]2
)θ(t)

.

Finally, E|Γif | ≤ E|Dif | because

|Γif(ε)| = |Eδi+1,...,δnDif(ε1, . . . , εi, δi+1, . . . , δn)|
≤ Eδi+1,...,δn |Dif(ε1, . . . , εi, δi+1, . . . , δn)|.

Now we invoke the fact that f is boolean to complete the proof of Item 3:

Proof. Let K =
∑n

i=1 E[|Dif |]2. If Var f ≥ 1
2

√
K then by Lemma 11,

VarPtf ≤ Var f ·
(

K

Var f

)θ(t)
≤ Var f · (4K)θ(t)/2 .

Alternatively, if Var f ≤ 1
2

√
K then by Corollary 10 applied to f −Ef ,

VarPtf ≤ (Var f)1−θ(t)(2 Var f)2θ(t) ≤ Var f · (4K)θ(t)/2,

where we used E|f −Ef | = 2 Var f .

We conclude with an alternate proof of (something similar to) Lemma 11:

Proof. Recall from the discussion following Fact 9 that d
dt VarPtf = −2E‖DPtf‖2. It

follows from applying Theorem 6 to Ptf that

d

dt
VarPtf ≤ −VarPtf · log

(
VarPtf∑n

i=1 E[|DiPtf |]2

)
.

Furthermore,

Eε|PtDif(ε)| = Eε|EξDif(εξ(t))| ≤ Eε,ξ|Dif(εξ(t))| = E|Dif |,

so
d

dt
VarPtf ≤ −VarPtf · log

(
VarPtf

K

)
where K =

∑n
i=1 E[|Dif |]2. The solution to the above differential inequality (with initial

condition VarP0f = Var f) is

VarPtf ≤ K
(

Var f

K

)e−t

= (Var f)e
−t
K1−e−t

,

which essentially matches Lemma 11 when t is small.
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[2] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities:
A Nonasymptotic Theory of Independence. Oxford University Press, 2013. Chap. 3.
doi: 10.1093/acprof:oso/9780199535255.001.0001 (p. 13).

[3] Limor Ben Efraim and Françoise Lust-Piquard. “Poincaré type inequalities on the
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