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Abstract

Relational data can generally be represented as graphs. For processing such graph
structured data, we propose LanczosNet, which uses the Lanczos algorithm to
construct low rank approximations of the graph Laplacian for graph convolution.
Relying on the tridiagonal decomposition of the Lanczos algorithm, we not only
efficiently exploit multi-scale information via fast approximated computation of
matrix power but also design learnable spectral filters. We benchmark our model
against 8 recent deep graph networks on QM8 quantum chemistry dataset. Experi-
mental results show that our model achieves the state-of-the-art performance.

1 Introduction
Data with complex relational and rich probabilistic structure is ubiquitous in social networks, gene
expression regulatory networks, protein-protein interactions, and many other physical systems. Since
relational data can generally be represented as graphs, how to reason and learn with graph structured
data has become a central research question of several branches of machine learning, including
statistical relational learning [1], structured prediction [2] and deep learning [3]. In the context
of deep learning, we can roughly categorize the recent endeavors of modeling relational data into
supervised/semi-supervised and unsupervised methods. For the former, a majority of work focuses on
node/edge/graph classification and regression [4, 5, 6, 7, 3]. For the latter, unsupervised node/graph
embedding learning [8, 9] is common. Recently, generative models for graphs, such as molecule
generation, has drawn some attention [10, 11, 12].

From a modeling perspective, deep learning models on graphs can be grouped into two classes.
The first class stems from graph signal processing (GSP) [13] which tries to generalize convolution
operators from traditional signal processing to graphs. Following this line, many graph convolution
based deep network models emerge. [14, 15] are among the first to explore Laplacian based graph
convolution within the context of deep networks. Meanwhile, [16] performs graph convolution
directly based on the adjacency matrix to predict molecule fingerprints. [17] proposes a strategy to
form same sized local neighborhoods and then apply convolution like regular CNNs. Chebyshev
polynomials are exploited by [18] to construct localized polynomial filters for graph convolution
and are later simplified in graph convolutional networks (GCN) [19]. Further accelerations for GCN
based on importance sampling and control variate techniques have been proposed by [20, 21]. [22]
introduces an attention mechanism to GCN to learn weights over edges. Notably, [23] proposes
diffusion convolutional neural networks (DCNN) which uses diffusion operator for graph convolution.
Lanczos method has been explored for graph convolution in [24] for the purpose of acceleration.

The prominent example of the second class is graph neural networks (GNN) [25] which generalize re-
current neural networks (RNN) to arbitrary graphs and exploit the synchronous schedule to propagate
information on graphs. [26] later proposes the gated graph neural networks (GGNN) which improves
GNN by adding gated recurrent unit and training the network with back-propagation through time.
[27] introduces random subgraph sampling and explores different aggregation functions to scale
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GNN to large graphs. [28] proposes asynchronous propagation schedules based on graph partitions
to improve GNN.

In this paper, we follow the line of graph convolution based models and propose the Lanczos network
(LanczosNet). First, based on the tridiagonal decomposition implied by the Lanczos algorithm, our
model exploits the low rank approximation of the graph Laplacian. This approximation facilitates
efficient computation of matrix powers thus gathering multi-scale information easily compared to
previous models. Second, we design learnable spectral filters based on the approximation which
effectively increase model capacity whereas previous work often adopt non-learnable spectral filters.
We benchmark against 8 recent graph networks, including both convolutional and RNN based
methods, on quantum chemistry graph problem, and achieve state-of-the-art results.

2 Lanczos Networks
A graph G with N nodes is denoted as G = (V, E , A), where A ∈ RN×N is an adjacency matrix
which could either be binary or real valued. X ∈ RN×F is the compact representation of node
features. For any node v ∈ V , we denote its feature as a row vector Xv,: ∈ R1×F . We use X:,i to
denote the i-th column of X . Following [19], we add self-loops, i.e., changing A to A+ I , and use
the affinity matrix S = D−

1
2AD−

1
2 instead of the conventional graph Laplacian.

Algorithm 1 : Lanczos Algorithm
1: Input: S, x,K, ε
2: Initialization: β0 = 0, q0 = 0, and q1 =
x/‖x‖

3: For j = 1, 2, . . . ,K:
4: z = Sqj
5: γj = q>j z
6: z = z − γjqj − βj−1qj−1
7: βj = ‖z‖2
8: If βj < ε, quit
9: qj+1 = z/βj

10:
11: Q = [q1, q2, · · · , qK ]
12: Construct T following Eq. (4)
13: Eigen decomposition T = BRB>

14: Return V = QB and R.

Algorithm 2 : LanczosNet
1: Input: Signal X , Lanczos output V and R,

scale index sets S and I,
2: Initialization: Y0 = X
3: For ` = 1, 2, . . . , `c:
4: Z = Y`−1, Z = {∅}
5: For j = 1, 2, . . . ,max(S):
6: Z = SZ
7: If j ∈ S:
8: Z = Z ∪ Z
9: For i ∈ I:

10: R̂(Ii) = fIi([R
I1 , . . . , RIK−1 ])

11: Z = Z ∪ V R̂(Ii)V >Y`−1
12: Y` = concat(Z)W`

13: If ` < L
14: Y` = Dropout(σ(Y`))
15: Return Y`c .

2.1 Lanczos Algorithm
Given the affinity matrix S and node features x ∈ RN×1, the N -step Lanczos algorithm computes
an orthogonal matrix Q and a symmetric tridiagonal matrix T , such that Q>SQ = T . We denote
Q = [q1, · · · , qN ] where column vector qi is the i-th Lanczos vector. The diagonal and super-diagonal
of T are {γ1, . . . , γN} and {β1, . . . , βN−1} respectively. T is illustrated in the appendix. One can
verify that Q forms an orthonormal basis of the Krylov subspace KN (S, x) and the first K columns
of Q forms the orthonormal basis of KK(S, x). The Lanczos algorithm is shown in detail in Alg. 1.
Intuitively, if we investigate the j-th column of the system SQ = QT and rearrange terms, we obtain
βjqj+1 = Lqj − βj−1qj−1 − γjqj , which clearly explains lines 4 to 6 of the pseudocode, i.e., it tries
to solve the system in an iterative manner. Note that the most expensive operation in the algorithm is
the matrix-vector multiplication in line 4. After obtaining T , we can compute the Ritz values and
Ritz vectors which approximate the eigenvalues and eigenvectors of S by diagonalizing the matrix T .

2.2 LanczosNet
In this section, we first show the construction of the localized polynomial filter based on the Lanczos
algorithm’s output and discuss its limitations. Then we explain how to construct the spectral filter
using a particular low rank approximation and how to further make the filter learnable. At last, we
elaborate how to construct multi-scale graph convolution and build a deep network.

Localized Polynomial Filter For ease of demonstrating the concept of Krylov subspace, we
consider a pair of input and output channels (i, j). We denote the input as X:,i ∈ RN×1 and the
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output as Y:,j ∈ RN×1. Executing the Lanczos algorithm for K steps with the starting vector as
the normalized X:,i, one can obtain the orthonormal basis Q̃ of KK(S,X:,i) and the corresponding
tridiagonal matrix T̃ . Recall that in the localized polynomial filtering, given the orthonormal basis of
KK(S,X:,i), one can write the graph convolution as Yj = Q̃wi,j where Q̃ ∈ RN×K depends on the
X:,i and wi,j ∈ RK×1 is the learnable parameter. This filter has the benefit that the corresponding
learnable coefficients are compact due to the orthonormal basis. However, if one wants to stack
multiple graph convolution layers, the dependency of Q̃ onX:,i implies that a separate run of Lanczos
algorithm is necessary for each graph convolution layer which is computationally demanding.

Spectral Filter Ideally, we would like to compute Lanczos vectors only once during the inference
of a deep graph convolutional network. Luckily, this can be achieved if we take an alternative view
of Lanczos algorithm. In particular, we can choose a random starting vector with unit norm and
treat the K step Lanczos layer’s output as the low rank approximation S ≈ QTQ>. Note that here
Q ∈ RN×K has orthonormal columns and does not depend on the node featuresXi and T is aK×K
tridiagonal matrix. Following [29], we prove the theorem below to bound the approximation error.
Theorem 1. Let UΛU> be the eigendecomposition of an N ×N symmetric matrix S with Λi,i = λi,
λ1 ≥ · · · ≥ λN and U = [u1, . . . , uN ]. Let Uj ≡ span{u1, . . . , uj}. Assume K-step Lanczos
algorithm starts with vector v and outputs the orthogonal Q ∈ RN×K and tridiagonal T ∈ RK×K .
For any j with 1 < j < N and K > j, we have,

‖S −QTQ>‖2F ≤
j∑

i=1

λ2i

(
sin (v,Ui)

∏j−1
k=1(λk − λN )/(λk − λj)

cos (v, ui)TK−i(1 + 2γi)

)2

+

N∑
i=j+1

λ2i ,

where TK−i(x) is the Chebyshev Polynomial of degree K − i and γi = (λi − λi+1)/(λi+1 − λN ).

We leave the proof to the appendix. Note that the term (
∑N

i=j+1 λ
2
i )1/2 is the Frobenius norm of

the error between S and the best rank-j approximation Sj . We decompose the tridiagonal matrix
T = BRB>, where the K ×K diagonal matrix R contains the Ritz values and B ∈ RK×K is an
orthogonal matrix. We have a low rank approximation of the affinity matrix S ≈ V RV >, where
V = QB. Therefore, we can rewrite the graph convolution as,

Yj = [Xi, SXi, . . . , S
K−1Xi]wi,j ≈ [Xi, V RV

>Xi, . . . , V R
K−1V >Xi]wi,j , (1)

The difference between Yj = Q̃wi,j and Eq. (1) is that the former uses the orthonormal basis while
the latter uses the approximation of the direct basis of KK(S,X:,i). Since we explicitly operate on
the approximation of spectrum, i.e., Ritz value, it is a spectral filter. Such a filtering form will have
significant computational benefits while considering the long range/scale dependency due to the fact
that the t-th power of S can be approximated as St ≈ V RtV >, where we only need to raise the
diagonal entries of R to the power t.

Learning the Spectral Filter Following the previous filter, one can naturally design learnable
spectral filters. Specifically, we use K different spectral filters of which the k-th output R̂(k) =

fk([R,R1, . . . , RK−1]), where fk is a multi-layer perceptron (MLP), R and R̂(k) are the diagonal
vector of the corresponding diagonal matrix. Therefore, by properly constructing R̂(k) as a diagonal
matrix, we have the following filtering,

Yj = [Xi, V R̂(1)V >Xi, . . . , V R̂(K − 1)V >Xi]wi,j . (2)

Note that it includes the polynomial filter as a special case. When positive semi-definiteness is a
concern, one can apply an activation function like ReLU [30] to the output of the MLPs.

Multi-scale Graph Convolution Using any above filter, one can construct a deep graph convolu-
tional network which leverages multi-scale information. Taking the learnable spectral filter as an
example, we can write one graph convolution layer in a compact way as below,

Y =
[
LS1X, . . . , LSMX,V R̂(I1)V >X, . . . , V R̂(IN )V >X

]
W, (3)

where weight W ∈ R(M+E)D×O, S is a set of M short scale parameters and I is a set of E long
scale parameters. We consider a non-negative integer as scale parameter, e.g., S = {0, 1, . . . , 5},
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I = {10, 20, . . . , 50}. Note that the convolution corresponding to short scales is similar to [23]
where the number of matrix-vector multiplications is tied to the maximum scale of S . In contrast, the
convolution of long scales decouples the Lanczos stepK and scale parameters I , thus permitting great
freedom in tuning scales as hyperparameters. One can choose K properly to balance the computation
cost and the accuracy of the low rank approximation. If the maximum eigenvalue of S is 1, we
can even raise the power to infinity, which corresponds to the equilibrium state of diffusion process
on the graph. We can stack multiple such graph convolution layers and add nonlinear activation
functions, e.g., ReLU, and Dropout in between to form a deep network. The inference algorithm of
such a deep network is shown in Alg. 2. With the top layer representation, one can use softmax to
perform classification or a fully connected layer to perform regression. The Lanczos algorithm is run
beforehand once per graph to form the network and will not be invoked during inference and learning.

3 Experiments
In this section, we compare our model against 8 recent graph networks, including graph convolution
networks for fingerprint (GCN-FP) [16], gated graph neural networks (GGNN) [26], diffusion convo-
lutional neural networks (DCNN) [23], Chebyshev networks (ChebyNet) [18], graph convolutional
networks (GCN) [19], message passing neural networks (MPNN) [31], graph sample and aggregate
(GraphSAGE) [27], graph attention networks (GAT) [22]. We test them on supervised regression
of molecule property on QM8 quantum chemistry dataset [32]. For fair comparison, we only tune
model-related hyperparameters in all our experiments and share the others. Please refer to the
appendix for more details on hyperparameters. We implement all methods using PyTorch 0.4.0 [33]
and will release the code to allow others to experiment with this suite of methods.

3.1 Quantum Chemistry

Methods Validation MAE Test MAE

GCN-FP 15.06 ± 0.04 14.80 ± 0.09
GGNN 12.94 ± 0.05 12.67 ± 0.22
DCNN 10.14 ± 0.05 9.97 ± 0.09

ChebyNet 10.24 ± 0.06 10.07 ± 0.09
GCN 11.68 ± 0.09 11.41 ± 0.10

MPNN 11.16 ± 0.13 11.08 ± 0.11
GraphSAGE 13.19 ± 0.04 12.95 ± 0.11

GAT 11.39 ± 0.09 11.02 ± 0.06
LanczosNet 9.65 ± 0.19 9.58 ± 0.14

Table 1: MAE error (×1.0e−3) on QM8.

We benchmark all algorithms on the QM8 quan-
tum chemistry dataset which comes from a recent
study on modeling quantum mechanical calculations of
electronic spectra and excited state energy of small
molecules [32]. The setup of QM8 is as follows.
Atoms are treated as nodes and they are connected to
each other following the structure of the corresponding
molecule. Each edge is labeled with a chemical bond.
Note that two atoms in one molecule can have multiple
edges belong to different chemical bonds. Therefore a
molecule is actually modeled as a multigraph. We also
use explicit hydrogen in molecule graphs as suggested
in [31]. Since some models cannot leverage feature on
edges easily, we use the molecule graph itself as the
only input information for all models so that it is a fair comparison. As demonstrated in our ablation
studies, learning node embeddings for atoms is very helpful. Therefore, we augment all competitors
and our models with this component. The task is to predict 16 different quantities of electronic
spectra and energy per molecule graph which boils down to a regression problem. There are 21786
molecule graphs in total of which the average numbers of nodes and edges are around 16 and 21.
There are 6 different chemical bonds and 70 different atoms throughout the dataset. We use the
split provided by DeepChem 1 which have 17428, 2179 and 2179 graphs for training, validation and
testing respectively. Following [31, 34], we use mean squared error (MSE) as the loss for training
and weighted mean absolute error (MAE) as the evaluation metric. We use the same random seed
for all methods. The validation and test MAE of all methods are shown in Table 1. As you can see,
LanczosNet achieves better performances than all other competitors. Note that DCNN also achieves
good performance with the carefully chosen scale parameters since it is somewhat similar to our
model in terms of leveraging multi-scale information.

4 Conclusion
In this paper, we propose LanczosNet which provides the efficient multi-scale graph convolution for
processing graph-structured data. By representing relational data as graphs, we expect more progress
can be made for applications like link prediction, entity classification and learning first order logic.

1https://deepchem.io/
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5 Appendix

5.1 Tridiagonal Matrix T

T =


γ1 β1

β1
. . . . . .
. . . . . . βN−1

βN−1 γN

 . (4)

5.2 Low Rank Approximation

We first state the following Lemma from [35] without proof and then prove our Theorem 1 follow-
ing [29].
Lemma 1. Let A ∈ RN×N be symmetric and v an arbitrary vector. Define Krylov subspace
Km ≡ span{v,Av, . . . , Am−1v}. Let A = UΛU> be the eigendecomposition of A with Λi,i = λi
and λ1 ≥ · · · ≥ λn. Denoting U = [u1, . . . , uN ] and Uj = span{u1, . . . , uj}, then

tan (uj ,Km) ≤
sin (v,Uj)

∏j−1
k=1(λk − λn)/(λk − λj)

cos (v, uj)Tm−j(1 + 2γ)
,

where Tm−j(x) is the Chebyshev Polynomial of degree m− j and γ = (λj − λj+1)/(λj+1 − λN ).

Theorem 1. Let UΛU> be the eigendecomposition of an N ×N symmetric matrix S with Λi,i = λi,
λ1 ≥ · · · ≥ λN and U = [u1, . . . , uN ]. Let Uj ≡ span{u1, . . . , uj}. Assume K-step Lanczos
algorithm starts with vector v and outputs the orthogonal Q ∈ RN×K and tridiagonal T ∈ RK×K .
For any j with 1 < j < N and K > j, we have,

‖S −QTQ>‖2F ≤
j∑

i=1

λ2i

(
sin (v,Ui)

∏j−1
k=1(λk − λN )/(λk − λj)

cos (v, ui)TK−i(1 + 2γi)

)2

+

N∑
i=j+1

λ2i ,

where TK−i(x) is the Chebyshev Polynomial of degree K − i and γi = (λi − λi+1)/(λi+1 − λN ).

Proof. From Lanczos algorithm, we have SQ = QT . Therefore,

‖S −QTQ>‖2F = ‖S − SQQ>‖2F
= ‖S(I −QQ>)‖2F (5)

Let P⊥Q ≡ I−QQ>, the orthogonal projection onto the orthogonal complement of subspace span{Q}.
Relying on the eigendecomposition, we have,

‖S −QTQ>‖2F = ‖UΛU>(I −QQ>)‖2F
= ‖ΛU>(I −QQ>)‖2F
= ‖(I −QQ>)UΛ‖2F
= ‖

[
λ1P

⊥
Q u1, . . . , λNP

⊥
Q uN

]
‖2F , (6)

where we use the fact that ‖RA‖2F = ‖A‖2F for any orthogonal matrix R and ‖A>‖2F = ‖A‖2F .

Note that for any j we have,

∥∥[λ1P⊥Q u1, . . . , λNP⊥Q uN ]∥∥2F =

N∑
i=1

λ2i ‖P⊥Q ui‖2

≤
j∑

i=1

λ2i ‖P⊥Q ui‖2 +

N∑
i=j+1

λ2i , (7)

where we use the fact that for any i, ‖P⊥Q ui‖2 = ‖ui‖2 − ‖ui − P⊥Q ui‖2 ≤ ‖ui‖2 = 1.
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Note that we have span{Q} = span{v, Sv, . . . , SK−1v} ≡ KK from the Lanczos algorithm. There-
fore, we have,

‖P⊥Q ui‖ = | sin (ui,KK)| ≤ | tan (ui,KK)|. (8)

Applying the above lemma with A = S, we finish the prove.

5.3 Lanczos Algorithm

Utilizing exact arithmetic, Lanczos vectors are orthogonal to each other. However, in floating point
arithmetic, it is well known that the round-off error will make the Lanczos vectors lose orthogonality
as the iteration proceeds. One could apply a full Gram-Schmidt (GS) process z = z −

∑j−1
i=1 z

>qiqi
after line 6 of Alg. 1 to ensure orthogonality. Other partial or selective re-orthogonalization could also
be explored. However, since we found the orthgonality issue does not hurt overall performance with
a small iteration number, e.g., K = 20, and the full GS process is computationally expensive, we do
not add such a step. Although some customized eigendecomposition methods, e.g., implicit QL [36],
exist for tridiagonal matrix, we leave it for future exploration due to its complicated implementation.

5.4 Experiments

For ChebyNet, we do not use graph coarsening in all experiments due to its demanding computation
cost for large graphs. Also, for small molecule graphs, coarsening generally does not help since it
loses information compared to directly stacking another layer of original graph.

5.5 Hyperparameters

We now report the important hyperparameters chosen via cross-validation for each method. All
methods are trained with Adam with learning rate 1.0e−4 and no weight decay. The maximum
number of epoch is set to 200. Early stop with window size 10 is also adopted. For convolution
based methods, we found 7 layers work the best. We augment all methods with node embedding
and add edge types by either feeding a multiple-channel graph Laplacian matrix or directly adding a
separate message function per edge type. For all methods, no dropout is used since it slightly hurts
the performance. In GCN-FP, we set the hidden dimension to 128. In GGNN, we set the hidden
dimension to 128, the propagate step to 15 and aggregation function to average. In DCNN, we set
the hidden dimension to 128 and use diffusion scales {3, 5, 7, 10, 20, 30}. In ChebyNet, we set the
polynomial order to 5, the hidden dimension to 128. In GCN, we set the hidden dimension to 128. In
MPNN, we use GRU as update function, set the number of propagation to 7, set the hidden dimension
to 128, use a 1-layer MLP with 1024 hidden units and ReLU nonlinearity as the message function
and set the number of unroll step of Set2Vec to 10. In GraphSAGE, we set the number of sampled
neighbors to 40, the hidden dimension to 128 and the aggregation function to average. In GAT, we
set the number of heads of all 7 layers to 8 and hidden dimension per head to 16. In LanczosNet, we
do not use short diffusion scales and set long ones to {1, 2, 3, 5, 7, 10, 20, 30}. The hidden dimension
is 128. Lanczos step is 20. 1-layer MLP with 128 hidden units and ReLU nonlinearity is used as the
spectral filter.

5.6 Ablation Study

We also did a thorough ablation study of our modeling components on the validation set of QM8.

Multi-Scale Graph Convolution: We first study the effect of multi-scale graph convolution. In
order to rule out the impact of other factors, we use LanczosNet variant, fix the spectral filter and use
the one-hot encoding as the node embedding. The results are shown in the first row of Table 2. Using
long scales for graph convolution clearly helps on this task. Combining both short and long scales
further improves results.

Lanczos Step: We then investigate the Lanczos step since it will have an impact on the accuracy of
the low rank approximation with Lanczos tridiagonalization. The results are shown in the second row
of Table 2. We can see that performance saturates at a relatively small Lanczos step like 10 which
makes sense since the average number of nodes in this dataset is around 16.
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Model Graph
Kernel

Node
Embedding

Spectral
Filter Short Scales Long Scales Lanczos

Step
Validation

MAE (×1.0e−3)

LNet one-hot fix {1, 2, 3} 10.71
LNet one-hot fix {3, 5, 7} 10.60
LNet one-hot fix {10, 20, 30} 20 10.54
LNet one-hot fix {3, 5 ,7} {10, 20, 30} 20 10.41

LNet one-hot fix {10, 20, 30} 5 10.49
LNet one-hot fix {10, 20, 30} 10 10.44
LNet one-hot fix {10, 20, 30} 20 10.54
LNet one-hot fix {10, 20, 30} 40 10.49

LNet one-hot fix {3, 5 ,7} {10, 20, 30} 20 10.41
LNet one-hot 1-MLP {3, 5 ,7} {10, 20, 30} 20 10.08
LNet one-hot 3-MLP {3, 5 ,7} {10, 20, 30} 20 10.44
LNet one-hot 5-MLP {3, 5 ,7} {10, 20, 30} 20 10.54

Table 2: Ablation study on QM8 dataset. Empty cell means that the component is neither using nor
applicable. 1-MLP means a MLP with 1 hidden layer.

Fixed vs. Learned Spectral Filter: We then study whether learning spectral filter will help improve
performance. The results are shown in the third row of Table 2. Adding a 1-layer MLP does
significantly help reduce the error compared to a fixed spectral filter. Note that here 1-MLP refers
to a MLP with one hidden layer, 128 hidden units and ReLU nonlinearity. However, using a deeper
MLP does not seem to be helpful which might be caused by the challenges in optimization.
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