
Lecture 15: Learning probabilistic models

Roger Grosse and Nitish Srivastava

1 Overview

In the first half of the course, we introduced backpropagation, a technique we used to
train neural nets to minimize a variety of cost functions. One of the cost functions we
discussed was cross-entropy, which encourages the network to learn to predict a probability
distribution over the targets. This was our first glimpse into probabilistic modeling. But
probabilistic modeling is so important that we’re going to spend almost the whole second
half of the course on it. This lecture introduces some of the key principles.

Actually, there’s aren’t any major new ideas in this lecture. You’ve already seen maxi-
mum likelihood estimation in the context of neural probabilistic language models (Coursera
Lecture D, in-class Lecture 7, and Assignment 1). Coursera Lecture J introduced the full
Bayesian approach and the maximum a-posteriori (MAP) approximation. All we’re doing
here is stating these principles in slightly more general terms, and working through lots of
examples in order to gain a better intuition. Once you’ve gotten more practice with these
techniques, it’s a good idea to go back and revisit those lectures.

This lecture and the next one aren’t about neural nets. Instead, they’ll introduce the
principles of probabilistic modeling in as simple a setting as possible. Then, starting next
week, we’re going to apply these principles in the context of neural nets, and this will result
in some very powerful models.

1.1 Learning goals

• Know some terminology for probabilistic models: likelihood, prior distribution, poste-
rior distribution, posterior predictive distribution, i.i.d. assumption, sufficient statis-
tics, conjugate prior

• Be able to learn the parameters of a probabilistic model using maximum likelihood,
the full Bayesian method, and the maximum a-posteriori approximation.

• Understand how these methods are related to each other. Understand why they tend
to agree in the large data regime, but can often make very different predictions in
the small data regime.

1

2 Maximum likelihood

The first method we’ll cover for fitting probabilistic models is maximum likelihood. In
addition to being a useful method in its own right, it will also be a stepping stone towards
Bayesian modeling. Actually, you’ve already done maximum likelihood learning in the
context of the language model from Assignment 1. All we’re doing now is presenting the
more general framework.

Let’s begin with a simple example: we have flipped a particular coin 100 times, and it
landed heads NH = 55 times and tails NT = 45 times. We want to know the probability
that it will come up heads if we flip it again. We formulate the probabilistic model:

The behavior of the coin is summarized with a parameter θ, the probability
that a flip lands heads (H). The flips D =

(
x(1), . . . , x(100)

)
are independent

Bernoulli random variables with parameter θ.

(In general, we will use D as a shorthand for all the observed data.) We say that the indi-
vidual flips are independent and identically distributed (i.i.d.); they are independent
because one outcome does not influence any of the other outcomes, and they are identically
distributed because they all follow the same distribution (i.e. a Bernoulli distribution with
parameter θ).

We now define the likelihood function L(θ), which is the probability of the observed
data, as a function of θ. In the coin example, the likelihood is the probability of the
particular sequence of H’s and T’s being generated:

L(θ) = p(D) = θNH (1− θ)NT .

Note that L is a function of the model parameters (in this case, θ), not the observed data.
This likelihood function will generally take on extremely small values; for instance,

L(0.5) = 0.5100 ≈ 7.9 × 10−31. Therefore, in practice we almost always work with the
log-likelihood function,

`(θ) = logL(θ) = NH log θ +NT log(1− θ).

For our coin example, `(0.5) = log 0.5100 = 100 log 0.5 = −69.31. This is a much easier
value to work with.

In general, we would expect good choices of θ to assign high likelihood to the observed
data. This suggests the maximum likelihood criterion: choose the parameter θ which
maximizes `(θ). If we’re lucky, we can do this analytically by computing the derivative and
setting it to zero. (More precisely, we find critical points by setting the derivative to zero.
We check which of the critical points, or boundary points, has the largest value.) Let’s try

2

this for the coin example:

d`

dθ
=

d

dθ
(NH log θ +NT log(1− θ))

=
NH

θ
− NT

1− θ
Setting this to zero, we find the maximum likelihood estimate

θ̂ML =
NH

NH +NT
,

i.e. the maximum likelihood estimate is simply the fraction of flips that came up heads.
(We put a hat over the parameter to emphasize that it’s an estimate.) Hopefully this seems
like a sensible guess for θ. Now let’s look at some more examples.

Example 1. Suppose we are interested in modeling the distribution of temperatures
in Toronto in March. Here are the high temperatures, in Celsius, from the first week
of March 2014:

-2.5 -9.9 -12.1 -8.9 -6.0 -4.8 2.4

Call these observations x(1), . . . , x(N), where N = 7. In order to formulate a prob-
abilistic model, we first choose a parametric form for the distribution over temper-
atures. Often we choose a Gaussian distribution, not because we believe it’s an
especially good model, but because it makes the computations easy. So let’s assume
the temperatures are drawn from a Gaussian distribution with unknown mean µ and
known standard deviation σ = 5. Our likelihood function is given by:

`(µ) = log

N∏
i=1

[
1√

2π · σ
exp

(
−(x(i) − µ)2

2σ2

)]

=

N∑
i=1

log

[
1√

2π · σ
exp

(
−(x(i) − µ)2

2σ2

)]

=
N∑
i=1

−1

2
log 2π − log σ − (x(i) − µ)2

2σ2

Since µ can take any possible real value, the maximum must occur at a critical point,
so let’s look for critical points. Setting the derivative to 0,

0 =
d`(µ)

dµ
=

1

2σ2

N∑
i=1

d

dµ
(x(i) − µ)2

= − 1

σ2

N∑
i=1

x(i) − µ

3

Therefore,
∑N

i=1 x
(i) − µ = 0, and solving for µ, we get µ = 1

N

∑N
i=1 x

(i). The
maximum likelihood estimate of the mean of a normal distribution is simply the
mean of the observed values, or the empirical mean. Plugging in our temperature
data, we get µ̂ML = −5.97.

Example 2. In the last example, we pulled the standard deviation σ = 5 out of a
hat. Really we’d like to learn it from data as well. Let’s add it as a parameter to the
model. The likelihood function is the same as before, except now it’s a function of
both µ and σ, rather than just µ. To maximize a function of two variables, we find
critical points by setting the partial derivatives to 0. In this case,

0 =
∂`

∂µ
= − 1

σ2

N∑
i=1

x(i) − µ

0 =
∂`

∂σ
=

∂

∂σ

[
N∑
i=1

−1

2
log 2π − log σ − 1

2σ2
(x(i) − µ)2

]

=
N∑
i=1

−1

2

∂

∂σ
log 2π − ∂

∂σ
log σ − ∂

∂σ

1

2σ
(x(i) − µ)2

=

N∑
i=1

0− 1

σ
+

1

σ3
(x(i) − µ)2

= −N
σ

+
1

σ3

N∑
i=1

(x(i) − µ)2

From the first equality, we find that µ̂ML = 1
N

∑N
i=1 x

(i) is the empirical mean, just

as before. From the second inequality, we find σ̂ML =
√

1
N

∑N
i=1(x

(i) − µ)2. In other
words, σ̂ML is simply the empirical standard deviation. In the case of the Toronto
temperatures, we get µ̂ML = −5.97 (as before) and σ̂ML = 4.55.

Example 3. We’ve just seen two examples where we could obtain the exact max-
imum likelihood solution analytically. Unfortunately, this situation is the exception
rather than the rule. Let’s consider how to compute the maximum likelihood estimate
of the parameters of the gamma distribution, whose PDF is defined as

p(x) =
ba

Γ(a)
xa−1e−bx,

where Γ(a) is the gamma function, which is a generalization of the factorial function
to continuous values.1 The model parameters are a and b, both of which must take

1The definition is Γ(t) =
∫∞
0
xt−1e−x dx, but we’re never going to use the definition in this class.

4

positive values. The log-likelihood, therefore, is

`(a, b) =

N∑
i=1

a log b− log Γ(a) + (a− 1) log x(i) − bx(i)

= Na log b−N log Γ(a) + (a− 1)

N∑
i=1

log x(i) − b
N∑
i=1

x(i).

Most scientific computing environments provide a function which computes log Γ(a).
In SciPy, for instance, it is scipy.special.gammaln.

To maximize the log-likelihood, we’re going to use gradient ascent, which is just like
gradient descent, except we move uphill rather than downhill. To derive the update
rules, we need the partial derivatives:

∂`

∂a
= N log b−N d

da
log Γ(a) +

N∑
i=1

log x(i)

∂`

∂b
= N

a

b
−

N∑
i=1

x(i).

Our implementation of gradient ascent, therefore, consists of computing these deriva-
tives, and then updating a← a+α ∂`

∂a and b← b+α∂`∂b , where α is the learning rate.

Most scientific computing environments provide a function to compute d
da log Γ(a);

for instance, it is scipy.special.digamma in SciPy.

Here are some observations about these examples:

• In each of these examples, the log-likelihood function ` decomposed as a sum of terms,
one for each training example. This results from our independence assumption. Be-
cause different observations are independent, the likelihood decomposes as a product
over training examples, so the log-likelihood decomposes as a sum.

• The derivatives worked out nicely because we were dealing with log-likelihoods. Try
taking derivatives of the likelihood function L(θ), and you’ll see that they’re much
messier.

• All of the log-likelihood functions we looked at wound up being expressible in terms
of certain sufficient statistics of the dataset, such as

∑N
i=1 x

(i),
∑N

i=1[x
(i)]2, or∑N

i=1 log x(i). When we’re fitting the maximum likelihood solution, we can forget the
data itself and just remember the sufficient statistics. This doesn’t happen for all
of our models; for instance, it didn’t happen when we fit the neural language model

5

in Assignment 1. However, it does happen for many of the distributions commonly
used in practice.2

• We made a lot of questionable assumptions in formulating these models. E.g., we
assumed that temperatures on different days were independent; in practice, the tem-
perature tomorrow is likely to be similar to the temperature today. This is also true
of models we fit previously; e.g., the Markov assumption we used to justify our neural
language model is clearly bogus. If this were a statistics class, we’d talk about ways
to test your modeling assumptions. But because this is a machine learning class,
we’ll throw caution to the wind and fit models that we know are wrong. Hopefully
they’ll still be good enough that they can make sensible predictions (in the supervised
setting) or reveal interesting structure (in the unsupervised setting).

2.1 Beware of data sparsity

Maximum likelihood is a very powerful technique, but it has a pitfall: if you have too
little training data, it can seriously overfit. The most severe pathology is when it assigns
probability 0 to things that were never seen in the training set, but which still might
actually happen. For instance, suppose we flip a coin twice, and it lands H both times.
The maximum likelihood estimate of θ, the probability of H, would be 1. But this is pretty
extreme — effectively we’re considering it impossible that the coin will ever come up T!
This problem is known as data sparsity.

This problem isn’t so different in principle from examples of overfitting which we dis-
cussed for other loss functions. We would like our model to generalize well to data it
hasn’t seen before, i.e. assign the new data high likelihood. We can measure the general-
ization performance by holding out a separate test set, and measuring the log-likelihood
on this test set at the very end. (As before, if we want to choose model hyperparamters,
we’d hold out a separate validation set.) In our coin example, if we choose θ = 1 and the
coin comes up T even a single time in the test set, this will give us a test log-likelihood of
−∞. Clearly it’s a bad idea to assign any outcome probability 0 if it might ever occur.

Last week, we talked about regularization as a way to attenuate overfitting. Would that
work here? One naive approach would be to add an L2 penalty, −1

2θ
2, to the objective

function. (We subtract the penalty since we’re maximizing.) But this isn’t quite what
we want: it would allow (in fact, encourage) the degenerate solution θ = 0. Instead, let’s
look at Bayesian techniques for parameter estimation. These techniques will turn out to
be closely related to regularization.

2If you’re interested in learning more, the families of distributions whose likelihoods can be written in
terms of sufficient statistics are known as exponential families.

6

3 Bayesian parameter estimation

In the maximum likelihood approach, the observations (i.e. the xi’s) were treated as random
variables, but the model parameters were not. In the Bayesian approach, we treat the
parameters as random variables as well. We define a model for the joint distribution
p(θ,D) over parameters θ and data D. (In our coin example, θ would be the probability
of H, and D would be the sequence of 100 flips that we observed.) Then we can perform
the usual operations on this joint distribution, such as marginalization and conditioning.

In order to define this joint distribution, we need two things:

• A distribution p(θ), known as the prior distribution. It’s called the prior because
it’s supposed to encode your “prior beliefs,” i.e. everything you believed about the
parameters before looking at the data. In practice, we normally choose priors to be
computationally convenient, rather than based on any sort of statistical principle.
More on this later.

• The likelihood p(D |θ), the probability of the observations given the parameters,
just like in maximum likelihood.

Bayesians are primarily interested in computing two things:

• The posterior distribution p(θ | D). This corresponds to our beliefs about the
parameters after observing the data. In general, the posterior distribution can be
computed using Bayes’ Rule:

p(θ | D) =
p(θ)p(D |θ)∫
p(θ′)p(D |θ′) dθ′

.

However, we don’t normally compute the denominator directly. Instead we work with
unnormalized distributions as long as possible, and normalize only when we need to.
Bayes’ Rule can therefore be written in a more succinct form, using the symbol ∝ to
denote “proportional to”:

p(θ | D) ∝ p(θ)p(D |θ).

• The posterior predictive distribution p(D′ | D), which is the distribution over
future observables given past observations. For instance, given that we’ve observed
55 H’s and 45 T’s, what’s the probability that the next flip will land H? We can
compute the posterior predictive distribution by computing the posterior over θ and
then marginalizing out θ:

p(D′ | D) =

∫
p(θ | D)p(D′ |θ) dθ.

7

Figure 1: The PDF of the beta distribution for various values of the parameters a and b.
Observe that the distribution becomes more peaked as a and b become large, and the peak
is near a/(a+ b).

3.1 The full Bayesian approach

Let’s figure out the posterior distribution and posterior predictive distribution for our
coin example. We’ve already specified the likelihood, so it remains to specify the prior.
One option is to use an uninformative prior, which assumes as little as possible about
the problem. In the case of the coin, this might correspond to the uniform distribution
p(θ) = 1. (There is no single recipe for choosing an uninformative prior; statisticians have
a few different recipes which often, but not always, agree with each other.)

Alternatively, we can draw upon our lifetime of experience flipping coins. Most coins
tend to be fair, i.e. the come up heads around 50% of the time. So perhaps our prior
should make θ = 0.5 more likely. There are a lot of distributions which can do this, but a
particularly useful one is the beta distribution, parameterized by a, b > 0, and defined
as:

p(θ; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

This distribution is visualized in Figure 1. Why did we choose the beta distribution, of all
things? Once we work through the example, we’ll see that it’s actually pretty convenient.
Observe that the first term (with all the Γ’s) is just a normalizing constant, so it doesn’t
depend on θ. In most of our computations, we’ll only need to work with unnormalized
distributions (i.e. ones which don’t necessarily integrate to 1), so we can drop the ugly
normalizing constant and write

p(θ; a, b) ∝ θa−1(1− θ)b−1.

8

A few values are plotted in Figure 1. From these plots, we observe a few things:

• The distribution appears to be centered around a/(a + b). In fact, it’s possible to
show that if θ ∼ Beta(a, b), then E[θ] = a/(a+ b).

• The distribution becomes more peaked for larger values of a and b.

• The values a = b = 1 correspond to the uniform distribution. Therefore, we can
simply treat the uniform prior as a special case of the beta prior.

Now let’s compute the posterior and posterior predictive distributions. When we plug
in our prior and likelihood terms for the coin example, we get:

p(θ | D) ∝ p(θ)p(D |θ) (1)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
(2)

= θa−1+NH (1− θ)b−1+NT . (3)

But this is just a beta distribution with parameters NH + a and NT + b. Let’s stop and
check if our answer makes sense. As we observe more flips, NH and NT both get larger,
and the distribution becomes more peaked around a particular value. Furthermore, the
peak of the distribution will be near NH/(NH + NT), our maximum likelihood solution.
This reflects the fact that the more data we observe, the less uncertainty there is about
the parameter, and the more the likelihood comes to dominate. We say that the data
overwhelm the prior.

We now compute the posterior predictive distribution over the next flip x′:

θpred = Pr(x′ = H | D)

=

∫
p(θ | D)Pr(x′ = H | θ) dθ

=

∫
Beta(θ;NH + a,NT + b) · θ dθ

= EBeta(θ;NH+a,NT+b)[θ]

=
NH + a

NH +NT + a+ b
,

where the last line follows from the formula for the expectation of a beta random variable.
Again, let’s check if this is reasonable. If NH and NT are large, this is approximately
NH/(NH+NT), so our predictions are similar to the ones we get using maximum likelihood.
However, if NH and NT are relatively small, then the predictive distribution is smoothed,
i.e. less extreme than the maximum likelihood one. The value θpred is somewhere in between
the prior and the maximum likelihood estimate.

9

Figure 2: Plots of the prior, likelihood, and posterior for the coin flip example, with the
prior Beta(2, 2). (Left) Small data setting, NH = 2, NT = 0. (Right) Large data
setting, NH = 55, NT = 45. In this case, the data overwhelm the prior, so the posterior is
determined by the likelihood. Note: for visualization purposes, the likelihood function is
normalized to integrate to 1, since otherwise it would be too small to see.

OK, back to an earlier question. Where did our choice of prior come from? The key
thing to notice is Eqn 3, where the posterior wound up belonging to the same family of
distributions as the prior. Why did this happen? Let’s compare the formulas for the beta
distribution and the likelihood:

p(θ) = Beta(θ; a, b) ∝ θa−1(1− θ)b−1

p(D | θ) ∝ θNH (1− θ)NT

In other words, the prior was chosen to have the same functional form as the likelihood.3

Since we multiply these expressions together to get the (unnormalized) posterior, the pos-
terior will also have this functional form. A prior chosen in this way is called a conjugate
prior. In this case, the parameters of the prior distribution simply got added to the
observed counts, so they are sometimes referred to as pseudo-counts.

Let’s look at some more examples.

Example 4. Let’s return to our problem of estimating the mean temperature in
Toronto, where our model assumes a Gaussian with unknown mean µ and known
standard deviation σ = 5. The first task is to choose a conjugate prior. In order to
do this, let’s look at the PMF of a single data point:

p(x |µ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
3The ∝ notation obscures the fact that the normalizing constants in these two expressions may be

completely different, since p(θ) is a distribution over parameters, while p(D | θ) is a distribution over observed
data. In this example, the latter normalizing constant happens to be 1, but that won’t always be the case.

10

If we look at this as a function of µ (rather than x), we see that it’s still a Gaus-
sian! This should lead us to conjecture that the conjugate prior for a Gaussian is a
Gaussian. Let’s try it and see if it works.

Our prior distribution will be a Gaussian distribution with mean µpri and standard
deviation σpri. The posterior is then given by:

p(µ | D) ∝ p(µ)p(D |µ)

=

[
1√

2πσpri
exp

(
−(µ− µpri)2

2σ2pri

)][
N∏
i=1

1√
2πσ

exp

(
− 1

2σ2

N∑
i=1

(x(i) − µ)2

)]

∝ exp

(
−(µ− µpri)2

2σ2pri
− 1

2σ2

N∑
i=1

(x(i) − µ)2

)

∝ exp

(
− µ2

2σ2pri
+
µpriµ

σ2pri
−

µ2pri
2σ2pri

− 1

2σ2

N∑
i=1

[x(i)]2 +
1

σ2

N∑
i=1

x(i)µ− N

2σ2
µ2

)

= exp

(
−
µ2pri
2σ2pri

− 1

2σ2

N∑
i=1

[x(i)]2 +

[
µpri
σ2pri
−
∑N

i=1 x
(i)

σ2

]
µ− 1

2

[
1

σ2pri
+
N

σ2

]
µ2

)

∝ exp

(
−(µ− µpost)2

σ2post

)
,

where

σpost =
1√

1
σ2
pri

+ N
σ2

µpost =

1
σ2
pri
µpri + N

σ2
1
N

∑N
i=1 x

(i)

1
σ2
pri

+ N
σ2

.

The last step uses a technique called completing the square. You’ve probably done
this before in a probability theory class. So the posterior distribution is a Gaussian
with mean µpost and standard deviation σpost.

The formulas are rather complicated, so let’s break them apart. First look how σpost
changes if we vary the prior or the data.

– As we increase the number of observations N , the denominator gets larger, so
σpost gets smaller. This should be intuitive: as we observe more data, the pos-
terior gets more peaked, which corresponds to the posterior standard deviation
decreasing.

11

– What if we increase the prior standard deviation σpri or the observation standard
deviation σ? Then the denominator gets smaller, which means σpost gets larger.
This should be intuitive, because increasing the uncertainty in either the prior
or the likelihood should increase the uncertainty in the posterior.

Now let’s look at the formula for µpost. It takes the form of a weighted average

of the prior mean µpri and the maximum likelihood mean 1
N

∑N
i=1 x

(i). By weighted
average, I mean something of the form

ar + bs

a+ b
.

where the weights a and b are both positive. This is a weighted average of r and s; if
a is larger, it is closer to r, while if b is larger, it is closer to s. For µpost, the weights
for the prior mean and maximum likelihood mean are 1/σ2pri and N/σ2, respectively.
Let’s see what happens if we change the problem.

– As the number of observations N gets larger, the weighted average becomes
closer and closer to the maximum likelihood estimate. This should make sense:
as we get more information, our prior beliefs become less relevant.

– If we increase the prior standard deviation σpri, then 1/σ2pri gets smaller, so
there is less weight on the prior. On the other hand, if we increase the standard
deviation σ of the observations, then N/σ2 gets smaller, and there is less weight
on the maximum likelihood solution. In other words, whichever of the two terms
we are more confident about should count for more.

Observe that
∑N

i=1 x
(i) is a sufficient statistic, since it is the only thing we need to

remember about the data in order to compute the posterior.

Finally, let’s take a look at the posterior predictive distribution. We compute this as

p(x′ | D) =

∫
p(µ | D)p(x′ |µ) dµ

=

∫
Gaussian(µ;µpost, σpost)Gaussian(x′;µ, σ) dµ

= Gaussian(x′;µpost,
√
µ2post + σ2)

The last step uses the formula for the convolution of two Gaussian distributions. Now
let’s see how it behaves.

– When there are no observations (i.e. N = 0), then µpost and σpost are the prior
mean and standard deviation. The predictive distribution is centered at µpost,
but more spread out than the prior.

12

Figure 3: The prior, posterior, and posterior predictive distributions for the Toronto tem-
peratures example.

– When N is very large, the mean of the predictive distribution is close to the
maximum likelihood mean, and the standard deviation is very close to σ. In
other words, it makes almost the same predictions as the maximum likelihood
estimate.

The prior, posterior, and posterior predictive distributions are all shown in Figure 3.

For both the coin and Gaussian examples, the posterior predictive distribution had
the same parametric form as the model. (I.e., it was a Bernoulli distribution for the coin
model, and a Gaussian distribution for the Gaussian model.) This does not happen in
general; often the posterior predictive distribution doesn’t have a convenient form, which
is part of what makes the full Bayesian approach difficult to apply.

3.2 The difficulty of the full Bayesian approach

We’ve seen two different ways to learn the parameters of a probabilistic model. Maximum
likelihood is based on optimization, while the full Bayesian approach is based on computing
integrals. In either case, for some of the commonly used distributions, we can derive a
closed-form solution. However, for many important models (such as multilayer neural
nets), there’s no closed-form solution. As we saw in Example 3, if we can’t find a closed
form, we can still maximize the log-likelihood using gradient ascent.

But for the Bayesian approach, we need to compute an integral in order to marginalize
out the model parameters. If we only have a few parameters, we can do this using nu-
merical quadrature methods. Unfortunately, these methods are exponential in the number
of variables being integrated out. If we’re trying to fit a neural net with thousands (or

13

even millions) of parameters, this is completely impractical. There are other methods for
integration which perform well in high dimensional spaces; we’ll discuss one such set of
techniques, called Markov chain Monte Carlo, later in the course. However, integration
still tends to be a much more difficult problem than optimization, so if possible we would
like to formulate our learning algorithms in terms of optimization. Let’s now look at the
maximum a-posteriori (MAP) approximation, a way of converting the integration problem
into an optimization problem.

3.3 Maximum a-posteriori (MAP) approximation

We worked through two examples of the full Bayesian approach: Bernoulli and Gaussian
models. In both cases, we saw that as more data is observed, the posterior distribution
becomes more and more peaked around a single value. This suggests that maybe we can
get away with summarizing the posterior with a single point estimate. The maximum a-
posteriori (MAP) approximation chooses the parameters which are most likely under
the posterior, i.e.

θ̂MAP = arg max
θ

p(θ | D)

= arg max
θ

p(θ,D)

= arg max
θ

p(θ) p(D |θ)

= arg max
θ

log p(θ) + log p(D |θ)

Observe that maximizing log p(D |θ) is equivalent to maximum likelihood estimation, so
the only difference between MAP and ML is the addition of the prior term log p(θ). The
prior is therefore somewhat analogous to a regularizer. In fact, if p(θ) is a Gaussian
distribution centered at 0, you get L2 regularization!

Example 5. Let’s return to our coin flip example. The joint probability is given by:

log p(θ,D) = log p(θ) + log p(D | θ)
= const + (a− 1) log θ + (b− 1) log(1− θ) +NH log θ +NT log(1− θ)
= const + (NH + a− 1) log θ + (NT + b− 1) log(1− θ)

(Here, const is a shorthand for terms which don’t depend on θ.) Let’s maximize this
by finding a critical point:

d

dθ
log p(θ,D) =

NH + a− 1

θ
− NT + b− 1

1− θ
Setting this to zero, we get

θ̂MAP =
NH + a− 1

NH +NT + a+ b− 2

14

We can summarize the results of the three different methods in the following table,
for a = b = 2.

Formula NH = 2, NT = 0 NH = 55, NT = 45

θ̂ML
NH

NH+NT
1 55

100 = 0.55

θpred
NH+a

NH+NT+a+b
4
6 ≈ 0.67 57

104 ≈ 0.548

θ̂MAP
NH+a−1

NH+NT+a+b−2
3
4 = 0.75 56

102 ≈ 0.549

When we have 100 observations, all three methods agree quite closely with each other.
However, with only 2 observations, they are quite different. θ̂ML = 1, which as we
noted above, is dangerous because it assigns no probability to T, and it will have a
test log-likelihood of −∞ if there is a single T in the test set. The other methods
smooth the estimates considerably. MAP behaves somewhere in between ML and
FB; this happens pretty often, as MAP is a sort of compromise between the two
methods.

Example 6. Let’s return to our Gaussian example. Let’s maximize the joint prob-
ability:

log p(µ,D) = const− 1

2σ2pri
(µ− µpri)2 −

1

2σ2

N∑
i=1

(x(i) − µ)2

d

dµ
log p(µ,D) = − 1

σ2pri
(µ− µpri) +

1

σ2

N∑
i=1

(x(i) − µ)

When we set this to 0, we get exactly the same formula for µ̂MAP as we derived earlier
for µpost. This doesn’t mean the two methods make the same predictions, though.
The two predictive distributions have the same mean, but the MAP one has stan-

dard deviation σ̂MAP = σ, compared with σpred =
√
σ2post + σ2 for the full Bayesian

approach. In other words, the full Bayesian approach smooths the predictions, while
MAP does not. Therefore, the full Bayesian approach tends to make more sensible
predictions in the small data setting. A comparison of the three methods is shown
in Figure 4.

3.4 Is MAP a good approximation?

In both of the examples we looked at, ML, FB, and MAP all made very similar predictions
in the large data regime, but very different ones in the small data regime. Which setting
is more typical in practice?

15

Figure 4: Comparison of the predictions made by the ML, FB, and MAP methods about
future temperatures. (Left) After observing one training case. (Right) After observing
7 training cases, i.e. one week.

On one hand, we typically use a lot more data than we did in these toy examples.
In typical neural net applications, we’d have thousands or millions of training cases. On
the other hand, we’d also have a lot more parameters: typically thousands or millions.
Depending on the precise dataset and model architecture, there might or might not be a
big difference between the methods.

3.5 Can the full Bayesian method overfit?

We motivated the Bayesian approach as a way to prevent overfitting. It’s sometimes
claimed that you can’t overfit if you use the full Bayesian approach. Is this true? In a
sense, it is. If your prior and likelihood model are both accurate, then Bayesian inference
will average the predictions over all parameter values that are consistent with the data.
Either there’s enough data to accurately pinpoint the correct values, or the predictions will
be averaged over a broad posterior which probably includes values close to the true one.

However, in the presence of model misspecification, the full Bayesian approach can
still overfit. This term is unfortunate because it makes it sound like misspecification only
happens when we do something wrong. But pretty much all the models we use in machine
learning are vast oversimplifications of reality, so we can’t rely on the theoretical guarantees
of the Bayesian approach (which rely on the model being correctly specified). We can
see this in our Toronto temperatures example. Figure 5 shows the posterior predictive
distribution given the first week of March, as well as a histogram of temperature values for
the rest of the month. A lot of the temperature values are outside the range predicted by
the model! There are at least two problems here, both of which result from the erroneous
i.i.d. assumption:

• The data are not identically distributed: the observed data are for the start of the

16

Figure 5: The full Bayesian posterior predictive distribution given the temperatures for
the first week, and a histogram of temperatures for the remainder of the month. Observe
that the predictions are poor because of model misspecification.

month, and temperatures may be higher later in the month.

• The data are not independent: temperatures in subsequent days are correlated, so
treating each observation as a new independent sample results in a more confident
posterior distribution than is actually justified.

Unfortunately, the data are rarely independent in practice, and there are often systematic
differences between the datasets we train on and the settings where we’ll need to apply the
learned models in practice. Therefore, overfitting remains a real possibility even with the
full Bayesian approach.

4 Summary

We’ve introduced three different methods for learning probabilistic models:

• Maximum likelihood (ML), where we choose the parameters which maximize the
likelihood:

θ̂ML = arg max
θ

`(θ) = arg max
θ

log p(D |θ)

Sometimes we can compute the optimum analytically by setting partial derivatives
to 0. Otherwise, we need to optimize it using an iterative method such as SGD.

17

• The full Bayesian (FB) approach, where we make predictions using the posterior
predictive distribution. To do this, we condition on the data and integrate out the
parameters:

p(D′ | D) =

∫
p(θ | D)p(D′ |θ) dθ.

Sometimes there’s a closed-form solution to the integral, but otherwise we need to
solve a difficult high-dimensional integration problem. This is what makes FB so
difficult to apply in practice.

• Maximum a-posteriori (MAP), a compromise between ML and FB. We approximate
the posterior distribution with a single value θMAP, which maximizes the posterior
probability

θ̂MAP = arg max
θ

log p(θ | D) = arg max
θ

log p(θ) + log p(D |θ).

This is similar to ML in that it’s an optimization problem, and the prior term log p(θ)
is analogous to a regularization term.

All three approaches behave similarly in the setting where there are many more data points
than parameters. However, in settings where there isn’t enough data to accurately fit the
parameters, the Bayesian methods have a smoothing effect, which can result in much more
sensible predictions. Later in this course, we’ll see models where each of these methods is
useful.

18

