
CSC321 Lecture 7
Neural language models

Roger Grosse and Nitish Srivastava

February 1, 2015

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 1 / 19

Overview

We’ve talked about neural nets and backpropagation in the abstract. Now
let’s see our first real example, a neural language model.

This also serves to introduce two big ideas:

probabilistic modeling, where the network learns to predict a
probability distribution

The cross-entropy loss function encourages the model to assign high
probability to the observed data.
It also avoids the problem of saturation in the output units.

dimensionality reduction using linear hidden units (i.e. reducing the
number of trainable parameters)

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 2 / 19

Language modeling

Motivation: suppose we want to build a speech recognition system.

We’d like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:

An observation model, represented as p(a | s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

A prior, represented as p(s), which tells us how likely a given sentence
s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Given these components, we can use Bayes’ Rule to infer a posterior
distribution over sentences given the speech signal:

p(s | a) =
p(s)p(a | s)∑
s′ p(s′)p(a | s′)

.

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 3 / 19

Language modeling

Motivation: suppose we want to build a speech recognition system.

We’d like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:

An observation model, represented as p(a | s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

A prior, represented as p(s), which tells us how likely a given sentence
s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Given these components, we can use Bayes’ Rule to infer a posterior
distribution over sentences given the speech signal:

p(s | a) =
p(s)p(a | s)∑
s′ p(s′)p(a | s′)

.

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 3 / 19

Language modeling

In this lecture, we focus on learning a good distribution p(s) of sentences.
This problem is known as language modeling.

Assume we have a corpus of sentences s(1), . . . , s(N). The maximum
likelihood criterion says we want our model to maximize the probability
our model assigns to the observed sentences. We assume the sentences are
independent, so that their probabilities multiply.

max
p

N∏
i=1

p(s(i)).

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 4 / 19

Language modeling

In maximum likelihood training, we want to maximize
∏N

i=1 p(s
(i)).

The probability of generating the whole training corpus is vanishingly small — like
monkeys typing all of Shakespeare.

The log probability is something we can work with more easily. It also conveniently
decomposes as a sum:

log
N∏
i=1

p(s(i)) =
N∑
i=1

log p(s(i)).

Let’s use negative log probabilities, so that we’re working with positive numbers.

Intuition: slightly better trained monkeys are slightly more likely to type Hamlet!

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 5 / 19

Language modeling

In maximum likelihood training, we want to maximize
∏N

i=1 p(s
(i)).

The probability of generating the whole training corpus is vanishingly small — like
monkeys typing all of Shakespeare.

The log probability is something we can work with more easily. It also conveniently
decomposes as a sum:

log
N∏
i=1

p(s(i)) =
N∑
i=1

log p(s(i)).

Let’s use negative log probabilities, so that we’re working with positive numbers.

Intuition: slightly better trained monkeys are slightly more likely to type Hamlet!

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 5 / 19

Neural language model

Probability of a sentence ? What does that even mean ?

A sentence is a sequence of words w1,w2, . . . ,wM . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wM) = p(w1)p(w2 |w1) · · · p(wM |w1, . . . ,wM−1).

Therefore, the language modeling problem is equivalent to being able to
predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a
context of length 3,

p(wi |w1, . . . ,wi−1) = p(wi |wi−3,wi−2,wi−1).

Now it’s like a supervised prediction problem. The inputs are
(wi−3,wi−2,wi−1), and the target is wi .

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 6 / 19

Neural language model

Probability of a sentence ? What does that even mean ?
A sentence is a sequence of words w1,w2, . . . ,wM . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wM) = p(w1)p(w2 |w1) · · · p(wM |w1, . . . ,wM−1).

Therefore, the language modeling problem is equivalent to being able to
predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a
context of length 3,

p(wi |w1, . . . ,wi−1) = p(wi |wi−3,wi−2,wi−1).

Now it’s like a supervised prediction problem. The inputs are
(wi−3,wi−2,wi−1), and the target is wi .

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 6 / 19

Neural language model

Probability of a sentence ? What does that even mean ?
A sentence is a sequence of words w1,w2, . . . ,wM . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wM) = p(w1)p(w2 |w1) · · · p(wM |w1, . . . ,wM−1).

Therefore, the language modeling problem is equivalent to being able to
predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a
context of length 3,

p(wi |w1, . . . ,wi−1) = p(wi |wi−3,wi−2,wi−1).

Now it’s like a supervised prediction problem. The inputs are
(wi−3,wi−2,wi−1), and the target is wi .
Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 6 / 19

Neural language model

Bengio’s neural language model (from Geoff’s lecture)

Bengio�s neural net for predicting the next word

 “softmax” units (one per possible next word)

index of word at t-2 index of word at t-1

learned distributed
encoding of word t-2

learned distributed
encoding of word t-1

units that learn to predict the output word from features of the input words

table look-up table look-up

skip-layer
connections

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 7 / 19

Neural language model

When we train a neural language model, is that supervised or unsupervised
learning? Does it have elements of both?

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 8 / 19

A good loss function

Squared error worked nicely for regression.
What loss function should we use when predicting probabilities ?

Consider these two functions -

Squared error: Csq = 1
2 (y − t)2

Cross-entropy: CCE = −t log y − (1− t) log(1− y)

Here t and y are probabilities, so then lie in [0, 1].
If y = t = 0 or y = t = 1, both loss functions are zero.
Suppose t = 1. Consider these two situations -

The model predicts y = 0.01.

The model predicts y = 0.0001.

The first case is a LOT better than the second. (We are a hundred times less
likely to pick 0). So we need to be a lot more unhappy about the second case,
than the first. Which loss function does that ?

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 9 / 19

A good loss function

Squared error worked nicely for regression.
What loss function should we use when predicting probabilities ?
Consider these two functions -

Squared error: Csq = 1
2 (y − t)2

Cross-entropy: CCE = −t log y − (1− t) log(1− y)

Here t and y are probabilities, so then lie in [0, 1].

If y = t = 0 or y = t = 1, both loss functions are zero.
Suppose t = 1. Consider these two situations -

The model predicts y = 0.01.

The model predicts y = 0.0001.

The first case is a LOT better than the second. (We are a hundred times less
likely to pick 0). So we need to be a lot more unhappy about the second case,
than the first. Which loss function does that ?

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 9 / 19

A good loss function

Squared error worked nicely for regression.
What loss function should we use when predicting probabilities ?
Consider these two functions -

Squared error: Csq = 1
2 (y − t)2

Cross-entropy: CCE = −t log y − (1− t) log(1− y)

Here t and y are probabilities, so then lie in [0, 1].
If y = t = 0 or y = t = 1, both loss functions are zero.

Suppose t = 1. Consider these two situations -

The model predicts y = 0.01.

The model predicts y = 0.0001.

The first case is a LOT better than the second. (We are a hundred times less
likely to pick 0). So we need to be a lot more unhappy about the second case,
than the first. Which loss function does that ?

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 9 / 19

A good loss function

Squared error worked nicely for regression.
What loss function should we use when predicting probabilities ?
Consider these two functions -

Squared error: Csq = 1
2 (y − t)2

Cross-entropy: CCE = −t log y − (1− t) log(1− y)

Here t and y are probabilities, so then lie in [0, 1].
If y = t = 0 or y = t = 1, both loss functions are zero.
Suppose t = 1. Consider these two situations -

The model predicts y = 0.01.

The model predicts y = 0.0001.

The first case is a LOT better than the second. (We are a hundred times less
likely to pick 0). So we need to be a lot more unhappy about the second case,
than the first. Which loss function does that ?

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 9 / 19

A good loss function

Squared error worked nicely for regression.
What loss function should we use when predicting probabilities ?
Consider these two functions -

Squared error: Csq = 1
2 (y − t)2

Cross-entropy: CCE = −t log y − (1− t) log(1− y)

Here t and y are probabilities, so then lie in [0, 1].
If y = t = 0 or y = t = 1, both loss functions are zero.
Suppose t = 1. Consider these two situations -

The model predicts y = 0.01.

The model predicts y = 0.0001.

The first case is a LOT better than the second. (We are a hundred times less
likely to pick 0). So we need to be a lot more unhappy about the second case,
than the first. Which loss function does that ?

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 9 / 19

A good loss function

Squared error worked nicely for regression.
What loss function should we use when predicting probabilities ?
Consider these two functions -

Squared error: Csq = 1
2 (y − t)2

Cross-entropy: CCE = −t log y − (1− t) log(1− y)

Here t and y are probabilities, so then lie in [0, 1].
If y = t = 0 or y = t = 1, both loss functions are zero.
Suppose t = 1. Consider these two situations -

The model predicts y = 0.01. Csq = 0.992,CCE = log(100)

The model predicts y = 0.0001. Csq = 0.99992,CCE = log(10000)

The first case is a LOT better than the second. (We are a hundred times less
likely to pick 0). So we need to be a lot more unhappy about the second case,
than the first. Which loss function does that ?

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 10 / 19

Question 1: Squared error vs. cross-entropy

Geoff said that squared error is the wrong cost function to use with logistic
or softmax outputs because of saturation. Let’s analyze this in the case of
a logistic unit.

Recall the logistic activation function:

y = σ(z) =
1

1 + e−z

Suppose our target is t = 1. Sketch C and dC/dz as a function of z for
the cost functions:

Squared error: Csq = 1
2(y − t)2

Cross-entropy: CCE = −t log y − (1− t) log(1− y)

Hint: consider the behavior as z → ±∞

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 11 / 19

Question 1: Squared error vs. cross-entropy

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 12 / 19

Question 1: Squared error vs. cross-entropy

The region where Csq is flat for negative z is a plateau.

A function is convex if line segments joining points on the graph of f lie
above f . Mathematically,

C (λw1 + (1− λ)w2) ≤ λC (w1) + (1− λ)C (w2).

Convex cost functions are usually easier to optimize because there aren’t
any local optima or plateaux.

not convex in z convex in z

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 13 / 19

Question 1: Squared error vs. cross-entropy

We just saw that plateaux are a problem for logistic output units with
squared error loss, but not cross-entropy.

We often use logistic hidden units in multilayer neural nets. Do you think
we have plateaux when training these units?

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 14 / 19

Question 2: Linear hidden units

The neural language model is the first example we’ve seen of an
embedding layer.

Geoff describes it as a lookup table. But we can also think of it as a linear
hidden layer.

Multiplying R by an indicator vector selects a column of R.

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 15 / 19

Question 2: Linear hidden units

Here we have two architectures. Model A is similar to the neural language model, while
Model B eliminates the embedding layer.

Show that Model B can compute any function that Model A can compute. If I give you
weight matrices R and W for Model 1, compute an equivalent weight matrix V for
Model B.

Solution: Model B can match Model A’s function by setting V = WR̃, where

R̃ =

 R
R

R

 .

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 16 / 19

Question 2: Linear hidden units

Here we have two architectures. Model A is similar to the neural language model, while
Model B eliminates the embedding layer.

Show that Model B can compute any function that Model A can compute. If I give you
weight matrices R and W for Model 1, compute an equivalent weight matrix V for
Model B.
Solution: Model B can match Model A’s function by setting V = WR̃, where

R̃ =

 R
R

R

 .

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 16 / 19

Question 2: Linear hidden units

Here we have two architectures. Model A is similar to the neural language model, while
Model B eliminates the embedding layer.

Assume there are 1000 words in the vocabulary, 20-dimensional embeddings, and 300
hidden units.

1 Compute the number of trainable parameters in the layers shown for each model.

2 Approximately compute the number of arithmetic operations required to compute

the hidden activations for a given input. Assume we compute the matrix-vector

products explicitly rather than using a lookup table.

Hint: how many operations are needed to compute a matrix-vector product?

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 17 / 19

Question 2: Linear hidden units

Number of trainable parameters:

Model A: R is a matrix of size 20× 1000 and W is of size 300× 60, for
20 · 1000 + 300 · 60 = 38,000 learnable parameters

Model B: V is a matrix of size 300× 3000, for 900,000 learnable parameters.

Number of computations:

A matrix-vector product where the matrix is of size M × N involves approximately
MN adds and MN multiplies.

Model A: Three matrix-vector products of size 20× 1000 and one of size 300× 60
for a total of 78,000 multiples and adds.

Model B: One matrix-vector product of size 300× 3000, for 900,000 multiplies
and adds.

Note: since the inputs are indicator vectors, in practice you would use a lookup table. But

we asked about explicit multiplications since most situations where we use linear hidden

layers won’t involve indicator vectors.

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 18 / 19

Question 2: Linear hidden units

To recap:

Nonlinear hidden units allow a network to compute more complex
functions.

Linear hidden units don’t increase the expressive power of a network.
But they can introduce a bottleneck which reduces the number of
learnable parameters or the number of computations required.

Corresponds to a low-rank factorization of the weight matrix

Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 19 / 19

