
CSC321 Lecture 6
Backpropagation

Roger Grosse and Nitish Srivastava

January 22, 2015

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 1 / 19



Overview

Recall: In our lecture on linear regression, we saw that we could make the
model more powerful using basis functions (features).
We want to learn features instead of hand-designing them.
We will see how backpropagation can be used to learn them.

φ1(x) φ2(x) φ3(x)

y

w

x1 x2

w2

W1

h1 h2 h3

y

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 2 / 19



Overview

We can represent these features with a neural net:

x1 x2

w2

W1

h1 h2 h3

y

φ1(x) φ2(x) φ3(x)

y

w

Note the following correspondences:

input units ⇐⇒ inputs x
first layer weights and nonlinearities ⇐⇒ mapping φ

hidden unit activations ⇐⇒ feature representation φ(x)
second layer weights ⇐⇒ weights w

output unit ⇐⇒ prediction y

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 3 / 19



Overview

Now we want to learn the bottom layer weights as well, i.e. learn the
features.
Recall from last lecture’s example that we work backwards through the
computation graph to compute derivatives.

Now we’re just doing the same thing, but with a bigger computation
graph!

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 4 / 19



An Example of a Neural Net

Network to classify handwritten digits.

x1 x2 . . . xD

W3

W2

W1

h1
1 h1

2
. . . h1

J

h2
1 h2

2
. . . h2

K

y

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 5 / 19



An Example of a Neural Net

Input representation of a digit : 784 dimensional vector.

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 6 / 19



An Example of a Neural Net

Each first-layer hidden unit computes σ(wT
i x)

Here is one of the weight vectors (also called a feature).

It’s reshaped into an image, with gray = 0, white = +, black = -.

To compute wT
i x, multiply the corresponding pixels, and sum the result.

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 7 / 19



An Example of a Neural Net

There are 256 first-level features total. Here are some of them.

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 8 / 19



An example of a Neural Net

Note: linear and nonlinear hidden units typically serve different purposes.
We’ll talk about this in more detail next week.

Nonlinear hidden units allow the network to compute more complex
functions (like in the digit classification example).

Linear hidden units can’t increase a network’s representational power,
since the composition of linear functions is linear.

Instead, they’re typically used for dimensionality reduction, i.e. reducing
the number of trainable parameters. We’ll see an example next week
when we discuss neural language models.

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 9 / 19



An example of a Neural Net

Note: linear and nonlinear hidden units typically serve different purposes.
We’ll talk about this in more detail next week.

Nonlinear hidden units allow the network to compute more complex
functions (like in the digit classification example).

Linear hidden units can’t increase a network’s representational power,
since the composition of linear functions is linear.

Instead, they’re typically used for dimensionality reduction, i.e. reducing
the number of trainable parameters. We’ll see an example next week
when we discuss neural language models.

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 9 / 19



An example of a Neural Net

Note: linear and nonlinear hidden units typically serve different purposes.
We’ll talk about this in more detail next week.

Nonlinear hidden units allow the network to compute more complex
functions (like in the digit classification example).

Linear hidden units can’t increase a network’s representational power,
since the composition of linear functions is linear.

Instead, they’re typically used for dimensionality reduction, i.e. reducing
the number of trainable parameters. We’ll see an example next week
when we discuss neural language models.

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 9 / 19



Question 1: Backprop Example

Now let’s work through a backprop example with numbers.

The hidden layer consists of rectified linear units. As a refresher,

hi = max(zi , 0)

dhi
dzi

=

{
1 if zi > 0
0 if zi ≤ 0.

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 10 / 19



Question 1: Backprop Example

Data : x = (1, 2), t = 1.
Parameters : W : 2 × 2 matrix, v : 2-dimensional vector.
Each hidden unit has the rectified linear non-linearity. h = max(0, z)
Output unit is linear. Loss function: C = 1

2
(y − t)2.

Compute the following -

The input to each hidden unit. zi =
∑2

j=1 xjWij .

Output from each hidden unit. hi = max(0, zi ).

Input to the output unit. y =
∑2

i=1 vihi .

Loss. C = 1
2

(y − t)2.

Derivative of loss w.r.t y : ∂C
∂y

= y − t.

Derivative of loss w.r.t hi : ∂C
∂hi

= ∂C
∂y

∂y
∂hi

.

Derivative of loss w.r.t zi : ∂C
∂zi

= ∂C
∂hi

∂hi
∂zi

.

Derivative of loss w.r.t xj : ∂C
∂xj

=
∑2

i=1
∂C
∂zi

∂zi
∂xj

.

Derivative of loss w.r.t Wij : ∂C
∂Wij

= ∂C
∂zi

∂zi
∂Wij

.

Derivative of loss w.r.t vi : ∂C
∂vi

= ∂C
∂y

∂y
∂vi

.
x1 x2= 1 = 2

v

W

h1 h2

y

−1
1 1

−2

3 −1

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 11 / 19



Question 1: Backprop Example

Forward pass:

z1 = W11x1 + W12x2

= −1 · 1 + 1 · 2 = 1

z1 = W21x1 + W12x2

= 1 · 1 +−2 · 2 = −3

h1 = max(z1, 0) = 1

h2 = max(z2, 0) = 0

y = v1h1 + v2h2

= 3 · 1 +−1 · 0 = 3

Loss and loss derivative:

C =
1

2
(y − t)2 = 2

∂C

∂y
= y − t = 2

Activation derivatives:

∂C

∂h1
=

∂C

∂y

∂y

∂h1

=
∂C

∂y
v1

= 2 · 3 = 6

∂C

∂h2
=

∂C

∂y

∂y

∂h2

=
∂C

∂y
v2

= 2 · −1 = −2

∂C

∂z1
=

∂C

∂h1

∂h1

∂z1

= 6 · 1 = 6

∂C

∂z2
=

∂C

∂h2

∂h2

∂z2

= −2 · 0 = 0

∂C

∂x1
=

∂C

∂z1

∂z1

∂x1
+

∂C

∂z2

∂z2

∂x1

=
∂C

∂z1
W11 +

∂C

∂z2
W21

= 6 · −1 + 0 · 1 = −6

∂C

∂x2
=

∂C

∂z1

∂z1

∂x2
+

∂C

∂z2

∂z2

∂x2

=
∂C

∂z1
W12 +

∂C

∂z2
W22

= 6 · 1 + 0 · −2 = 6

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 12 / 19



Question 1: Backprop Example

Weight derivatives:

∂C

∂v1
=

∂C

∂y

∂y

∂v1

=
∂C

∂y
h1

= 2 · 1 = 2

∂C

∂v2
=

∂C

∂y

∂y

∂v2

=
∂C

∂y
h2

= 2 · 0 = 0

∂C

∂W11
=

∂C

∂z1

∂z1

∂W11

=
∂C

∂z1
x1

= 6 · 1 = 6

∂C

∂W12
=

∂C

∂z1

∂z1

∂W12

=
∂C

∂z1
x2

= 6 · 2 = 12

∂C

∂W21
=

∂C

∂z2

∂z2

∂W21

=
∂C

∂z2
x1

= 0 · 1 = 0

∂C

∂W22
=

∂C

∂z2

∂z2

∂W22

=
∂C

∂z2
x2

= 0 · 2 = 0

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 13 / 19



Question 1: Backprop Example

You should go back through this example and think about which quantities were
required to compute which other quantities. Some observations:

You first do the feed-forward pass, then compute ∂C/∂y , then backpropagate the
derivatives.

The update to the weight connecting unit A to unit B requires the activation of A
and the backpropagated derivative for the input to B.

We never actually used the value of the loss C for anything. But it’s really cheap
to compute during training, since the cost of computing activations is shared
between the loss and gradient computations.

We never used the input derivatives ∂C/∂xj either. We’ll see a pretty neat use for
these when we talk about convolutional nets.

Some other things you might have noticed:

A lot of the derivatives turn out to be 0. This “sparsity” property results from
using linear rectification as the nonlinearity.

Some of the derivatives are much larger than any of the weights, or activations,
e.g. ∂C/∂W12 = 12. This is a result of numbers getting multiplied together as we
propagate the derivatives. This is a preview of the “exploding gradient”
phenomenon we’ll discuss later.

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 14 / 19



Question 2: vectorized computations

On the left are the computations performed by the network. Write them in
terms of matrix and vector operations. Let σ(v) denote the logistic
sigmoid function applied elementwise to a vector v. Let W be a matrix
where the (i , j) entry is the weight from visible unit j to hidden unit i .

zi =
∑
j

wijxj

hi = σ(wi )

y =
∑
i

vihi

z =

h =

y =

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 15 / 19



Question 2: vectorized computations

On the left are the computations performed by a network. Write them in
terms of matrix and vector operations. Let σ(v) denote the logistic
sigmoid function applied elementwise to a vector v. Let W be a matrix
where the (i , j) entry is the weight from visible unit j to hidden unit i .

zi =
∑
j

wijxj

hi = σ(zi )

y =
∑
i

vihi

z = Wx

h = σ(z)

y = vTh

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 16 / 19



Question 2: vectorized computations

Now, on the left we have the gradients computed during backpropagation.
Write them in terms of matrix and vector operations. Recall that the (i , j)
entry of W is the weight connecting visible unit j to hidden unit i . Let
σ′(v) denote the derivative of the sigmoid function applied elementwise to
v. Denote elementwise multiplication by ◦.

∂C

∂vi
= hi

∂C

∂y
∂C

∂hi
= vi

∂C

∂y
∂C

∂zi
= σ′(zi )

∂C

∂hi
∂C

∂wij
= xj

∂C

∂zi

∇vC =

∇hC =

∇zC =

∇WC =

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 17 / 19



Question 2: vectorized computations

Now, on the left we have the gradients computed during backpropagation.
Write them in terms of matrix and vector operations. Recall that the (i , j)
entry of W is the weight connecting visible unit j to hidden unit i . Let
σ′(v) denote the derivative of the sigmoid function applied elementwise to
v. Denote elementwise multiplication by ◦.

∂C

∂vi
= hi

∂C

∂y
∂C

∂hi
= vi

∂C

∂y
∂C

∂zi
= σ′(zi )

∂C

∂hi
∂C

∂wij
= xj

∂C

∂zi

∇vC =
∂C

∂y
h

∇hC =
∂C

∂y
v

∇zC = σ′(z) ◦ ∇hC

∇WC = (∇zC )xT

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 18 / 19



Question 2: vectorized computations

Note: the vectorized operations we just derived are better than working
with scalars, but they still don’t give an efficient implementation.

It considers only one training case at a time, so if we implemented it
in Python, we would need to do a for loop over training cases!

In Assignment 1, we’ll use matrices to represent the activations of all
the units in a layer for an entire batch of training cases. You’ll derive
the update rules in matrix form. You should use the same strategies
we used in solving this problem.

Roger Grosse and Nitish Srivastava CSC321 Lecture 6 Backpropagation January 22, 2015 19 / 19


