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Overview

So far, we’ve talked about -

Predicting scalar targets using linear regression. y = wTx

Classifying between 2 classes using the perceptron.

y =

{
1 if wTx ≥ 0
0 otherwise

Converting linear models into nonlinear models using basis functions
(features). y = wTx, becomes y = wTΦ(x)

But this raises some questions:

What if the thing we’re trying to predict isn’t real-valued or
binary-valued?

What if we don’t know the right features Φ?

This week, we cover a much more general learning framework which gets
around both of these issues.
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Overview

Linear regression and the perceptron algorithm were both one-off tricks.

For linear regression, we derived a closed-form solution by setting the
partial derivatives to 0. This only works for a handful of learning
algorithms.

For the perceptron, we gave a simple add/subtract algorithm which
works under an unrealistic “linear separability” assumption.

For most of this course, we will instead write down an objective function
and optimize it using a technique called gradient descent.
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Overview

Loss function : A measure of unhappiness.
How unhappy should we be if the model predicts y when we want it to
predict t ?

Some examples of loss functions we’ll learn about later

Setting Example Loss function C(w)
least-squares regression predict stock prices (y − t)2

robust regression predict stock prices |y − t|
classification predict object category from image − log p(t|x)

generative modeling model distribution of English sentences − log p(x)

Synonyms : Loss Function/Error Function/Cost Function/Objective
Function.
Learning ≡ minimizing unhappiness.
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Optimization

Visualizing gradient descent in one dimension: w ← w − ε dC
dw
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Optimization

Visualizing it in two dimensions is a bit tricker.

Level sets (or contours): sets of points on which C (w) is constant

Gradient: the vector of partial derivatives

∇wC =

(
∂C

∂w1
,
∂C

∂w2

)
points in the direction of maximum increase
orthogonal to the level set

The gradient descent updates are opposite the gradient direction.
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Optimization
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Question 1: Geometry of optimization

Suppose we have a linear regression problem with two training cases and no bias term:

x(1) = (1, 0), t(1) = 0.5

x(2) = (0, 3), t(2) = 0

Recall that the objective function is

C(w) =
1

2
(wTx(1) − t(1))2 +

1

2
(wTx(2) − t(2))2.

1 In weight space, sketch the level set of this objective function corresponding to

C(w) = 1/2. Draw both axes with the same scale.

Hint: Write the equation C (w) = 1/2 explicitly in the form

(w1 − c)2

a2
+

(w2 − d)2

b2
= 1.

What geometric object is this, and what do (a, b, c , d) represent?

2 The point w = (1.25, 0.22) is on the level set for C(w) = 1/2. Sketch the gradient
∇wC at this point.

3 Now sketch the gradient descent update if we use a learning rate of 1/2.
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Question 1: Geometry of optimization
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Question 1: Geometry of optimization

Note: we chose the numbers for this problem so that the ellipse would be
axis-aligned. In general, the level sets for linear regression will be ellipses,
but they won’t be axis-aligned.

But all ellipses are rotations of axis-aligned ellipses, so the
axis-aligned case gives us all the intuition we need.

You may have learned how to draw non-axis-aligned ellipses in a linear
algebra class. If not, don’t worry about it.
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Question 1: Geometry of optimization

1 Suppose you perform gradient descent with a very small learning rate (e.g. 0.01).
Will the objective function increase or decrease?

2 Now suppose you use a very large learning rate (e.g. 100). Will the objective
function increase or decrease?

3 Which weight will change faster: w1 or w2? Which one do you want to change
faster?

Note: a more representative picture would show it MUCH more elongated!
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Question 2: Computing the gradient

Now let’s consider a non-linear neuron whose activation is computed as
follows:

z = wTx =
∑
j

wjxj y = log(1 + z2)

We will use the cost function

C (w) = |y − t|.

Show how to compute the partial derivative ∂C/∂w1 using the Chain Rule
as follows:

1 Compute the derivative dC/dy . (You may assume y 6= t.)

2 Express the derivative dC/dz in terms of dC/dy .

3 Express the partial derivative ∂C/∂w1 in terms of dC/dz

Roger Grosse and Nitish Srivastava CSC321 Lecture 5 Learning in a Single Neuron January 21, 2015 13 / 14



Question 2: Computing the gradient

Solution:

dC

dy
=

{
1 if y > t
−1 if y < t

dC

dz
=

dy

dz

dC

dy

=
2z

1 + z2
dC

dy

∂C

∂w1
=

∂z

∂w1

dC

dz

= x1
dC

dz

Note: If this were a calculus class, you’d do the substitutions to get ∂C/∂w1 explicitly.

We won’t do that here, since at this point you’ve already derived everything you need to

implement the computation in Python.
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Question 2: Computing the gradient

Observe that we compute derivatives going backwards through the
computation graph:

This is true in general, not just for neural nets.

This is how we get the term “backpropagation.”
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