CSC321 Lecture 5
 Learning in a Single Neuron

Roger Grosse and Nitish Srivastava

January 21, 2015

Overview

So far, we've talked about -

- Predicting scalar targets using linear regression. $y=\mathbf{w}^{T} \mathbf{x}$

Overview

So far, we've talked about -

- Predicting scalar targets using linear regression. $y=\mathbf{w}^{T} \mathbf{x}$
- Classifying between 2 classes using the perceptron. $y= \begin{cases}1 & \text { if } \mathbf{w}^{T} \mathbf{x} \geq 0 \\ 0 & \text { otherwise }\end{cases}$

Overview

So far, we've talked about -

- Predicting scalar targets using linear regression. $y=\mathbf{w}^{T} \mathbf{x}$
- Classifying between 2 classes using the perceptron.

$$
y= \begin{cases}1 & \text { if } \mathbf{w}^{T} \mathbf{x} \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- Converting linear models into nonlinear models using basis functions (features). $y=\mathbf{w}^{T} \mathbf{x}$, becomes $y=\mathbf{w}^{T} \Phi(\mathbf{x})$

Overview

So far, we've talked about -

- Predicting scalar targets using linear regression. $y=\mathbf{w}^{T} \mathbf{x}$
- Classifying between 2 classes using the perceptron.

$$
y= \begin{cases}1 & \text { if } \mathbf{w}^{T} \mathbf{x} \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- Converting linear models into nonlinear models using basis functions (features). $y=\mathbf{w}^{T} \mathbf{x}$, becomes $y=\mathbf{w}^{T} \Phi(\mathbf{x})$
But this raises some questions:
- What if the thing we're trying to predict isn't real-valued or binary-valued?
- What if we don't know the right features Φ ?

This week, we cover a much more general learning framework which gets around both of these issues.

Overview

Linear regression and the perceptron algorithm were both one-off tricks.

- For linear regression, we derived a closed-form solution by setting the partial derivatives to 0 . This only works for a handful of learning algorithms.

Overview

Linear regression and the perceptron algorithm were both one-off tricks.

- For linear regression, we derived a closed-form solution by setting the partial derivatives to 0 . This only works for a handful of learning algorithms.
- For the perceptron, we gave a simple add/subtract algorithm which works under an unrealistic "linear separability" assumption.

Overview

Linear regression and the perceptron algorithm were both one-off tricks.

- For linear regression, we derived a closed-form solution by setting the partial derivatives to 0 . This only works for a handful of learning algorithms.
- For the perceptron, we gave a simple add/subtract algorithm which works under an unrealistic "linear separability" assumption.
For most of this course, we will instead write down an objective function and optimize it using a technique called gradient descent.

Overview

Loss function: A measure of unhappiness. How unhappy should we be if the model predicts y when we want it to predict t ?

Overview

Loss function: A measure of unhappiness.
How unhappy should we be if the model predicts y when we want it to predict t ?
Some examples of loss functions we'll learn about later

Setting Example

least-squares regression predict stock prices robust regression predict stock prices
classification generative modeling
predict object category from image
model distribution of English sentences

Loss function $C(\mathbf{w})$
$(y-t)^{2}$
$|y-t|$
$-\log p(t \mid \mathbf{x})$
$-\log p(\mathbf{x})$

Overview

Loss function: A measure of unhappiness.
How unhappy should we be if the model predicts y when we want it to predict t ?
Some examples of loss functions we'll learn about later

Setting Example

least-squares regression predict stock prices robust regression predict stock prices
classification predict object category from image generative modeling model distribution of English sentences

Loss function $C(\mathbf{w})$ $(y-t)^{2}$
$|y-t|$
$-\log p(t \mid \mathbf{x})$
$-\log p(\mathbf{x})$

Synonyms : Loss Function/Error Function/Cost Function/Objective Function.
Learning \equiv minimizing unhappiness.

Optimization

Visualizing gradient descent in one dimension: $w \leftarrow w-\epsilon \frac{\mathrm{d} C}{\mathrm{~d} w}$

Optimization

Optimization

Visualizing it in two dimensions is a bit tricker.

- Level sets (or contours): sets of points on which $C(\mathbf{w})$ is constant
- Gradient: the vector of partial derivatives

$$
\nabla_{w} C=\left(\frac{\partial C}{\partial w_{1}}, \frac{\partial C}{\partial w_{2}}\right)
$$

- points in the direction of maximum increase
- orthogonal to the level set
- The gradient descent updates are opposite the gradient direction.

Optimization

Question 1: Geometry of optimization

Suppose we have a linear regression problem with two training cases and no bias term:

- $x^{(1)}=(1,0), t^{(1)}=0.5$
- $\mathbf{x}^{(2)}=(0,3), t^{(2)}=0$

Recall that the objective function is

$$
C(\mathbf{w})=\frac{1}{2}\left(\mathbf{w}^{T} \mathbf{x}^{(1)}-t^{(1)}\right)^{2}+\frac{1}{2}\left(\mathbf{w}^{T} \mathbf{x}^{(2)}-t^{(2)}\right)^{2} .
$$

(1) In weight space, sketch the level set of this objective function corresponding to $C(w)=1 / 2$. Draw both axes with the same scale.

- Hint: Write the equation $C(\mathbf{w})=1 / 2$ explicitly in the form

$$
\frac{\left(w_{1}-c\right)^{2}}{a^{2}}+\frac{\left(w_{2}-d\right)^{2}}{b^{2}}=1 .
$$

What geometric object is this, and what do (a, b, c, d) represent?
(2) The point $\mathbf{w}=(1.25,0.22)$ is on the level set for $C(\mathbf{w})=1 / 2$. Sketch the gradient $\nabla_{w} C$ at this point.
(3) Now sketch the gradient descent update if we use a learning rate of $1 / 2$.

Question 1: Geometry of optimization

Question 1: Geometry of optimization

Note: we chose the numbers for this problem so that the ellipse would be axis-aligned. In general, the level sets for linear regression will be ellipses, but they won't be axis-aligned.

- But all ellipses are rotations of axis-aligned ellipses, so the axis-aligned case gives us all the intuition we need.
- You may have learned how to draw non-axis-aligned ellipses in a linear algebra class. If not, don't worry about it.

Question 1: Geometry of optimization

(1) Suppose you perform gradient descent with a very small learning rate (e.g. 0.01). Will the objective function increase or decrease?

Question 1: Geometry of optimization

(1) Suppose you perform gradient descent with a very small learning rate (e.g. 0.01). Will the objective function increase or decrease?
(2) Now suppose you use a very large learning rate (e.g. 100). Will the objective function increase or decrease?

Question 1: Geometry of optimization

(1) Suppose you perform gradient descent with a very small learning rate (e.g. 0.01). Will the objective function increase or decrease?
(2) Now suppose you use a very large learning rate (e.g. 100). Will the objective function increase or decrease?
(3) Which weight will change faster: w_{1} or w_{2} ? Which one do you want to change faster?

Question 1: Geometry of optimization

(1) Suppose you perform gradient descent with a very small learning rate (e.g. 0.01). Will the objective function increase or decrease?
(2) Now suppose you use a very large learning rate (e.g. 100). Will the objective function increase or decrease?
(3) Which weight will change faster: w_{1} or w_{2} ? Which one do you want to change faster?

Note: a more representative picture would show it MUCH more elongated!

Question 2: Computing the gradient

Now let's consider a non-linear neuron whose activation is computed as follows:

$$
z=\mathbf{w}^{T} \mathbf{x}=\sum_{j} w_{j} x_{j} \quad y=\log \left(1+z^{2}\right)
$$

We will use the cost function

$$
C(\mathbf{w})=|y-t| .
$$

Show how to compute the partial derivative $\partial C / \partial w_{1}$ using the Chain Rule as follows:
(1) Compute the derivative $\mathrm{d} C / \mathrm{d} y$. (You may assume $y \neq t$.)
(2) Express the derivative $\mathrm{d} C / \mathrm{d} z$ in terms of $\mathrm{d} C / \mathrm{d} y$.
(3) Express the partial derivative $\partial C / \partial w_{1}$ in terms of $\mathrm{d} C / \mathrm{d} z$

Question 2: Computing the gradient

Solution:

$$
\begin{aligned}
\frac{\mathrm{d} C}{\mathrm{~d} y} & =\left\{\begin{array}{cc}
1 & \text { if } y>t \\
-1 & \text { if } y<t
\end{array}\right. \\
\frac{\mathrm{d} C}{\mathrm{~d} z} & =\frac{\mathrm{d} y}{\mathrm{~d} z} \frac{\mathrm{~d} C}{\mathrm{~d} y} \\
& =\frac{2 z}{1+z^{2}} \frac{\mathrm{~d} C}{\mathrm{~d} y} \\
\frac{\partial C}{\partial w_{1}} & =\frac{\partial z}{\partial w_{1}} \frac{\mathrm{~d} C}{\mathrm{~d} z} \\
& =x_{1} \frac{\mathrm{~d} C}{\mathrm{~d} z}
\end{aligned}
$$

Question 2: Computing the gradient

Solution:

$$
\begin{aligned}
\frac{\mathrm{d} C}{\mathrm{~d} y} & =\left\{\begin{array}{cc}
1 & \text { if } y>t \\
-1 & \text { if } y<t
\end{array}\right. \\
\frac{\mathrm{d} C}{\mathrm{~d} z} & =\frac{\mathrm{d} y}{\mathrm{~d} z} \frac{\mathrm{~d} C}{\mathrm{~d} y} \\
& =\frac{2 z}{1+z^{2}} \frac{\mathrm{~d} C}{\mathrm{~d} y} \\
\frac{\partial C}{\partial w_{1}} & =\frac{\partial z}{\partial w_{1}} \frac{\mathrm{~d} C}{\mathrm{~d} z} \\
& =x_{1} \frac{\mathrm{~d} C}{\mathrm{~d} z}
\end{aligned}
$$

Note: If this were a calculus class, you'd do the substitutions to get $\partial C / \partial w_{1}$ explicitly. We won't do that here, since at this point you've already derived everything you need to implement the computation in Python.

Question 2: Computing the gradient

Observe that we compute derivatives going backwards through the computation graph:

$$
\frac{\partial C}{\partial w_{1}} \longleftarrow \frac{\mathrm{~d} C}{\mathrm{~d} z} \longleftarrow \frac{\mathrm{~d} C}{\mathrm{~d} y}
$$

This is true in general, not just for neural nets.
This is how we get the term "backpropagation."

