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-
Recap: Perceptron Model

Inputs : x.

Parameters : w.

1 wix>0
1 0 otherwise

An example of a binary linear classifier.
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-
Recap: Perceptron Model

Inputs : x.

Parameters : w.

1 wix>0
1 0 otherwise

An example of a binary linear classifier.

@ Binary : Two possible classification decisions (0 or 1).
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-
Recap: Perceptron Model

Inputs : x.

Parameters : w.

1 wix>0
| 0 otherwise
An example of a binary linear classifier.
@ Binary : Two possible classification decisions (0 or 1).

@ Linear: w’x.
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-
Recap: Perceptron Learning Algorithm

w0
Repeat until all data points are classified correctly:

Choose a data point x with target t
Compute

1 if wix>0
Y =) 0 otherwise

If y # t, then update
W< w+ (t—y)x

Theoretical guarantee: if the data are linearly separable, it will make only a finite
number of mistakes, then find a w which correctly classifies all training cases.

Note: after giving this lecture, we realized we've been inconsistent about what
happens when an input lies on the decision boundary w”x = 0. This isn't a case
we want to emphasize in this course. We won't ask any exam or homework
questions where inputs lie on the decision boundary. Sorry for the confusion.
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Question 1: Perceptron example

Suppose we have the following data points, and no bias term:
o x=(1,-2),t=1
e x=(0,-1),t=0
The initial weight vector is (0, —2).
@ Draw the feasible regions in weight space.
o Draw the axes in weight space wy, ws.
o Draw each data point as a line that separates “good” and “bad”
regions.
e Shade the feasible region.
@ Carry out the perceptron algorithm until you get a feasible solution.
o It's easiest to do it on the plot you made. Here is the algorithm -
Choose a data point x with target t
Compute

1 i wix>0
Y= 0 otherwise

If y # t, then update
w < w+ (t—y)x
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Question 2: Feature space

We're given a problem with a single input and no bias parameter:
e x=—-1t=1
e x=1t=0
e x=3t=1

Sketch the data in input space. Is this dataset linearly separable?
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Question 2: Feature space

We're given a problem with a single input and no bias parameter:
e x=—-1t=1
e x=1t=0
e x=3t=1

Sketch the data in input space. Is this dataset linearly separable?

Design 2 basis functions (features) ¢1 and ¢, such that
o (¢1(-1),¢2(-1)),t =1
bt (¢1(1)7 ¢2(1))7 t=0
b (¢1(3)7 ¢2(3))7 t=1
becomes linearly separable.
1 ifwld(x)>0
:{ 0 otherwise

Sketch the feature space - axes will be ¢1(x) and ¢2(x).
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Question 2: Feature space

We're given a problem with a single input and no bias parameter:
e x=—-1t=1
e x=1t=0
e x=3t=1

Sketch the data in input space. Is this dataset linearly separable?

Design 2 basis functions (features) ¢1 and ¢, such that
° (¢1(=1),¢2(-1)),t =1
° (¢1(1)7 ¢2(1))7 t=20
° (¢1(3)7 ¢2(3))7 t=1

becomes linearly separable.
[ 1 ifwTe(x)>0
| 0 otherwise
Sketch the feature space - axes will be ¢1(x) and ¢2(x).

Sketch the constraints in weight space.
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Question 3: Linear regression in weight space

Recall that linear regression fits the model -
y = wx + b.
Suppose we're given the following training examples:
x=-1t=-1 x=0,t=1 x=1t=2
The optimal solution is (approximately) w = 1.5, b = 0.67.

For each example, sketch the sets of points in weight space which predict
each target exactly, and plot the optimal solution. (The axes are b and
w.) What do you notice?
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Question 3: Linear regression in weight space

S
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What linear classifiers can't represent.

Recall that Geoff said perceptrons can't distinguish between two different
binary patterns with wrap-around if they have the same number of
nonzero entries.

T mm w7 pattern A Crmm T Tmm 1T pattern B
Crrm T mw w110 pattern A Crrmm w7 pattern B
e mm pattern A rmm T Pattern B

Here's another way of looking at it.
@ Show that if a linear classifier classifies all the inputs x o x(M)
the same, then it also classifies their average the same.

@ What is the average input for patterns A and B?
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Your questions from the quiz

@ How to initialize weights and biases?

e by default, initialize to 0; but this depends on the situation
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Your questions from the quiz

@ How to initialize weights and biases?
e by default, initialize to 0; but this depends on the situation
@ Perceptrons with something other than a binary threshold?

o We will cover neural net models which make other types of predictions
(and these are sometimes called perceptrons)
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Thinking about high-dimensional spaces

Geoff says that to think about 14-D space, you should “think about 3-D
space and say 14 really loudly.” But some intuitions don't carry over:

@ “Most” sets of D points in D dimensions are linearly separable.

@ “Most” points (inside a hypercube, say) are about the same distance
from each other.

@ “Most” vectors are approximately orthogonal to each other.
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