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Outline

In this lecture we will

See a simple example of a machine learning model, linear regression.

Learn how to formulate a supervised learning problem.

Learn how to train the model.

It’s not a neural net algorithm, but it will provide a lot of useful intuition
for algorithms we will cover in this course.
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A Machine Learning Problem

Suppose we are given some data about basketball players -

Height in feet
Avg Points Scored

Per Game

6.8 9.2
6.3 11.7
6.4 15.8
6.2 8.6

...
...
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What is the predicted number of points scored by a new player who is 6.5
feet tall ?
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Formulate as a Supervised Learning Problem

We are given labelled examples (the training set):
Inputs: {x (1), x (2), . . . , x (N)} - Height in feet.
Targets: {t(1), t(2), . . . , t(N)} - Avg points scored per game.

Choose a model ≡ Make an assumption about the data’s behaviour.
Let’s say we choose -

y = wx + b

We call w the weight and b the bias. These are the trainable
parameters.

Learning: Extract knowledge from the data to learn the model.

{x (1), x (2), . . . , x (N)}
{t(1), t(2), . . . , t(N)} w , b

Inference: Given a new x and the learned model, make a prediction y .

x w , b y
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Learning

Design an objective function (or loss function) that is -

Minimized when the model does what you want it to do.

Easy to minimize (smooth, well-behaved).

Here we want y = wx + b to be close to t, for every training case.

Therefore one choice could be,

L(w , b) =
1

2

N∑
i=1

(wx (i) + b − t(i))2

This is called squared loss.
Need to find w , b such that L(w , b) is minimized.
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Learning

L(w , b) =
1

2

∑
i

(wx (i) + b − t(i))2

∂L

∂w
=

∑
i

(wx (i) + b − t(i))x (i)

∂L

∂b
=

∑
i

wx (i) + b − t(i)

Since L is a nonnegative quadratic function in w and b, any critical point
is a minimum. Therefore, we minimize L by setting

∂L

∂w
= 0,

∂L

∂b
= 0.

Roger Grosse and Nitish Srivastava CSC321 Lecture 2A Simple Learning Algorithm : Linear RegressionJanuary 7, 2015 6 / 20



Learning

L(w , b) =
1

2

∑
i

(wx (i) + b − t(i))2

∂L

∂w
=

∑
i

(wx (i) + b − t(i))x (i)

∂L

∂b
=

∑
i

wx (i) + b − t(i)

Since L is a nonnegative quadratic function in w and b, any critical point
is a minimum. Therefore, we minimize L by setting

∂L

∂w
= 0,

∂L

∂b
= 0.

Roger Grosse and Nitish Srivastava CSC321 Lecture 2A Simple Learning Algorithm : Linear RegressionJanuary 7, 2015 6 / 20



Learning

L(w , b) =
1

2

∑
i

(wx (i) + b − t(i))2

∂L

∂w
=

∑
i

(wx (i) + b − t(i))x (i)

∂L

∂b
=

∑
i

wx (i) + b − t(i)

Since L is a nonnegative quadratic function in w and b, any critical point
is a minimum. Therefore, we minimize L by setting

∂L

∂w
= 0,

∂L

∂b
= 0.

Roger Grosse and Nitish Srivastava CSC321 Lecture 2A Simple Learning Algorithm : Linear RegressionJanuary 7, 2015 6 / 20



Learning

w

(∑
i

x (i) · x (i)
)

+ b

(∑
i

x (i)

)
−

(∑
i

t(i)x (i)

)
= 0

w

(∑
i

x (i)

)
+ bN −

(∑
i

t(i)

)
= 0

Now we have 2 linear equations and 2 unknowns w and b. Solve!
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Inference
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To make a prediction about a new player, just use y = wx + b.
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Multi-variable Linear Regression

Multi-variable : Instead of x ∈ R, we have x = (x1, x2, . . . , xM) ∈ RM .

For example,
Height in feet (x1) Weight in pounds (x2) Avg Points Scored Per Game (t)

6.8 225 9.2
6.3 180 11.7
6.4 190 15.8
6.2 180 8.6

...
...

...
Choose a model -

y = w1x1 + w2x2 + . . .+ wMxM + b = w>x + b

Parameters to be learned : w, b.
Objective function -

L(w, b) =
N∑
i=1

(w>x(i) + b − t(i))2

Roger Grosse and Nitish Srivastava CSC321 Lecture 2A Simple Learning Algorithm : Linear RegressionJanuary 7, 2015 9 / 20



Multi-variable Linear Regression

Multi-variable : Instead of x ∈ R, we have x = (x1, x2, . . . , xM) ∈ RM .
For example,

Height in feet (x1) Weight in pounds (x2) Avg Points Scored Per Game (t)
6.8 225 9.2
6.3 180 11.7
6.4 190 15.8
6.2 180 8.6

...
...

...

Choose a model -

y = w1x1 + w2x2 + . . .+ wMxM + b = w>x + b

Parameters to be learned : w, b.
Objective function -

L(w, b) =
N∑
i=1

(w>x(i) + b − t(i))2

Roger Grosse and Nitish Srivastava CSC321 Lecture 2A Simple Learning Algorithm : Linear RegressionJanuary 7, 2015 9 / 20



Multi-variable Linear Regression

Multi-variable : Instead of x ∈ R, we have x = (x1, x2, . . . , xM) ∈ RM .
For example,

Height in feet (x1) Weight in pounds (x2) Avg Points Scored Per Game (t)
6.8 225 9.2
6.3 180 11.7
6.4 190 15.8
6.2 180 8.6

...
...

...
Choose a model -

y = w1x1 + w2x2 + . . .+ wMxM + b = w>x + b

Parameters to be learned : w, b.

Objective function -

L(w, b) =
N∑
i=1

(w>x(i) + b − t(i))2

Roger Grosse and Nitish Srivastava CSC321 Lecture 2A Simple Learning Algorithm : Linear RegressionJanuary 7, 2015 9 / 20



Multi-variable Linear Regression

Multi-variable : Instead of x ∈ R, we have x = (x1, x2, . . . , xM) ∈ RM .
For example,

Height in feet (x1) Weight in pounds (x2) Avg Points Scored Per Game (t)
6.8 225 9.2
6.3 180 11.7
6.4 190 15.8
6.2 180 8.6

...
...

...
Choose a model -

y = w1x1 + w2x2 + . . .+ wMxM + b = w>x + b

Parameters to be learned : w, b.
Objective function -

L(w, b) =
N∑
i=1

(w>x(i) + b − t(i))2

Roger Grosse and Nitish Srivastava CSC321 Lecture 2A Simple Learning Algorithm : Linear RegressionJanuary 7, 2015 9 / 20



Multi-variable Linear Regression

We can use more general basis functions (also called “features”).

y = w1φ1(x) + w2φ2(x) + . . .+ wMφM(x) = w>Φ(x)

Parameters to be learned : w.

For example, 1-D Polynomial fitting

φ0(x) = 1

φ1(x) = x

φ2(x) = x2

φ3(x) = x3

... =
...

φM(x) = xM

y =

=bias︷ ︸︸ ︷
w0φ0(x) +w1φ1(x) + w2φ2(x) + . . .+ wMφM(x) = w>Φ(x)

Note : Linear regression means linear in parameters w, not linear in x.
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Learning Multi-variable Linear Regression

Feature matrix:

Φ =


Φ(x (1))>

Φ(x (2))>

...
Φ(x (N))>



Vector of predictions:

Φw =


wTΦ(x (1))
wTΦ(x (2))

...
wTΦ(x (N))


Objective function

L(w) =
1

2

∑
i

(wTΦ(x (i))− t(i))2

=
1

2
||Φw − t||2
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Learning Multi-variable Linear Regression

Optimum occurs where

∇wL(w) = Φ>(Φw − t) = 0

Therefore,
Φ>Φw −Φ>t = 0

w =
(

Φ>Φ
)−1

Φ>t

Question : When will Φ>Φ be invertible ?
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Fitting polynomials

x

t

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Model selection

Underfitting : The model is too simple - does not fit the data.

x

t

M = 0

0 1

−1

0

1

Overfitting : The model is too complex - fits perfectly, does not generalize.

x

t

M = 9

0 1

−1

0

1
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Model selection

Need to select a model which is neither too simple, nor too complex.

x

t

M = 3

0 1

−1

0

1

Later in this course, we will see talk more about controlling model
complexity.
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Next class

Another machine learning model, an early neural net : Perceptron.

- Frank Rosenblatt, with the image sensor (left) of the Mark I Perceptron40

Reminder - Do the quizzes for video lectures A and B by 11.59pm next
Monday.
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