CSC321 Lecture 2
 A Simple Learning Algorithm: Linear Regression

Roger Grosse and Nitish Srivastava

January 7, 2015

Outline

In this lecture we will

- See a simple example of a machine learning model, linear regression.
- Learn how to formulate a supervised learning problem.
- Learn how to train the model.

It's not a neural net algorithm, but it will provide a lot of useful intuition for algorithms we will cover in this course.

A Machine Learning Problem

Suppose we are given some data about basketball players -

Height in feet	Avg Points Scored Per Game
6.8	9.2
6.3	11.7
6.4	15.8
6.2	8.6
\vdots	\vdots

What is the predicted number of points scored by a new player who is 6.5 feet tall ?

Formulate as a Supervised Learning Problem

We are given labelled examples (the training set): Inputs: $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\right\}$ - Height in feet. Targets: $\left\{t^{(1)}, t^{(2)}, \ldots, t^{(N)}\right\}$ - Avg points scored per game.

Formulate as a Supervised Learning Problem

We are given labelled examples (the training set):
Inputs: $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\right\}$ - Height in feet.
Targets: $\left\{t^{(1)}, t^{(2)}, \ldots, t^{(N)}\right\}$ - Avg points scored per game.

- Choose a model \equiv Make an assumption about the data's behaviour. Let's say we choose -

$$
y=w x+b
$$

Formulate as a Supervised Learning Problem

We are given labelled examples (the training set):
Inputs: $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\right\}$ - Height in feet.
Targets: $\left\{t^{(1)}, t^{(2)}, \ldots, t^{(N)}\right\}$ - Avg points scored per game.

- Choose a model \equiv Make an assumption about the data's behaviour. Let's say we choose -

$$
y=w x+b
$$

We call w the weight and b the bias. These are the trainable parameters.

Formulate as a Supervised Learning Problem

We are given labelled examples (the training set): Inputs: $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\right\}$ - Height in feet. Targets: $\left\{t^{(1)}, t^{(2)}, \ldots, t^{(N)}\right\}$ - Avg points scored per game.

- Choose a model \equiv Make an assumption about the data's behaviour. Let's say we choose -

$$
y=w x+b
$$

We call w the weight and b the bias. These are the trainable parameters.

- Learning: Extract knowledge from the data to learn the model.

$$
\begin{gathered}
\left\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\right\} \\
\left\{t^{(1)}, t^{(2)}, \ldots, t^{(N)}\right\}
\end{gathered} \Longrightarrow w, b
$$

Formulate as a Supervised Learning Problem

We are given labelled examples (the training set): Inputs: $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\right\}$ - Height in feet. Targets: $\left\{t^{(1)}, t^{(2)}, \ldots, t^{(N)}\right\}$ - Avg points scored per game.

- Choose a model \equiv Make an assumption about the data's behaviour. Let's say we choose -

$$
y=w x+b
$$

We call w the weight and b the bias. These are the trainable parameters.

- Learning: Extract knowledge from the data to learn the model.

$$
\begin{gathered}
\left\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\right\} \\
\left\{t^{(1)}, t^{(2)}, \ldots, t^{(N)}\right\}
\end{gathered} \Longrightarrow w, b
$$

- Inference: Given a new x and the learned model, make a prediction y.

$$
x \rightarrow w, b \rightarrow y
$$

Learning

Design an objective function (or loss function) that is -

- Minimized when the model does what you want it to do.
- Easy to minimize (smooth, well-behaved).

Here we want $y=w x+b$ to be close to t, for every training case.

Learning

Design an objective function (or loss function) that is -

- Minimized when the model does what you want it to do.
- Easy to minimize (smooth, well-behaved).

Here we want $y=w x+b$ to be close to t, for every training case.
Therefore one choice could be,

$$
L(w, b)=\frac{1}{2} \sum_{i=1}^{N}\left(w x^{(i)}+b-t^{(i)}\right)^{2}
$$

This is called squared loss.
Need to find w, b such that $L(w, b)$ is minimized.

Learning

$$
L(w, b)=\frac{1}{2} \sum_{i}\left(w x^{(i)}+b-t^{(i)}\right)^{2}
$$

Learning

$$
\begin{aligned}
L(w, b) & =\frac{1}{2} \sum_{i}\left(w x^{(i)}+b-t^{(i)}\right)^{2} \\
\frac{\partial L}{\partial w} & =\sum_{i}\left(w x^{(i)}+b-t^{(i)}\right) x^{(i)} \\
\frac{\partial L}{\partial b} & =\sum_{i} w x^{(i)}+b-t^{(i)}
\end{aligned}
$$

Learning

$$
\begin{aligned}
L(w, b) & =\frac{1}{2} \sum_{i}\left(w x^{(i)}+b-t^{(i)}\right)^{2} \\
\frac{\partial L}{\partial w} & =\sum_{i}\left(w x^{(i)}+b-t^{(i)}\right) x^{(i)} \\
\frac{\partial L}{\partial b} & =\sum_{i} w x^{(i)}+b-t^{(i)}
\end{aligned}
$$

Since L is a nonnegative quadratic function in w and b, any critical point is a minimum. Therefore, we minimize L by setting

$$
\frac{\partial L}{\partial w}=0, \frac{\partial L}{\partial b}=0 .
$$

Learning

$$
\begin{aligned}
w\left(\sum_{i} x^{(i)} \cdot x^{(i)}\right) & +b\left(\sum_{i} x^{(i)}\right)-\left(\sum_{i} t^{(i)} x^{(i)}\right)
\end{aligned}=0
$$

Learning

$$
\begin{aligned}
w\left(\sum_{i} x^{(i)} \cdot x^{(i)}\right) & +b\left(\sum_{i} x^{(i)}\right)-\left(\sum_{i} t^{(i)} x^{(i)}\right)
\end{aligned}=0
$$

Now we have 2 linear equations and 2 unknowns w and b. Solve!

Inference

Inference

To make a prediction about a new player, just use $y=w x+b$.

Multi-variable Linear Regression

Multi-variable : Instead of $x \in \mathbb{R}$, we have $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \in \mathbb{R}^{M}$.

Multi-variable Linear Regression

Multi-variable : Instead of $x \in \mathbb{R}$, we have $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \in \mathbb{R}^{M}$. For example,

Height in feet $\left(x_{1}\right)$	Weight in pounds $\left(x_{2}\right)$	Avg Points Scored Per Game (t)
6.8	225	9.2
6.3	180	11.7
6.4	190	15.8
6.2	180	8.6
\vdots	\vdots	\vdots

Multi-variable Linear Regression

Multi-variable : Instead of $x \in \mathbb{R}$, we have $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \in \mathbb{R}^{M}$. For example,

Height in feet $\left(x_{1}\right)$	Weight in pounds $\left(x_{2}\right)$	Avg Points Scored Per Game (t)
6.8	225	9.2
6.3	180	11.7
6.4	190	15.8
6.2	180	8.6
\vdots	\vdots	\vdots

Choose a model -

$$
y=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{M} x_{M}+b=\mathbf{w}^{\top} \mathbf{x}+b
$$

Parameters to be learned: \mathbf{w}, b.

Multi-variable Linear Regression

Multi-variable : Instead of $x \in \mathbb{R}$, we have $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \in \mathbb{R}^{M}$. For example,

Height in feet $\left(x_{1}\right)$	Weight in pounds $\left(x_{2}\right)$	Avg Points Scored Per Game (t)
6.8	225	9.2
6.3	180	11.7
6.4	190	15.8
6.2	180	8.6
\vdots	\vdots	\vdots

Choose a model -

$$
y=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{M} x_{M}+b=\mathbf{w}^{\top} \mathbf{x}+b
$$

Parameters to be learned: \mathbf{w}, b.
Objective function -

$$
L(\mathbf{w}, b)=\sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}+b-t^{(i)}\right)^{2}
$$

Multi-variable Linear Regression

We can use more general basis functions (also called "features").

$$
y=w_{1} \phi_{1}(\mathbf{x})+w_{2} \phi_{2}(\mathbf{x})+\ldots+w_{M} \phi_{M}(\mathbf{x})=\mathbf{w}^{\top} \Phi(\mathbf{x})
$$

Parameters to be learned: w.

Multi-variable Linear Regression

We can use more general basis functions (also called "features").

$$
y=w_{1} \phi_{1}(\mathbf{x})+w_{2} \phi_{2}(\mathbf{x})+\ldots+w_{M} \phi_{M}(\mathbf{x})=\mathbf{w}^{\top} \Phi(\mathbf{x})
$$

Parameters to be learned: w.
For example, 1-D Polynomial fitting

$$
\begin{aligned}
\phi_{0}(x) & =1 \\
\phi_{1}(x) & =x \\
\phi_{2}(x) & =x^{2} \\
\phi_{3}(x) & =x^{3} \\
\vdots & =\vdots \\
y=\overbrace{w_{0} \phi_{0}(x)}^{=\text {bias }}+w_{1} \phi_{1}(x)+w_{2} \phi_{2}(x) & +\ldots+w_{M} \phi_{M}(x)=\mathbf{w}^{\top} \Phi(x)
\end{aligned}
$$

Multi-variable Linear Regression

We can use more general basis functions (also called "features").

$$
y=w_{1} \phi_{1}(\mathbf{x})+w_{2} \phi_{2}(\mathbf{x})+\ldots+w_{M} \phi_{M}(\mathbf{x})=\mathbf{w}^{\top} \Phi(\mathbf{x})
$$

Parameters to be learned: w.
For example, 1-D Polynomial fitting

$$
\begin{aligned}
& \phi_{0}(x)=1 \\
& \phi_{1}(x)=x \\
& \phi_{2}(x)=x^{2} \\
& \phi_{3}(x)=x^{3} \\
& \vdots=\vdots \\
& y=\overbrace{w_{0} \phi_{0}(x)}^{=\text {bias }}+w_{1} \phi_{1}(x)+w_{2} \phi_{2}(x)+\ldots+w_{M} \phi_{M}(x)=\mathbf{w}^{\top} \Phi(x)
\end{aligned}
$$

Note : Linear regression means linear in parameters \mathbf{w}, not linear in \mathbf{x}

Learning Multi-variable Linear Regression

Feature matrix:
Vector of predictions:

$$
\boldsymbol{\Phi}=\left[\begin{array}{c}
\Phi\left(x^{(1)}\right)^{\top} \\
\Phi\left(x^{(2)}\right)^{\top} \\
\vdots \\
\Phi\left(x^{(N)}\right)^{\top}
\end{array}\right]
$$

$$
\boldsymbol{\Phi} \mathbf{w}=\left[\begin{array}{c}
\mathbf{w}^{T} \Phi\left(x^{(1)}\right) \\
\mathbf{w}^{T} \Phi\left(x^{(2)}\right) \\
\vdots \\
\mathbf{w}^{T} \Phi\left(x^{(N)}\right)
\end{array}\right]
$$

Objective function

$$
\begin{aligned}
L(\mathbf{w}) & =\frac{1}{2} \sum_{i}\left(\mathbf{w}^{T} \Phi\left(x^{(i)}\right)-t^{(i)}\right)^{2} \\
& =\frac{1}{2}\|\boldsymbol{\Phi} \mathbf{w}-\mathbf{t}\|^{2}
\end{aligned}
$$

Learning Multi-variable Linear Regression

Optimum occurs where

$$
\nabla_{\mathbf{w}} L(\mathbf{w})=\boldsymbol{\Phi}^{\top}(\boldsymbol{\Phi} \mathbf{w}-\mathbf{t})=0
$$

Therefore,

$$
\begin{gathered}
\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \mathbf{w}-\boldsymbol{\Phi}^{\top} \mathbf{t}=0 \\
\mathbf{w}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top} \mathbf{t}
\end{gathered}
$$

Learning Multi-variable Linear Regression

Optimum occurs where

$$
\nabla_{\mathbf{w}} L(\mathbf{w})=\boldsymbol{\Phi}^{\top}(\mathbf{\Phi} \mathbf{w}-\mathbf{t})=0
$$

Therefore,

$$
\begin{array}{r}
\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \mathbf{w}-\boldsymbol{\Phi}^{\top} \mathbf{t}=0 \\
\mathbf{w}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top} \mathbf{t}
\end{array}
$$

Question: When will $\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}$ be invertible ?

Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

$$
y=w_{0}+w_{1} x
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\ldots+w_{9} x^{9}
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Model selection

Underfitting : The model is too simple - does not fit the data.

Overfitting : The model is too complex - fits perfectly, does not generalize.

Model selection

Need to select a model which is neither too simple, nor too complex.

Later in this course, we will see talk more about controlling model complexity.

Next class

- Another machine learning model, an early neural net : Perceptron.

- Frank Rosenblatt, with the image sensor (left) of the Mark I Perceptron40

Reminder - Do the quizzes for video lectures A and B by 11.59pm next Monday.

