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Overview

At this point, you know enough to understand the state-of-the-art
methods for many vision tasks!

o E.g. Krizhevsky et al., 2012, ImageNet classification with deep
convolutional neural networks

In this lecture, we'll look at what's happened since Geoff made the
Coursera videos. (Quite a lot!)
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Biggest “advances” in machine learning:
© Datasets have gotten bigger

o Lots of images and videos from digital cameras
o Text from web pages
e Ability to collect lots of labels with Mechanical Turk
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Overview

Biggest “advances” in machine learning:
© Datasets have gotten bigger

o Lots of images and videos from digital cameras
o Text from web pages
e Ability to collect lots of labels with Mechanical Turk

@ Computers have gotten faster

o Moore's Law
o Graphics processing units (GPUs)
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Data and computing power

Graphics processing units (GPUs) are a kind of highly parallel processor. They're
good at performing computations with lots of independent operations and little
control overhead. This is a perfect fit to neural nets!
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Data and computing power

Graphics processing units (GPUs) are a kind of highly parallel processor. They're
good at performing computations with lots of independent operations and little
control overhead. This is a perfect fit to neural nets!

Some important operations they speed up
@ matrix multiplication

@ convolution
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Data and computing power

Graphics processing units (GPUs) are a kind of highly parallel processor. They're
good at performing computations with lots of independent operations and little
control overhead. This is a perfect fit to neural nets!

Some important operations they speed up
@ matrix multiplication

@ convolution

Software, from highest- to lowest-level
@ Theano — you describe your model, and it computes derivatives for you
@ GNumpy, which provides a NumPy-like interface
@ great for feed-forward nets, which mostly require matrix multiplication
@ CUDAMat, a more low-level interface for linear algebra

@ CUDA, NVIDIA's extension of C for GPU programming
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Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects
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Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)

classification task digits digits objects
categories 10 10 1,000
image size 16 x 16 28 x 28 256 x 256 x 3
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Data and computing power

classification task
categories
image size
training examples

Roger Grosse and Nitish Srivastava

LeNet (1989)
digits

10

16 x 16

7,291

LeNet (1998)
digits

10

28 x 28
60,000
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Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)

classification task digits digits objects
categories 10 10 1,000
image size 16 x 16 28 x 28 256 x 256 x 3
training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000
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Data and computing power

LeNet (1989) LeNet (1998)

classification task digits digits
categories 10 10
image size 16 x 16 28 x 28
training examples 7,291 60,000
units 1,256 8,084
parameters 9,760 60,000
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Data and computing power

LeNet (1989) LeNet (1998)

classification task digits digits
categories 10 10
image size 16 x 16 28 x 28
training examples 7,291 60,000
units 1,256 8,084
parameters 9,760 60,000
connections 65,000 344,000
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classification task

categories
image size

training examples

units
parameters
connections

total operations

Roger Grosse and Nitish Srivastava

Data and computing power

LeNet (1989)
digits

10

16 x 16

7,291

1,256

9,760

65,000

11 billion

LeNet (1998)
digits

10

28 x 28
60,000

8,084

60,000
344,000

412 billion
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objects

1,000

256 x 256 x 3
1.2 million
658,000

60 million
652 million

200 quadrillion (est.)
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Data and computing power

More computing power allows us to fit deeper
networks. E.g.,

o LeNet (1989) had 2 convolutional layers
e Google's Inception network (2014) had 22

C3: f. maps 16@10x10
INPUT S4:f. ma’ps 16@5x5

32x32

— " |
| ! | Ful conAec!ion | Gaussian
Convolutions Subsampling Convolutions ~ Subsampling Full connection

(from Geoff's lecture video)

(Szegedy et al., 2014, “Going deeper

with convolutions”)
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-
ImageNet

le Oyster Cannon _ Spider Web

Object Scalen
==

Lizard _ Stocking

-

Number of Instances
This dataset is responsible for almost Conpuss
all of amazing progress made in mage e (@)
applying neural nets for vision. .
Contains 1.28 million images
belonging to 1000 different - l“” M_%

CategOI’IeS. Amount of Texture .w
<—>

Ant Red Wine

Deformability

Color Distinctiveness

Puzzle  Foreland Lion  Bell

Shape Distinctiveness
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-
ImageNet

ILSVRC

flamingo ruffed grouse quail partridge

Egyptiancat ~ Persian cat Siamese cat tabby

dalmatian keeshond miniature schnauzer standard schnauzer giant schnauzer
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Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.

There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
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Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.

There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
2010 Hand-designed descriptors + SVM 28.2 %
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Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.

There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
2010 Hand-designed descriptors + SVM 28.2 %
2011 Compressed Fisher Vectors + SVM 25.8 %
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Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.

There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year
2010
2011
2012

Model Best Result (Error %)
Hand-designed descriptors + SVM 28.2 %
Compressed Fisher Vectors + SVM 25.8 %
Deep Conv Net 16.4 %

Roger Grosse and Nitish Srivastava (CSC321 Lecture 12 Recent advances in conv February 12, 2015 9 /30



Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.

There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year
2010
2011
2012
2013

Model Best Result (Error %)
Hand-designed descriptors + SVM 28.2 %
Compressed Fisher Vectors + SVM 25.8 %
Deep Conv Net 16.4 %
Deeper Conv Net 11.7 %
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Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.

There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
2010 Hand-designed descriptors + SVM 28.2 %

2011 Compressed Fisher Vectors + SVM 25.8 %

2012 Deep Conv Net 16.4 %

2013 Deeper Conv Net 11.7 %

2014 Even Deeper Conv Net 6.6 %

2015 7 ?
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Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.
There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).
Model Best Result (Error %)

Year
2010
2011
2012
2013
2014
2015

Hand-designed descriptors + SVM
Compressed Fisher Vectors + SVM
Deep Conv Net

Deeper Conv Net

Even Deeper Conv Net
?

There are already better results now (4.94%).
Human-performance is around 5.1%.
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Classification

AlexNet, 2012. 8 weight layers. 16.4% Error.

——
193 204 7048 \dense
——>|
dense dense|
1000
192 128 Max L L]
Max Max pooling 048
pooling pooling

3 a8
(Krizhevsky et al., 2012)
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N
Classification

GoogleNet, 2014. 22 weight layers. 6.6% Error.
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(Szegedy et al., 2014)
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Detection

Task : Given an image and a predefined set of objects, find out which
objects are present and draw a box around them.
Harder than classification.

For example, if the image has a lot of blue in it, we might classify it as fish
without knowing anything about what fishes look like.
Roger Grosse and Nitish Srivastava
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Detection

Region - CNN

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Girshick et al. 2014
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Detection

Overfeat - Regression to bounding box coordinates.

-|‘| 1 l H
Wi

H Iqus..J

Sermanet et al. 2014
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Segmentation

Task : Given an image and a predefined set of objects, find out which
pixels belong to which objects.

forward/inference

<

backward/learning

Long et. al. 2014

Roger Grosse and Nitish Srivastava (CSC321 Lecture 12 Recent advances in conv February 12, 2015 15 / 30



Segmentation

Task : Given an image and a predefined set of objects, find out which
pixels belong to which objects.

FCN-8s SDS [

Long et. al. 2014
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Action Recognition

Task: Given a video and predefined set of actions, find out which action is

being performed.

Spatial stream ConvNet

i

conv1 || conv2 || conv3 | conv4 || conv5 || fulle full7
TX7x96 || 5x5x256 || 3x3x512 || 3x3x512||3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 (| stride 1 || s¥ide 1 || dropout || dropout
norm. norm. pool2x2
pool 2x2 || pool 2x2
Temporal stream ConvNet
conv1 || conv2 || conv3 | conv4 || conv5 || fulle full7
TX7x9%6 12[3x3x512||3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || s¥ide 1 || dropout || dropout
nom. || pool 2x2 pool 22
pool 262

Simonyan et. al. 2014
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3D convolutions

Instead of convolving in space (2D) convolve in space-time (3D).
Patches of images = Cuboids of space-time.
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N
Transfer

Transfer: Train a model on one dataset, apply to other datasets.

Features extracted from convolutional nets trained on ImageNet have been
applied to

@ Other Image Recognition / Detection Datasets.
@ Many different video datasets.

A general image feature extractor.
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-
Monkey vs Conv Net

Compare Conv Net features with recordings from monkey brains for this
simple task.

Cars Fruits Animals

Planes
Chairs
""" Tables
Faces

Cadieu et. al. 2014
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-
Monkey vs Conv Net

Compare Conv Net features with recordings from monkey brains.
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Visualizing the representations

Here are the first-layer filters learned by a state-of-the-art object
recognition network from 2013:

(Zeiler and Fergus, 2013., Visualizing and understanding convolutional networks)

Visualizing the higher-layer filters is much tougher.
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Visualizing the representations

Zeiler and Fergus (2013) came up with a scheme for visualizing the learned
representation. For each unit, they picked the 9 largest activations over the whole
dataset. They have a scheme for visualizing the responses which we won't talk
about.
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Visualizing the representations

Here's layer 3. The units have larger receptive fields. (Why?)
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Visualizing the representations

And layer 5. The units respond to high-level semantic properties.

Roger Grosse and Nitish Srivastava [CSC321 Lecture 12 Recent advances in conv February 12, 2015 25 / 30



Visualizing the representations

Can we conclude from this that a unit “represents” faces, text, dogs, etc.?
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Visualizing the representations

Can we conclude from this that a unit “represents” faces, text, dogs, etc.?

Szegedy et al. (2013) found that the visualization looks just as selective if
you pick random linear combinations of units!

el Bl i

() Unit sensitive to white flowers. (b) Unit sensitive to postures.
i X 194 | ‘
_ "l
(c) Unit senstive to round, spiky flowers. (d) Unit senstive to round green or yellow
objects.
& v P v
4 L AR - A
(a) DII‘CCUOH sensitive to whne spread (b) Direction sensitive to white dogs.
flowers.
) D s
— i e
(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown

heads.
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Visualizing the representations

By analogy: does the y-axis “represent” might, would, should, etc. in the tSNE
visualization from Assignment 17
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Adversarial images

In Week 3, we worked through a backprop example. We computed the
derivatives with respect to the inputs, even though we never needed them

to update the parameters.

Here's something really cool you can do with those derivatives.
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Adversarial images

In Week 3, we worked through a backprop example. We computed the
derivatives with respect to the inputs, even though we never needed them
to update the parameters.

Here's something really cool you can do with those derivatives.

Take a conv net that correctly classifies an image. Do gradient ascent on
the image to maximize the probability that it’s classified as some unrelated
category (e.g. “ostrich”). What do you think will happen?
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Adversarial images

Left: original image (which was classified correctly)
Right: adversarial image (which the network things is an ostrich)
Center: difference (adversarial — original), multiplied by 128
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Midterm exam

Tuesday, Feb. 24, during class

50 minutes

What you're responsible for:
@ Coursera videos up through G (except ones marked optional)
@ In-class lectures up through this lecture (especially the problems)
@ Assignment 1

The hardest questions will be about things we covered both in the videos and in
class.

We will not ask for formal proofs, only informal justifications.

There will be less time pressure than in the in-class exercises. We'll focus on
conceptual questions, rather than long derivations.

Practice exams and extra office hours TBA.
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