
CSC321 Lecture 12
Recent advances in conv nets

Roger Grosse and Nitish Srivastava

February 12, 2015

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 1 / 30

Overview

At this point, you know enough to understand the state-of-the-art
methods for many vision tasks!

E.g. Krizhevsky et al., 2012, ImageNet classification with deep
convolutional neural networks

In this lecture, we’ll look at what’s happened since Geoff made the
Coursera videos. (Quite a lot!)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 2 / 30

Overview

Biggest “advances” in machine learning:

1 Datasets have gotten bigger

Lots of images and videos from digital cameras
Text from web pages
Ability to collect lots of labels with Mechanical Turk

2 Computers have gotten faster

Moore’s Law
Graphics processing units (GPUs)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 3 / 30

Overview

Biggest “advances” in machine learning:
1 Datasets have gotten bigger

Lots of images and videos from digital cameras
Text from web pages
Ability to collect lots of labels with Mechanical Turk

2 Computers have gotten faster

Moore’s Law
Graphics processing units (GPUs)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 3 / 30

Overview

Biggest “advances” in machine learning:
1 Datasets have gotten bigger

Lots of images and videos from digital cameras
Text from web pages
Ability to collect lots of labels with Mechanical Turk

2 Computers have gotten faster

Moore’s Law
Graphics processing units (GPUs)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 3 / 30

Data and computing power

Graphics processing units (GPUs) are a kind of highly parallel processor. They’re
good at performing computations with lots of independent operations and little
control overhead. This is a perfect fit to neural nets!

Some important operations they speed up

matrix multiplication

convolution

Software, from highest- to lowest-level

Theano — you describe your model, and it computes derivatives for you

GNumpy, which provides a NumPy-like interface

great for feed-forward nets, which mostly require matrix multiplication

CUDAMat, a more low-level interface for linear algebra

CUDA, NVIDIA’s extension of C for GPU programming

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 4 / 30

Data and computing power

Graphics processing units (GPUs) are a kind of highly parallel processor. They’re
good at performing computations with lots of independent operations and little
control overhead. This is a perfect fit to neural nets!

Some important operations they speed up

matrix multiplication

convolution

Software, from highest- to lowest-level

Theano — you describe your model, and it computes derivatives for you

GNumpy, which provides a NumPy-like interface

great for feed-forward nets, which mostly require matrix multiplication

CUDAMat, a more low-level interface for linear algebra

CUDA, NVIDIA’s extension of C for GPU programming

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 4 / 30

Data and computing power

Graphics processing units (GPUs) are a kind of highly parallel processor. They’re
good at performing computations with lots of independent operations and little
control overhead. This is a perfect fit to neural nets!

Some important operations they speed up

matrix multiplication

convolution

Software, from highest- to lowest-level

Theano — you describe your model, and it computes derivatives for you

GNumpy, which provides a NumPy-like interface

great for feed-forward nets, which mostly require matrix multiplication

CUDAMat, a more low-level interface for linear algebra

CUDA, NVIDIA’s extension of C for GPU programming

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 4 / 30

Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000
image size 16× 16 28× 28 256× 256× 3

training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000

parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million

total operations 11 billion 412 billion 200 quadrillion (est.)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 5 / 30

Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000

image size 16× 16 28× 28 256× 256× 3
training examples 7,291 60,000 1.2 million

units 1,256 8,084 658,000
parameters 9,760 60,000 60 million

connections 65,000 344,000 652 million
total operations 11 billion 412 billion 200 quadrillion (est.)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 5 / 30

Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000
image size 16× 16 28× 28 256× 256× 3

training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000

parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million

total operations 11 billion 412 billion 200 quadrillion (est.)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 5 / 30

Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000
image size 16× 16 28× 28 256× 256× 3

training examples 7,291 60,000 1.2 million

units 1,256 8,084 658,000
parameters 9,760 60,000 60 million

connections 65,000 344,000 652 million
total operations 11 billion 412 billion 200 quadrillion (est.)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 5 / 30

Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000
image size 16× 16 28× 28 256× 256× 3

training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000

parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million

total operations 11 billion 412 billion 200 quadrillion (est.)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 5 / 30

Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000
image size 16× 16 28× 28 256× 256× 3

training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000

parameters 9,760 60,000 60 million

connections 65,000 344,000 652 million
total operations 11 billion 412 billion 200 quadrillion (est.)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 5 / 30

Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000
image size 16× 16 28× 28 256× 256× 3

training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000

parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million

total operations 11 billion 412 billion 200 quadrillion (est.)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 5 / 30

Data and computing power

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000
image size 16× 16 28× 28 256× 256× 3

training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000

parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million

total operations 11 billion 412 billion 200 quadrillion (est.)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 5 / 30

Data and computing power

More computing power allows us to fit deeper
networks. E.g.,

LeNet (1989) had 2 convolutional layers

Google’s Inception network (2014) had 22
The!architecture!of!LeNet5!

(from Geoff’s lecture video)

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7(Szegedy et al., 2014, “Going deeper

with convolutions”)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 6 / 30

ImageNet

This dataset is responsible for almost
all of amazing progress made in
applying neural nets for vision.
Contains 1.28 million images
belonging to 1000 different
categories.

Russakovsky et al.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 7 / 30

ImageNet

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 8 / 30

Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.
There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)

2010 Hand-designed descriptors + SVM 28.2 %
2011 Compressed Fisher Vectors + SVM 25.8 %
2012 Deep Conv Net 16.4 %
2013 Deeper Conv Net 11.7 %
2014 Even Deeper Conv Net 6.6 %
2015 ? ?

There are already better results now (4.94%).
Human-performance is around 5.1%.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 9 / 30

Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.
There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
2010 Hand-designed descriptors + SVM 28.2 %

2011 Compressed Fisher Vectors + SVM 25.8 %
2012 Deep Conv Net 16.4 %
2013 Deeper Conv Net 11.7 %
2014 Even Deeper Conv Net 6.6 %
2015 ? ?

There are already better results now (4.94%).
Human-performance is around 5.1%.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 9 / 30

Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.
There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
2010 Hand-designed descriptors + SVM 28.2 %
2011 Compressed Fisher Vectors + SVM 25.8 %

2012 Deep Conv Net 16.4 %
2013 Deeper Conv Net 11.7 %
2014 Even Deeper Conv Net 6.6 %
2015 ? ?

There are already better results now (4.94%).
Human-performance is around 5.1%.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 9 / 30

Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.
There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
2010 Hand-designed descriptors + SVM 28.2 %
2011 Compressed Fisher Vectors + SVM 25.8 %
2012 Deep Conv Net 16.4 %

2013 Deeper Conv Net 11.7 %
2014 Even Deeper Conv Net 6.6 %
2015 ? ?

There are already better results now (4.94%).
Human-performance is around 5.1%.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 9 / 30

Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.
There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
2010 Hand-designed descriptors + SVM 28.2 %
2011 Compressed Fisher Vectors + SVM 25.8 %
2012 Deep Conv Net 16.4 %
2013 Deeper Conv Net 11.7 %

2014 Even Deeper Conv Net 6.6 %
2015 ? ?

There are already better results now (4.94%).
Human-performance is around 5.1%.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 9 / 30

Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.
There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
2010 Hand-designed descriptors + SVM 28.2 %
2011 Compressed Fisher Vectors + SVM 25.8 %
2012 Deep Conv Net 16.4 %
2013 Deeper Conv Net 11.7 %
2014 Even Deeper Conv Net 6.6 %
2015 ? ?

There are already better results now (4.94%).
Human-performance is around 5.1%.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 9 / 30

Classification

Task : Given an image and a predefined set of categories, find out which
category the image belongs to.
There is an annual competition ILSVRC (ImageNet Large Scale Visual
Recognition Challenge).

Year Model Best Result (Error %)
2010 Hand-designed descriptors + SVM 28.2 %
2011 Compressed Fisher Vectors + SVM 25.8 %
2012 Deep Conv Net 16.4 %
2013 Deeper Conv Net 11.7 %
2014 Even Deeper Conv Net 6.6 %
2015 ? ?

There are already better results now (4.94%).
Human-performance is around 5.1%.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 9 / 30

Classification

AlexNet, 2012. 8 weight layers. 16.4% Error.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

(Krizhevsky et al., 2012)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 10 / 30

Classification

GoogLeNet, 2014. 22 weight layers. 6.6% Error.

(Szegedy et al., 2014)

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 11 / 30

Detection

Task : Given an image and a predefined set of objects, find out which
objects are present and draw a box around them.
Harder than classification.

For example, if the image has a lot of blue in it, we might classify it as fish
without knowing anything about what fishes look like.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 12 / 30

Detection

Region - CNN

Girshick et al. 2014

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 13 / 30

Detection

Overfeat - Regression to bounding box coordinates.

Sermanet et al. 2014

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 14 / 30

Segmentation

Task : Given an image and a predefined set of objects, find out which
pixels belong to which objects.

Long et. al. 2014

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 15 / 30

Segmentation

Task : Given an image and a predefined set of objects, find out which
pixels belong to which objects.

Long et. al. 2014

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 16 / 30

Action Recognition

Task: Given a video and predefined set of actions, find out which action is
being performed.

Simonyan et. al. 2014

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 17 / 30

3D convolutions

Instead of convolving in space (2D) convolve in space-time (3D).
Patches of images ⇒ Cuboids of space-time.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 18 / 30

Transfer

Transfer: Train a model on one dataset, apply to other datasets.
Features extracted from convolutional nets trained on ImageNet have been
applied to

Other Image Recognition / Detection Datasets.

Many different video datasets.

A general image feature extractor.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 19 / 30

Monkey vs Conv Net

Compare Conv Net features with recordings from monkey brains for this
simple task.

Cadieu et. al. 2014

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 20 / 30

Monkey vs Conv Net

Compare Conv Net features with recordings from monkey brains.

Conv Nets match performance!Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 21 / 30

Visualizing the representations

Here are the first-layer filters learned by a state-of-the-art object
recognition network from 2013:

826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

(Zeiler and Fergus, 2013., Visualizing and understanding convolutional networks)

Visualizing the higher-layer filters is much tougher.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 22 / 30

Visualizing the representations

Zeiler and Fergus (2013) came up with a scheme for visualizing the learned

representation. For each unit, they picked the 9 largest activations over the whole

dataset. They have a scheme for visualizing the responses which we won’t talk

about.824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 23 / 30

Visualizing the representations

Here’s layer 3. The units have larger receptive fields. (Why?)

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 24 / 30

Visualizing the representations

And layer 5. The units respond to high-level semantic properties.

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 25 / 30

Visualizing the representations

Can we conclude from this that a unit “represents” faces, text, dogs, etc.?

Szegedy et al. (2013) found that the visualization looks just as selective if
you pick random linear combinations of units!

(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.

(c) Unit senstive to round, spiky flowers. (d) Unit senstive to round green or yellow
objects.

Figure 3: Experiment performed on ImageNet. Images stimulating single unit most (maximum stimulation in
natural basis direction). Images within each row share many semantic properties.

(a) Direction sensitive to white, spread
flowers.

(b) Direction sensitive to white dogs.

(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.

Figure 4: Experiment performed on ImageNet. Images giving rise to maximum activations in a random direc-
tion (maximum stimulation in a random basis). Images within each row share many semantic properties.

model for weakly-supervised localization). Such global analyses are useful in that they can make us
understand better the input-to-output mapping represented by the trained network.

Generally speaking, the output layer unit of a neural network is a highly nonlinear function of its
input. When it is trained with the cross-entropy loss (using the Softmax activation function), it
represents a conditional distribution of the label given the input (and the training set presented so
far). It has been argued [2] that the deep stack of non-linear layers in between the input and the
output unit of a neural network are a way for the model to encode a non-local generalization prior
over the input space. In other words, it is assumed that is possible for the output unit to assign non-
significant (and, presumably, non-epsilon) probabilities to regions of the input space that contain no
training examples in their vicinity. Such regions can represent, for instance, the same objects from
different viewpoints, which are relatively far (in pixel space), but which share nonetheless both the
label and the statistical structure of the original inputs.

It is implicit in such arguments that local generalization—in the very proximity of the training
examples—works as expected. And that in particular, for a small enough radius " > 0 in the vicinity
of a given training input x, an x + r satisfying ||r|| < " will get assigned a high probability of the
correct class by the model. This kind of smoothness prior is typically valid for computer vision
problems. In general, imperceptibly tiny perturbations of a given image do not normally change the
underlying class.

Our main result is that for deep neural networks, the smoothness assumption that underlies many
kernel methods does not hold. Specifically, we show that by using a simple optimization procedure,
we are able to find adversarial examples, which are obtained by imperceptibly small perturbations
to a correctly classified input image, so that it is no longer classified correctly.

In some sense, what we describe is a way to traverse the manifold represented by the network in an
efficient way (by optimization) and finding adversarial examples in the input space. The adversarial
examples represent low-probability (high-dimensional) “pockets” in the manifold, which are hard to
efficiently find by simply randomly sampling the input around a given example. Already, a variety
of recent state of the art computer vision models employ input deformations during training for

4

(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.

(c) Unit senstive to round, spiky flowers. (d) Unit senstive to round green or yellow
objects.

Figure 3: Experiment performed on ImageNet. Images stimulating single unit most (maximum stimulation in
natural basis direction). Images within each row share many semantic properties.

(a) Direction sensitive to white, spread
flowers.

(b) Direction sensitive to white dogs.

(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.

Figure 4: Experiment performed on ImageNet. Images giving rise to maximum activations in a random direc-
tion (maximum stimulation in a random basis). Images within each row share many semantic properties.

model for weakly-supervised localization). Such global analyses are useful in that they can make us
understand better the input-to-output mapping represented by the trained network.

Generally speaking, the output layer unit of a neural network is a highly nonlinear function of its
input. When it is trained with the cross-entropy loss (using the Softmax activation function), it
represents a conditional distribution of the label given the input (and the training set presented so
far). It has been argued [2] that the deep stack of non-linear layers in between the input and the
output unit of a neural network are a way for the model to encode a non-local generalization prior
over the input space. In other words, it is assumed that is possible for the output unit to assign non-
significant (and, presumably, non-epsilon) probabilities to regions of the input space that contain no
training examples in their vicinity. Such regions can represent, for instance, the same objects from
different viewpoints, which are relatively far (in pixel space), but which share nonetheless both the
label and the statistical structure of the original inputs.

It is implicit in such arguments that local generalization—in the very proximity of the training
examples—works as expected. And that in particular, for a small enough radius " > 0 in the vicinity
of a given training input x, an x + r satisfying ||r|| < " will get assigned a high probability of the
correct class by the model. This kind of smoothness prior is typically valid for computer vision
problems. In general, imperceptibly tiny perturbations of a given image do not normally change the
underlying class.

Our main result is that for deep neural networks, the smoothness assumption that underlies many
kernel methods does not hold. Specifically, we show that by using a simple optimization procedure,
we are able to find adversarial examples, which are obtained by imperceptibly small perturbations
to a correctly classified input image, so that it is no longer classified correctly.

In some sense, what we describe is a way to traverse the manifold represented by the network in an
efficient way (by optimization) and finding adversarial examples in the input space. The adversarial
examples represent low-probability (high-dimensional) “pockets” in the manifold, which are hard to
efficiently find by simply randomly sampling the input around a given example. Already, a variety
of recent state of the art computer vision models employ input deformations during training for

4

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 26 / 30

Visualizing the representations

Can we conclude from this that a unit “represents” faces, text, dogs, etc.?

Szegedy et al. (2013) found that the visualization looks just as selective if
you pick random linear combinations of units!

(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.

(c) Unit senstive to round, spiky flowers. (d) Unit senstive to round green or yellow
objects.

Figure 3: Experiment performed on ImageNet. Images stimulating single unit most (maximum stimulation in
natural basis direction). Images within each row share many semantic properties.

(a) Direction sensitive to white, spread
flowers.

(b) Direction sensitive to white dogs.

(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.

Figure 4: Experiment performed on ImageNet. Images giving rise to maximum activations in a random direc-
tion (maximum stimulation in a random basis). Images within each row share many semantic properties.

model for weakly-supervised localization). Such global analyses are useful in that they can make us
understand better the input-to-output mapping represented by the trained network.

Generally speaking, the output layer unit of a neural network is a highly nonlinear function of its
input. When it is trained with the cross-entropy loss (using the Softmax activation function), it
represents a conditional distribution of the label given the input (and the training set presented so
far). It has been argued [2] that the deep stack of non-linear layers in between the input and the
output unit of a neural network are a way for the model to encode a non-local generalization prior
over the input space. In other words, it is assumed that is possible for the output unit to assign non-
significant (and, presumably, non-epsilon) probabilities to regions of the input space that contain no
training examples in their vicinity. Such regions can represent, for instance, the same objects from
different viewpoints, which are relatively far (in pixel space), but which share nonetheless both the
label and the statistical structure of the original inputs.

It is implicit in such arguments that local generalization—in the very proximity of the training
examples—works as expected. And that in particular, for a small enough radius " > 0 in the vicinity
of a given training input x, an x + r satisfying ||r|| < " will get assigned a high probability of the
correct class by the model. This kind of smoothness prior is typically valid for computer vision
problems. In general, imperceptibly tiny perturbations of a given image do not normally change the
underlying class.

Our main result is that for deep neural networks, the smoothness assumption that underlies many
kernel methods does not hold. Specifically, we show that by using a simple optimization procedure,
we are able to find adversarial examples, which are obtained by imperceptibly small perturbations
to a correctly classified input image, so that it is no longer classified correctly.

In some sense, what we describe is a way to traverse the manifold represented by the network in an
efficient way (by optimization) and finding adversarial examples in the input space. The adversarial
examples represent low-probability (high-dimensional) “pockets” in the manifold, which are hard to
efficiently find by simply randomly sampling the input around a given example. Already, a variety
of recent state of the art computer vision models employ input deformations during training for

4

(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.

(c) Unit senstive to round, spiky flowers. (d) Unit senstive to round green or yellow
objects.

Figure 3: Experiment performed on ImageNet. Images stimulating single unit most (maximum stimulation in
natural basis direction). Images within each row share many semantic properties.

(a) Direction sensitive to white, spread
flowers.

(b) Direction sensitive to white dogs.

(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.

Figure 4: Experiment performed on ImageNet. Images giving rise to maximum activations in a random direc-
tion (maximum stimulation in a random basis). Images within each row share many semantic properties.

model for weakly-supervised localization). Such global analyses are useful in that they can make us
understand better the input-to-output mapping represented by the trained network.

Generally speaking, the output layer unit of a neural network is a highly nonlinear function of its
input. When it is trained with the cross-entropy loss (using the Softmax activation function), it
represents a conditional distribution of the label given the input (and the training set presented so
far). It has been argued [2] that the deep stack of non-linear layers in between the input and the
output unit of a neural network are a way for the model to encode a non-local generalization prior
over the input space. In other words, it is assumed that is possible for the output unit to assign non-
significant (and, presumably, non-epsilon) probabilities to regions of the input space that contain no
training examples in their vicinity. Such regions can represent, for instance, the same objects from
different viewpoints, which are relatively far (in pixel space), but which share nonetheless both the
label and the statistical structure of the original inputs.

It is implicit in such arguments that local generalization—in the very proximity of the training
examples—works as expected. And that in particular, for a small enough radius " > 0 in the vicinity
of a given training input x, an x + r satisfying ||r|| < " will get assigned a high probability of the
correct class by the model. This kind of smoothness prior is typically valid for computer vision
problems. In general, imperceptibly tiny perturbations of a given image do not normally change the
underlying class.

Our main result is that for deep neural networks, the smoothness assumption that underlies many
kernel methods does not hold. Specifically, we show that by using a simple optimization procedure,
we are able to find adversarial examples, which are obtained by imperceptibly small perturbations
to a correctly classified input image, so that it is no longer classified correctly.

In some sense, what we describe is a way to traverse the manifold represented by the network in an
efficient way (by optimization) and finding adversarial examples in the input space. The adversarial
examples represent low-probability (high-dimensional) “pockets” in the manifold, which are hard to
efficiently find by simply randomly sampling the input around a given example. Already, a variety
of recent state of the art computer vision models employ input deformations during training for

4

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 26 / 30

Visualizing the representations

By analogy: does the y -axis “represent” might, would, should, etc. in the tSNE

visualization from Assignment 1?

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 27 / 30

Adversarial images

In Week 3, we worked through a backprop example. We computed the
derivatives with respect to the inputs, even though we never needed them
to update the parameters.

Here’s something really cool you can do with those derivatives.

Take a conv net that correctly classifies an image. Do gradient ascent on
the image to maximize the probability that it’s classified as some unrelated
category (e.g. “ostrich”). What do you think will happen?

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 28 / 30

Adversarial images

In Week 3, we worked through a backprop example. We computed the
derivatives with respect to the inputs, even though we never needed them
to update the parameters.

Here’s something really cool you can do with those derivatives.

Take a conv net that correctly classifies an image. Do gradient ascent on
the image to maximize the probability that it’s classified as some unrelated
category (e.g. “ostrich”). What do you think will happen?

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 28 / 30

Adversarial images

Left: original image (which was classified correctly)
Right: adversarial image (which the network things is an ostrich)
Center: difference (adversarial – original), multiplied by 128

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 29 / 30

Midterm exam

Tuesday, Feb. 24, during class

50 minutes

What you’re responsible for:

Coursera videos up through G (except ones marked optional)

In-class lectures up through this lecture (especially the problems)

Assignment 1

The hardest questions will be about things we covered both in the videos and in
class.

We will not ask for formal proofs, only informal justifications.

There will be less time pressure than in the in-class exercises. We’ll focus on
conceptual questions, rather than long derivations.

Practice exams and extra office hours TBA.

Roger Grosse and Nitish Srivastava CSC321 Lecture 12 Recent advances in conv nets February 12, 2015 30 / 30

