
CSC321 Lecture 11
Convolutional networks

Roger Grosse and Nitish Srivastava

February 15, 2015

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 1 / 29



Overview

The last two weeks were about modeling sequences, with an emphasis on
language.

Now we’ll turn to vision, which presents a different set of challenges.

Recall we looked at some hidden layer features for classifying handwritten digits:

This isn’t going to scale to full-sized images.
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Neural Net on Image

Suppose we want to train a network that takes a 200 × 200 RGB image as
input.

1000 hidden units

200

200

3

densely connected

What is the problem with having this as the first layer ?

Too many parameters! Input size = 200 × 200 × 3 = 120K.
Parameters = 120K × 1000 = 120 million.

What happens if the object in the image shifts a little ?
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Neural Net on Image

Each feature (hidden unit) looks at the entire image.
Since the image is a BIG thing, we end up with lots of parameters.

But, do we really expect to learn a useful feature at the first layer which depends
on pixels that are spatially far away ?

The far away pixels will probably belong to completely different objects (or object
sub-parts). Very little correlation.
No point devoting parameters to find correlations that (almost) don’t exist.
Long range correlations can be dealt with in the higher layers.
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Going Local

Fully connected

Each hidden unit looks at the entire
image.

Locally connected

Each column of hidden units looks at a
different patch of input.
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Going Convolutional

Fully connected

Each hidden unit looks at the entire
image.

Convolutional

Tied weights

Each column of hidden units looks at a
different patch of input.
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Going Deeply Convolutional

Stack multiple layers of convolutions

Tied weights
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Convolution

In Assignment 1, you expressed the computations in terms of matrix
multiplication in order to avoid writing (slow) for loops.

Now we’ll introduce a new high-level operation, convolution. Let’s look at
the 1-D case first.

If a and b are two arrays,

(a ∗ b)i =
∑
t

atbi−t .

Note: indexing conventions are inconsistent. We’ll explain them in each
case.
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Convolution

Method 1: translate-and-scale
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Convolution

Method 2: flip-and-filter
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Question 1: Convolution

Compute (3, 1, 2) ∗ (1, 0,−1) using both methods. (Figures from the
previous slides are shown here as a reminder.)

translate-and-scale

flip-and-filter
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Convolution

Convolution can also be viewed as matrix multiplication:

(2,−1, 1) ∗ (1, 1, 2) =


1
1 1
2 1 1

2 1
2


 2
−1
1
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Convolution

Some properties of convolution:

Commutativity
a ∗ b = b ∗ a

Linearity
a ∗ (λ1b + λ2c) = λ1a ∗ b + λ2a ∗ c
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2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A ∗ B)ij =
∑
s

∑
t

AstBi−s,j−t .
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2-D Convolution
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2-D Convolution
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2-D Convolution

What does this convolution kernel do?

� 0 1 0
1 4 1

0 1 0
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2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 8 -1

0 -1 0
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2-D Convolution

What does this convolution kernel do?

� 1 0 -1
2 0 -2

1 0 -1
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Convolutional networks

Let’s finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

convolution

Example first-layer filters
826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

(Zeiler and Fergus, 2013, Visualizing and understanding

convolutional networks)
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Convolutional networks

It’s common to apply a linear rectification nonlinearity: yi = max(zi , 0)

convolution linear
rectification

convolution layer

Why might we do this?

Convolution is a linear operation.
Therefore, we need a nonlinearity,
otherwise 2 convolution layers
would be no more powerful than 1.

Two edges in opposite directions
shouldn’t cancel

Makes the gradients sparse, which
helps optimization (recall the
backprop exercise from Lecture 6)
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Pooling layers

The other type of layer in a pooling layer. These layers reduce the size of
the representation and build in invariance to small transformations.

z1 z2 z3 z4 z5 z6

y1

z7

y2 y3

Most commonly, we use max-pooling:

yi = max
j in pooling group

zj
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Convolutional networks

convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer
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Convolutional networks

Because of pooling, higher-layer filters can cover a larger region of the input than

equal-sized filters in the lower layers.

convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer
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Question 2: Backprop in conv nets

Now let’s consider how to train conv nets using backprop.

We can implement the network in a modular fashion, with a class for each
layer type (convolution, pooling, etc.).

We’ll derive the updates for one layer at a time, assuming the
surrounding layers have already done their jobs.

Unlike with recurrent nets, we tend not to get exploding/vanishing
gradients. Vanilla backprop with momentum works very well.
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Question 2: Backprop in conv nets

In Assignment 1, we expressed the backprop computations in terms of matrix
multiplication for efficiency. For conv nets, we express the computations in terms
of convolution. Here’s a convolution layer with weights w = (w0,w1,w2). All
units are linear.

y0 y1 y2

x0 x1 x2 x3 x4

w0 w1

w2

1 Show how to compute the activations y = (y0, y1, y2) using convolution.

2 Compute the partial derivatives ∂C/∂xj and ∂C/∂wk in terms of ∂C/∂yi .

3 Express the gradients ∇xC and ∇wC in terms of convolution.

Recall: (a ∗ b)i =
∑

t atbi−t .
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Question 2: Backprop in conv nets (solution)

Observe that the yi ’s are computed by filtering the input with the weights w. Hence,
using the flip-and-filter interpretation of convolution, we can write this as
y = x ∗ flip(w), where flip(w) denotes reversing the entries of w.

By applying the chain rule,

∂C

∂xj
=

∑
i

∂C

∂yi

∂yi
∂xj

=
∑

i s.t. 0 ≤ j − i ≤ 2

∂C

∂yi
wj−i

This is just the definition of convolution, i.e. ∇xC = ∇yC ∗ w.
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Question 2: Backprop in conv nets (solution)

To compute ∂C/∂wk , we need to sum over all the connections that share the weight wk .
This gives us

∂C

∂wk
=

2∑
i=0

xk+i
∂C

∂yi
.

This corresponds to filtering x with the gradient vector y. E.g., the first element
∂C/∂w0 is given by ∇yC dotted with the first window of x, and so on. Using the
flip-and-filter interpretation of convolution, we can write this as ∇wC = x ∗ flip(∇yC).
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