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Overview

Last time, we saw that RNNs can perform some interesting computations.
Now let’s look at how to train them.

We’ll use “backprop through time,” which is really just backprop. There
are only 2 new ideas we need to think about:

Weight constraints

Exploding and vanishing gradients
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Backprop through time

First, some general advice. There are two ways to think about
backpropagation:

1 computationally, in terms of the messages passed between units in the
network

2 abstractly, as a way of computing partial derivatives ∂C/∂wij

When implementing the algorithm or reasoning about the running time,
think about the messages being passed.

When reasoning about the qualitative behavior of gradient descent, think
about what the partial derivatives really mean, and forget about the
message passing!

This is the viewpoint we’ll take when we look at weight constraints
and exploding/vanishing gradients.
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Backprop through time

Consider this RNN, where we have the weight constraint that w1 = w2 = w3 = w . Assume for
simplicity that all units are linear.

We want to compute ∂C/∂w . This tells us how the cost changes when we make a small change
to w .

Changing w corresponds to changing w1, w2, and w3. Since they all affect different outputs,
their contributions to the loss will sum together:

∂C

∂w
=

∂C

∂w1
+

∂C

∂w2
+

∂C

∂w3

Each of these terms can be computed with standard backprop.
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Backprop through time

Now let’s consider the hidden-to-hidden weights. As before, we constrain w1 = w2 = w . The
partial derivative ∂C/∂w tells us how a small change to w affects the cost.

Conceptually, this case is more complicated than the previous one, since changes to w1 and w2

will interact nonlinearly. However, we assume the changes are small enough that these nonlinear
interactions are negligible. As before, the contributions sum together:

∂C

∂w
=

∂C

∂w1
+

∂C

∂w2
.
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Exploding and vanishing gradients

Geoff referred to the problem of exploding and vanishing gradients. This
metaphor reflects the process by which gradients are computed during
backpropagation:

∂C

∂h1
=

∂h2

∂h1

∂h3

∂h2
· · · ∂y

∂hN

These terms multiply together. If they’re all larger than 1, the gradient
explodes. If they’re all smaller, it vanishes.
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Exploding and vanishing gradients

But I said earlier that we should reason in terms of what partial derivatives
really mean, not in terms of backprop computations. Let’s apply this to
vanishing/exploding gradients.

Consider a network which has one logistic hidden unit at each time step,
and no inputs or outputs. This is an example of an iterated function.

Roger Grosse and Nitish Srivastava CSC321 Lecture 10 Training RNNs February 23, 2015 7 / 18



Exploding and vanishing gradients

Consider the following iterated function:

xt+1 = x2
t + 0.15.

We can determine the behavior of repeated iterations visually:
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Exploding and vanishing gradients

Consider the following iterated function:

xt+1 = x2
t + 0.15.

We can determine the behavior of repeated iterations visually:

The behavior of the system can be summarized with a phase plot:
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Question 1: Exploding and vanishing gradients

Now consider an RNN with a single logistic hidden
unit with weight 6 and bias -3, and no inputs or
outputs. This corresponds to the iteration

ht = f (ht−1) = σ (6ht−1 − 3) .

This function is shown on the right. Let r = h1

denote the initial activation. The fixed points are
h = 0.07, 0.5, 0.93.

1 Draw the phase plot for this system.

2 Approximately sketch the value of h100 as a
function of r .

3 If C is some cost function evaluated at time
100, for which values of r do you expect the
gradient ∂C/∂r to vanish or explode?
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Question 1: Exploding and vanishing gradients

The gradient explodes for r = 0.5 and vanishes elsewhere.
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Question 1: Exploding and vanishing gradients

Some observations:

Fixed points of f correspond to points where f crosses the line xt+1 = xt .

Fixed points with f ′(xt) > 1 correspond to sources.

Fixed points with f ′(xt) < 1 correspond to sinks.

Note that iterated functions can behave in really complicated ways!

(E.g. Mandelbrot set)
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Exploding and vanishing gradients

The real problem isn’t backprop — it’s the fact that long-range
dependencies are really complicated!

The memorization task exemplifies how the issue can arise in RNNs. The
network must read and memorize the input sequence, then spit it out
again. This forces it to use its hidden unit capacity very well.

Two strategies for dealing with exploding/vanishing gradients:

1 Minimize the long-distance dependencies

2 Keep the network’s transformation close to the identity function
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Long Short Term Memory

Replace each single unit in an RNN by a memory block -

ct+1 = ct · forget gate + new input · input gate

This prevents vanishing gradients-
If the forget gate and input gate are mostly 1,
the cell state effectively adds up the inputs.
Therefore, ∂C

∂inputs
does not decay as the

gradient is sent back. These designs are called
“constant error carousels”.

The model can of course do more interesting
things, like selectively add up inputs by turning
the input gate on/off.

Its “default” behavior is to maintain the same
values of the memory cells, which is the
simplest form of long-distance dependency.
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Exploding and vanishing gradients

Dealing with exploding/vanishing gradients

Long-term Short-Term Memory (LSTM)

Easy to preserve parts of the hidden state over time, which simplifies
the form of the dependencies between distant time steps.

Reverse the input or output sequence

Therefore at least some predictions only require short-range
dependencies. The network can learn to predict these first, before
learning the harder ones.

Clip the gradients so that their norm is smaller than some maximum
value

This throws away information, but at least the weight updates are
better behaved
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Neural Machine Translation

We’d like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What’s wrong with the following setup?

The sentences might not be the same length, and the words might not
align.
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Neural Machine Translation

Instead, the network first reads and memorizes the sentence. When it sees
the END token, it starts outputting the translation.

Demo from Montreal http://104.131.78.120/

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation, K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

Y. Bengio. EMNLP 2014.

Sequence to Sequence Learning with Neural Networks, Ilya Sutskever, Oriol Vinyals and Quoc
Le, NIPS 2014.
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Handwriting generation

Input: character sequence.
Targets: real values describing the motion of the pen.
Training data: pairs of text and tracked motion.

http://www.cs.toronto.edu/~graves/handwriting.html
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