
CSC321 Winter 2015 - Assignment 3
Image completion using mixture of Bernoullis

Due Date: March 17, 2015

In this assignment, we’ll implement a probabilistic model which we can apply to the task of
image completion. Basically, we observe the top half of an image of a handwritten digit, and we’d
like to predict what’s in the bottom half. An example is shown in Figure 1.

This assignment is meant to give you practice with the techniques covered in the lectures on
probabilistic modeling. The solution requires about 8-10 lines of code. Note that the three parts
of this assignment can be done more or less independently of each other, so you should attempt
all of them even if you get stuck on one of the earlier parts.

Mixture of Bernoullis model

The images we’ll work with are all 28× 28 binary images, i.e. the pixels take values in {0, 1}. We
ignore the spatial structure, so the images are represented as 784-dimensional binary vectors.

A mixture of Bernoullis model is like the other mixture models we’ve discussed in this course.
Each of the mixture components consists of a collection of independent Bernoulli random variables.
I.e., conditioned on the latent variable z = k, each pixel xj is an independent Bernoulli random
variable with parameter θk,j :

p(x(i) | z = k) =
D∏
j=1

p(x
(i)
j | z = k) (1)

=
D∏
j=1

θ
x
(i)
j

k,j (1− θk,j)1−x
(i)
j (2)

Try to understand where this formula comes from. You’ll find it useful when you do the derivations.
This can be written out as the following generative process:

Sample z from a multinomial distribution with parameter vector π.

For j = 1, . . . , D:

Sample xj from a Bernoulli distribution with parameter θk,j , where k is the value of z.

It can also be written mathematically as:

z ∼ Multinomial(π) (3)

xj | z = k ∼ Bernoulli(θk,j) (4)

1



Given these observations... ... you want to make these predictions

Figure 1: An example of the observed data (left) and the predictions about the missing part of the
image (right).

Summary of notation

We will refer to three dimensions in our model:

• N = 60,000, the number of training cases. The training cases are indexed by i.

• D = 28 × 28 = 784, the dimension of each observation vector. The dimensions are indexed
by j.

• K, the number of components. The components are indexed by k.

The inputs are represented by X, an N × D binary matrix. In the E-step, we compute R, the
matrix of responsibilities, which is an N ×K matrix. Each row gives the responsibilities for one
training case.

The trainable parameters of the model, written out as vectors and matrices, are:

π =


π1
π2
...
πK



Θ =


θ1,1 θ1,2 · · · θ1,D
θ2,1 θ2,2 θ2,D

...
. . .

...
θK,1 θK,2 · · · θK,D


2



The rows of Θ correspond to mixture components, and columns correspond to input dimensions.

Part 1: Learning the parameters (4 marks)

In the first step, we’ll learn the parameters of the model given the responsibilities, using the MAP
criterion. This corresponds to the M-step of the E-M algorithm.

In lecture, we discussed the E-M algorithm in the context of maximum likelihood (ML) learning.
This is discussed in detail in Section 5.2 of the Lecture 16 notes, and you should read that section
carefully before starting this part. The MAP case is only slightly different from ML: the only
difference is that we add a prior probability term to the objective function in the M-step. In
particular, recall that in the context of ML, the M-step maximizes the objective function:

N∑
i=1

K∑
k=1

r
(i)
k

[
log Pr(z(i) = k) + log p(x(i) | z(i) = k)

]
, (5)

where the r
(i)
k are the responsibilities computed during the E-step. In the MAP formulation, we

add the (log) prior probability of the parameters:

N∑
i=1

K∑
k=1

r
(i)
k

[
log Pr(z(i) = k) + log p(x(i) | z(i) = k)

]
+ log p(π) + log p(Θ) (6)

Our prior for Θ is as follows: every entry is drawn independently from a beta distribution with
parameters a and b. The beta distribution is discussed in Section 3.1 of the Lecture 15 notes, but
here it is again for reference:

p(θk,j) ∝ θa−1
k,j (1− θk,j)b−1 (7)

Recall that ∝ means “proportional to.” I.e., the distribution has a normalizing constant which
we’re ignoring because we don’t need it for the M-step.

For the prior over mixing proportions π, we’ll use the Dirichlet distribution, which is the
conjugate prior for the multinomial distribution. It is a distribution over the probability simplex,
i.e. the set of vectors which define a valid probability distribution.1 The distribution takes the form

p(π) ∝ πa1−1
1 πa2−1

2 · · ·πaK−1
K . (8)

For simplicity, we use a symmetric Dirichlet prior where all the ak parameters are assumed to be
equal. Like the beta distribution, the Dirichlet distribution has a normalizing constant which we
don’t need when updating the parameters. The beta distribution is actually the special case of the
Dirichlet distribution for K = 2. You can read more about it on Wikipedia if you’re interested.2

Your tasks for this part are as follows:

1I.e., they must be nonnegative and sum to 1.
2http://en.wikipedia.org/wiki/Dirichlet_distribution

3

http://en.wikipedia.org/wiki/Dirichlet_distribution


1. (2 marks) Derive the M-step update rules for Θ and π by setting the partial derivatives of
Eqn 6 to zero. Your final answers should have the form:

πk ← · · ·
θk,j ← · · ·

Be sure to show your steps. You may want to refer to Example 5 from the Lecture 15 notes,
and Example 4 from the Lecture 16 notes.

Note: both of these optimization problems involve inequality constraints, i.e. 0 ≤ θk,j ≤ 1
and πk ≥ 0. You can ignore the inequality constraints, since they will never be tight. On the
other hand, the optimization for π involves a normalization constraint π1 + · · · + πK = 1.
You can deal with this using Lagrange multipliers, similarly to Example 4 from Lecture 16.
Alternatively, you can define πK = 1 − π1 − · · · − πK−1 and then solve the unconstrained
optimization problem for π1, . . . , πK−1. Either approach will work, but the first one is slightly
shorter.

2. (2 marks) Take these formulas and use them to implement the functions Model.update_pi
and Model.update_theta in mixture.py. Each one should be implemented in terms of
NumPy matrix and vector operations. Each one requires only a few lines of code, and should
not involve any for loops.

To help you check your solution, we have provided the function checking.check_m_step. If
this check passes, you’re probably in good shape.3

To convince us of the correctness of your implementation, you should attach:

(a) your code which implements Model.update_pi and Model.update_theta.

(b) the output of running mixture.print_part_1_values()

3. (0 marks) The function learn_from_labels learns the parameters of the model from the
labeled MNIST images. The values of the latent variables are chosen based on the digit class
labels, i.e. the latent variable z(i) is set to k if the ith training case is an example of digit
class k. In terms of the code, this means the matrix R of responsibilities has a 1 in the (i, k)
entry if the ith image is of class k, and 0 otherwise.

Run learn_from_labels to train the model. It will show you the learned components
(i.e. rows of Θ) and print the training and test log-likelihoods. You do not need to sub-
mit anything for this part. It is only for your own satisfaction.

3How this check works is beyond the scope of the class. Essentially, each step of E-M can be shown to optimize a
particular objective function which is a lower bound on the log-likelihood. We can check the E-M steps by verifying
that each update actually maximizes the lower bound. You can read more about this in Neal and Hinton, 1998, “A
view of the EM algorithm that justifies incremental, sparse, and other variants.”

4



Part 2: Posterior inference (3 marks)

Now we derive the posterior probability distribution p(z |xobs), where xobs denotes the subset of the
pixels which are observed. In the implementation, we will represent partial observations in terms

of variables m
(i)
j , where m

(i)
j = 1 if the jth pixel of the ith image is observed, and 0 otherwise. In

the implementation, we organize the m
(i)
j ’s into a matrix M which is the same size as X.

1. (1 mark) Derive the rule for computing the posterior probability distribution p(z |x). Your
final answer should look something like

Pr(z = k |x) = · · · (9)

where the ellipsis represents something you could actually implement. Note that the image
may be only partially observed.

Hints: For this derivation, you probably want to express the observation probabilities in the
form of Eqn 2. You may also wish to refer to Example 1 from the Lecture 16 notes.

2. (1 mark) Implement the method Model.compute_posterior using your solution to the pre-
vious question. While your answer to Question 1 was probably given in terms of probabilities,
we do the computations in terms of log probabilities for numerical stability. We’ve already
filled in part of the implementation, so your job is to compute log p(z,x) as described in the
method’s doc string.

Your implementation should use NumPy matrix and vector operations, rather than a for

loop. Hint: There are two lines in Model.log_likelihood which are almost a solution to
this question. You can reuse these lines as part of the solution, except you’ll need to modify
them to deal with partial observations.

To help you check your solution, we’ve provided the function checking.check_e_step. Note
that this check only covers the case where the image is fully observed, so it doesn’t fully verify
your solution to this part.

3. (1 mark) Implement the method Model.posterior_predictive_means, which computes the
posterior predictive means of the missing pixels given the observed ones. Hint: this requires
only two very short lines of code, one of which is a call to Model.compute_posterior. You
may wish to refer to Example 2 from the Lecture 16 notes.

To convince us of the correctness of the implementation for this part and the previous part,
please attach the following:

(a) your code which implements Model.compute_posterior and
Model.posterior_predictive_means

(b) the output of running mixture.print_part_2_values()

5



4. (0 marks) Run the function train_with_em, which trains the mixture model using E-M.
It plots the log-likelihood as a function of the number of steps.4 You can watch how the
mixture components change during training.5 It also shows the model’s image completions
after every step. You can watch how they improve over the course of training. At the very
end, it outputs the training and test log-likelihoods. The final model for this part should be
much better than the one from Part 1. You do not need to submit anything for this part. It’s
only for your own satisfaction.

Part 3: Conceptual questions (3 marks)

This section asks you to reflect on the learned model. We tell you the outcomes of the experiments,
so that you can do this part independently of the first 2. Each question can be answered in
a few sentences.

1. (1 mark) In the code, the default parameters for the beta prior over Θ were a = b = 2. If
we instead used a = b = 1 (which corresponds to a uniform distribution), the MAP learning
algorithm would have the problem that it might assign zero probability to images in the test
set. Why might this happen? Hint: what happens if a pixel is always 0 in the training set,
but 1 in the test image? You may want to re-read Section 2.1 of the Lecture 15 notes.

2. (1 mark) The model from Part 2 gets significantly higher average log probabilities on both
the training and test sets, compared with the model from Part 1. This is counterintuitive,
since the Part 1 model has access to additional information: labels which are part of a true
causal explanation of the data (i.e. what digit someone was trying to write). Why do you
think the Part 2 model still does better?

3. (1 mark) The function print_log_probs_by_digit_class computes the average log-probabilities
for different digit classes in both the training and test sets. In both cases, images of 1’s are
assigned far higher log-probability than images of 8’s. Does this mean the model thinks 1’s
are far more common than 8’s? I.e., if you sample from its distribution, will it generate far
more 1’s than 8’s? Why or why not?

What you need to submit

As a reminder, here are all the things you need to turn in for this assignment:

4Observe that it uses a log scale for the number of E-M steps. This is always a good idea, since it can be difficult
to tell if the training has leveled off using a linear scale. You wouldn’t know if it’s stopped improving or is just
improving very slowly.

5It’s likely that 5-10 of the mixture components will “die out” during training. In general, this is something we
would try to avoid using better initializations and/or priors, but in the context of this assignment it’s the normal
behavior.

6



• The derivations for Part 1 Question 1 and Part 2 Question 1

• Answers to all three questions in Part 3

• A printout of your code which implements Model.update_pi, Model.update_theta,
Model.compute_posterior, and Model.posterior_predictive_distribution. Please do
not include any other code.

• A printout of the output of running mixture.print_part_1_values() and
mixture.print_part_2_values()

• Optional: What was the most valuable part of the assignment? The most difficult and/or
frustrating?

7


