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Background

• Text and language play central role in a wide range 
of computer science and engineering problems 

• Applications that depend on language 
understanding/processing includes: speech 
processing, search/query internet, social media, 
recommendation system, artificial intelligence and 
many others



Motivation

• Getting meaningful representations from text data 
are often the key component in Google search 
engine or your next big start-up ideas
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Language Model

• We need to represent text data in a way that is 
“easy” for the later stage classification problem or 
learning algorithms 

• “Easy”: Be able to handle large scale vocabulary 
and  words have similar syntactic/semantic 
meaning should be close in the representation 
space
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Language Model
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Neural Language Model
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Neural Language Model
activations.output_layer

activations.hidden_layer

activations.embedding_layer



Things you need to do in 
assignment 1

• Part 2
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Things you need to do in 
assignment 1

• Part 2 

• code/derive the partial derivative of cross-entropy cost 
with respect to softmax input 

• code/derive the gradients of the weight matrix using 
partial derivatives from backdrop 

• can be done in just 5 simple lines of code and NO for-
loops 

• use  checking.check_gradients  to verify the 
correctness of the 5 lines of code



Things you need to do in 
assignment 1

• Part 3 

• analyze the trained model



t-SNE embedding
• It projects 16D learnt word embedding to 2D for 

plotting visualization only. (display_nearest_words, 
word_distance uses the 16D word embedding) 



Word Distance

• It only makes sense to compare the relative 
distances between words, i.e. 

• distance(A, B) and distance(A, C) 

• distance(A, B) and distance(A, w), distance(B,w) 

• NOT distance(A,B) and distance(C,D)



Things you need to do in 
assignment 1

• Part 3 

• Think about how the model would put two words 
close together in embedding space 

• Think about what the task the model is trying to 
achieve and how that affects the word 
representation that is being learned. 

• Think about what kind of similarity the nearest 
words in the 16D embedding space have



Due: Tuesday, Feb. 3 

at the start of lecture


