Assignment 1

Learning distributed word representations

Jimmy Ba
csc321ta@cs.toronto.edu
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Background

* Jext and language play central role in a wide range
of computer science and engineering problems

* Applications that depend on language
understanding/processing includes: speech
processing, search/query internet, social media,
recommendation system, artificial intelligence and
many others



Motivation

e (Getting meaningful representations from text data
are often the key component in Google search
engine or your next big start-up ideas
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. anguage Model

 We need to represent text data in a way that is
“‘easy’ for the later stage classification problem or
learning algorithms

 "Easy”: Be able to handle large scale vocabulary
and words have similar syntactic/semantic
meaning should be close in the representation
space




| anguage Model

one-of-K encoding binary encoding
“Zac” |1/0/olo|ololo]o 0/0]0
“Efron” |o0]1]0|0|0|0l0|0 110/0
“and” |olo]1]0|0|0l0|0 0[1]0
“his” |ololo]1|0[0]0|0 11110

“parents’]0/0/0/0/0/0]0]1 11111
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. anguage Model

one-of-K encoding distributed encoding
“/ac” |1l0l0/0]|0]0|0l0 15/0.1|-0.1]2.1
“Efron” |o/1|0l0|0]0|0|0 0.71-0.1]0.3]0.4
“and” |olo|1|ololololo 0.1/1.6/-1.9]1.1
“his” |ololo]1|0[0]0|0 35/02[1.1]-25
“parents’0]0/0/0]0]0[0|1 2.1|-3.3]-2.7| 1.9

<«— embedding size —p

<— vocabulary size —»
(constant)



Neural Language Model
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Neural Language Model

Cross entropy
cost: C(W)
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Neural Language Model
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Things you need to do In
assignment 1

 Part 2
Cross entropy word 4| 250 Zsoftmax
cost: C(W) oC . W2 1 Mt e 0C
5’W2 h aZoutput
Hidden Layer 128 _sigmoid
oW, o
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Things you need to do In
assignment 1

e Part?

» code/derive the partial derivative of cross-entropy cost
with respect to softmax input

» code/derive the gradients of the weight matrix using
partial derivatives from backdrop

e can be done in just 5 simple lines of code and NO for-
l0opPS

* Use checking.check_gradients to verity the
correctness of the 5 lines of code



Things you need to do In

assignment 1
 Part 3

e analyze the trained model
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t-SNE embedding

It projects 16D learnt word embedding to 2D for
plotting visualization only. (display_nearest_words,
word_distance uses the 16D word embedding)
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Word Distance

* |t only makes sense to compare the relative
distances between words, I.e.

» distance(A, B) and distance(A, C)
e distance(A, B) and distance(A, w), distance(B,w)

« NOT distance(A,B) and distance(C,D)



Things you need to do In

assignment 1
e Part 3

* [Think about how the model would put two words
close together in embedding space

* Think about what the task the model is trying to
achieve and how that affects the word
representation that is being learned.

* Think about what kind of similarity the nearest
words In the 16D embedding space have



Due: Tuesday, Feb. 3

at the start of lecture



