ConvNets \& Multi-modal Log-bilinear Language Model

Renjie Liao
2017.Feb. 14

*Some materials are credited to Jamie Kiros

LeNet5 (Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, november 1998.)

Motivation - ConvNets are everywhere!

(Krizhevsky et al, 2012)

Image classification
Image retrieval

Motivation - ConvNets are everywhere!

Face recognition (Taigman et al, 2014)

Action recognition from video (Simonyan et al, 2014)

Motivation - ConvNets are everywhere!

Street sign recognition (Sermanet et al, 2011)

Galaxy classification
(Dieleman et al, 2014)

Mitosis detection
(Ciresan et al, 2013)

Motivation - ConvNets are everywhere!

Playing Atari games (Mnih et al, 2013)

- Many, many more applications (and not only vision):
- Object detection
- Image segmentation
- Pose estimation
- Image captioning
- Pedestrian detection
- Semantic image search
- Extractive summarization
- Sentiment analysis of text

A brief review

Fully connected:
(unique weights across all pairs of neurons)

Main operation:
Matrix Multiply

Convnet:
(neurons are volumes, weights are shared)

Main operation:
Convolution

Some terminology

Channels (e.g. 3 for RGB image)

Kernel (or filter) Each "slice" across depth
5 in this example Is a feature map

1D forward pass, strides, padding

Stride of 1

Stride of 2

kernel

- Weight sharing: the kernel is scanned across the input (as opposed to fully connected networks)
- Larger strides reduce computation cost, but usually at the expense of accuracy
- In this example, each side is "padded" with an extra 0

2D Convolution Example

$*$| 1 | 0 | -1 |
| :--- | :--- | :--- |
| 2 | 0 | -2 |
| 1 | 0 | -1 |

Example \#1

- Input: $32 \times 32 \times 3$ image
- 5 Filters, each 5×5
- Stride of 1
- No padding

- What is the output volume?
- How many parameters are there?

Example \#1

- Input: $32 \times 32 \times 3$ image
- 5 Filters, each 5×5
- Stride of 1
- No padding

- What is the output volume?
$28 \times 28 \times 5$
- How many parameters are there?
$((5 \times 5) \times 3) \times 5=375$

Example \#2

- Input: $32 \times 32 \times 3$ image
- 5 Filters, each 5×5
- Stride of 3
- No padding

-What is the output volume?
- How many parameters are there?

Example \#2

- Input: $32 \times 32 \times 3$ image
- 5 Filters, each 5×5
- Stride of 3
- No padding

-What is the output volume?
$10 \times 10 \times 5$
- How many parameters are there?
$((5 \times 5) \times 3) \times 5=375$

GENERATING TEXT CONDITIONED ON IMAGES

in this picture there is another grey pavement on the right ; three grey clouds and a blue sky in the background ; the houses and on the left before it ; a dark green, wooded slopes behind it ; grey clouds in a light blue sky in the background; snow covered mountains

this product contains a slip resistant and mesh upper is fully designed for breathable durability . the detachable leather footbed is the high, they feature a lady - like footbed that light sophistication and flirty tear silhouette to glam up your feet, style to help your thing . with traditional support.

The Log-Bilinear Language Model (LBL)

- Word representations $\mathbf{r}_{w_{i}}$, context matrices C_{i}
- Predicted next word representation $\hat{\mathbf{r}}=\sum_{i=1}^{n-1} \mathbf{C}_{i} \mathbf{r}_{w_{i}}$
- R: matrix where each row is a word feature from the vocabulary
- Score $\hat{\mathbf{r}}$ with each word and normalize:

$$
P\left(w_{n}=w \mid w_{1: n-1}\right)=\frac{\exp \left(\hat{\mathbf{r}}^{T} \mathbf{r}_{w}+b_{w}\right)}{\sum_{j} \exp \left(\hat{\mathbf{r}}^{T} \mathbf{r}_{j}+b_{j}\right)}
$$

- Backprop through both parameters and word embeddings

Additive Modality Biasing (MLBL-B)

- Suppose we have image features \mathbf{x}
- Simplest approach: Bias the predicted next word representation:

$$
\hat{\mathbf{r}}=\left(\sum_{i=1}^{n-1} \mathbf{C}_{i} \mathbf{r}_{w_{i}}\right)+\mathbf{C}_{m} \mathbf{x}
$$

- This turns out to be a surprisingly effective model (given good image features)

