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TUTORIAL OUTLINE

Review of Probability

Expectation and Variance

Matrix Terminology (Symmetric, Positive Definite)
Eigendecomposition of Symmetric Matrices
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WHY PROBABILITIES?

- A problem when building complex systems is brittleness
-+ Thatis, when small irregularities cause models to break
- Probabilities are a great formalism for avoiding brittleness because
they allow us to be explicit about uncertainties
- Instead of representing values, define distributions over possibilities



THE TWO RULES OF PROBABILITY

- Sum Rule (a.k.a Marginalization)

- For discrete random variables:
pX) = p(X,V)
%
- For continuous random variables:
mm=/?mnw

- Product Rule

p(X,Y) = p(YIX)p(X)

- These two rules form the basis of all the complex probabilistic models
we study



BAYES' RULE

- From the product rule, and symmetry, we have:

D(X, Y) = p(YX)

p(YIX)p(X) = p(X|Y)p(Y)

pri0) = 21920

- By the sum and product rules, the denominator is
X) =22, P Y) =2, p(XIV)p

- This is a normalization constant required to ensure that the sum of the
conditional probabilities p(Y|X) over all Y equals 1



EXPECTATION

- The average value of a function f(x) under a probability distribution (or
density) p(x) is called the expectation of f(x):

E[f] =Y p(x)f(x)

Eff] = / P (O ) dx

- When we consider the expectation of a function of several variables, we
use a subscript to indicate which variable is being averaged over:

Exlf0v)] = Y pOofix,y)

- Note that Ex[f(x, y)] is a function of y.

- Conditional expectation with respect to the conditional distribution:

Edfly] = > p(xIy)f(x)



APPROXIMATING THE EXPECTATION

- Given a finite number N of points drawn from the probability
distribution p(x), the expectation can be approximated as:

Elfl = 5 > flx)

- This approximation becomes exact as N — oo



PROPERTIES OF EXPECTATION

- The expectation is a linear operation:
Elaf(x) + bg(x)] = aE[f(x)] + bE[g(x)]
E[af(x) + bg(x)] = Z p(x)[af(x) + bg(x)] =

a> P +pr x) = aE[f(x)] + bE[g(x)]



VARIANCE

- The variance of f(x) measures how much variability there is in f(x)
around its mean value E[f(x)], and is defined by:

var[f] = E [(f(x) — E[f()])’]

- The variance can also be written in terms of the expectations of f(x)
and f(x)*:
varlf] = E[f(x)’] - E[f(x))’
- Note that if f(x) = x then:

var[x] = E[x’] — E[x]



INDEPENDENCE AND CONDITIONAL INDEPENDENCE

- Everything we can possibly ask about a set of random variables

{x1,...,xn} can be answered from the joint probability distribution
p(x, ..., Xn)

- If we have many variables xi, Xa, . . ., X¢, then the joint distribution
p(xi,...,Xx) is huge, and intractable to deal with

- Two random variables x and y are independent iff

p(x,y) = p(x)p(y)

- x and y are conditionally independent given another random variable z
iff
p(x,yl2) = p(x12)p(y|z)
- The joint distribution can be factored into a product of simpler
distributions by making independence assumptions

- Probabilistic graphical models



TWO VIEWS OF PROBABILITY

- ClassicalFrequentist interpretation: views probabilities in terms of the
frequencies of random, repeatable events.

- Bayesian interpretation: views probabilities as providing a
quantification of uncertainty.

- A more genral view

- The rules of probability arise naturally when numerical values are used
to represent degrees of belief



MATRIX DECOMPOSITION




EIGENVECTORS AND EIGENVALUES

- An eigenvector of a square matrix A is a non-zero vector v such that
Av = \v

- The scalar X is called the eigenvalue corresponding to the eigenvector v

- A matrix A is symmetric iff
A=A

- A matrix A is positive definite iff for any vector x:

x'Ax > 0



DIAGONALIZATION

- We can gain insight about the properties of a matrix by decomposing it
into constituent parts

- A square matrix A is said to be diagonalizable if there exists an
invertible matrix P and a diagonal matrix D such that A = PDP~"

- This is useful for finding powers of matrices
- If Ais diagonalizable, then:

A’ = (PDP~")(PDP~")(PDP™") = PD(P'P)D(P~'P)DP~" = PDDDP~" = PD’P™"

- In general, if A = PDP~", then A* = pD*p~"

- This is useful because it is easy to find powers of diagonal matrices:
7 0 0 7 0 0

-IfD= (0 —2 0f,thenD’= {0 (=2 0
0 0 3 0 0o 3



EIGENDECOMPOSITION OF A MATRIX

- Eigendecomposition involves factorizing a matrix into a canonical form
where it is represented in terms of its eigenvectors and eigenvalues
- Given a matrix A that has n linearly independent eigenvectors, A can be

factored as:
A=QAQ™"

- Qs a matrix whose columns are the eigenvectors of A
- Ais a diagonal matrix whose diagonal elements are the corresponding
eigenvalues of A

- When A is symmetric, its eigenvectors can be chosen to be orthogonal,

so we have:
A=QAQ"



REFERENCES AND RESOURCES

- Deep Learning Book - Eigendecomposition
http:/ /www.deeplearningbook.org/contents/linear_algebra.html
- Matrix Calculus Reference
http:/ /www.atmos.washington.edu/~dennis/MatrixCalculus.pdf
- Pattern Recognition and Machine Learning (Book), by Christopher
Bishop
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