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tutorial outline

1. Review of Probability
2. Expectation and Variance
3. Matrix Terminology (Symmetric, Positive Definite)
4. Eigendecomposition of Symmetric Matrices
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why probabilities?

• A problem when building complex systems is brittleness
• That is, when small irregularities cause models to break

• Probabilities are a great formalism for avoiding brittleness because
they allow us to be explicit about uncertainties

• Instead of representing values, define distributions over possibilities
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the two rules of probability

• Sum Rule (a.k.a Marginalization)
• For discrete random variables:

p(X) =
∑
Y

p(X, Y)

• For continuous random variables:

p(X) =
∫

p(X, Y)dY

• Product Rule

p(X, Y) = p(Y|X)p(X)

• These two rules form the basis of all the complex probabilistic models
we study
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bayes’ rule

• From the product rule, and symmetry, we have:

p(X, Y) = p(Y, X)

p(Y|X)p(X) = p(X|Y)p(Y)

p(Y|X) = p(X|Y)p(Y)
p(X)

• By the sum and product rules, the denominator is
p(X) =

∑
Y p(X, Y) =

∑
Y p(X|Y)p(Y)

• This is a normalization constant required to ensure that the sum of the
conditional probabilities p(Y|X) over all Y equals 1
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expectation

• The average value of a function f(x) under a probability distribution (or
density) p(x) is called the expectation of f(x):

E[f] =
∑
x

p(x)f(x)

E[f] =
∫
p(x)f(x)dx

• When we consider the expectation of a function of several variables, we
use a subscript to indicate which variable is being averaged over:

Ex[f(x, y)] =
∑
x

p(x)f(x, y)

• Note that Ex[f(x, y)] is a function of y.
• Conditional expectation with respect to the conditional distribution:

Ex[f|y] =
∑
x

p(x|y)f(x)

6



approximating the expectation

• Given a finite number N of points drawn from the probability
distribution p(x), the expectation can be approximated as:

E[f] ≃ 1
N

N∑
n=1

f(xn)

• This approximation becomes exact as N → ∞
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properties of expectation

• The expectation is a linear operation:

E[af(x) + bg(x)] = aE[f(x)] + bE[g(x)]

E[af(x) + bg(x)] =
∑
x

p(x)[af(x) + bg(x)] =

a
∑
x

p(x)f(x) + b
∑
x

p(x)g(x) = aE[f(x)] + bE[g(x)]
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variance

• The variance of f(x) measures how much variability there is in f(x)
around its mean value E[f(x)], and is defined by:

var[f] = E
[
(f(x) − E[f(x)])2

]
• The variance can also be written in terms of the expectations of f(x)
and f(x)2:

var[f] = E[f(x)2] − E[f(x)]2

• Note that if f(x) = x then:

var[x] = E[x2] − E[x]2

9



independence and conditional independence

• Everything we can possibly ask about a set of random variables
{x1, . . . , xn} can be answered from the joint probability distribution
p(x1, . . . , xn)

• If we have many variables x1, x2, . . . , xK, then the joint distribution
p(x1, . . . , xK) is huge, and intractable to deal with

• Two random variables x and y are independent iff

p(x, y) = p(x)p(y)

• x and y are conditionally independent given another random variable z
iff

p(x, y|z) = p(x|z)p(y|z)

• The joint distribution can be factored into a product of simpler
distributions by making independence assumptions

• Probabilistic graphical models
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two views of probability

• ClassicalFrequentist interpretation: views probabilities in terms of the
frequencies of random, repeatable events.

• Bayesian interpretation: views probabilities as providing a
quantification of uncertainty.

• A more genral view

• The rules of probability arise naturally when numerical values are used
to represent degrees of belief
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matrix decomposition
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eigenvectors and eigenvalues

• An eigenvector of a square matrix A is a non-zero vector v such that

Av = λv

• The scalar λ is called the eigenvalue corresponding to the eigenvector v
• A matrix A is symmetric iff

A = AT

• A matrix A is positive definite iff for any vector x:

xTAx > 0
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diagonalization

• We can gain insight about the properties of a matrix by decomposing it
into constituent parts

• A square matrix A is said to be diagonalizable if there exists an
invertible matrix P and a diagonal matrix D such that A = PDP−1

• This is useful for finding powers of matrices
• If A is diagonalizable, then:

A3 = (PDP−1)(PDP−1)(PDP−1) = PD(P−1P)D(P−1P)DP−1 = PDDDP−1 = PD3P−1

• In general, if A = PDP−1, then Ak = PDkP−1

• This is useful because it is easy to find powers of diagonal matrices:

• If D =

7 0 0
0 −2 0
0 0 3

, then D3 =
73 0 0
0 (−2)3 0
0 0 33
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eigendecomposition of a matrix

• Eigendecomposition involves factorizing a matrix into a canonical form
where it is represented in terms of its eigenvectors and eigenvalues

• Given a matrix A that has n linearly independent eigenvectors, A can be
factored as:

A = QΛQ−1

• Q is a matrix whose columns are the eigenvectors of A
• Λ is a diagonal matrix whose diagonal elements are the corresponding
eigenvalues of A

• When A is symmetric, its eigenvectors can be chosen to be orthogonal,
so we have:

A = QΛQT

15



references and resources

• Deep Learning Book - Eigendecomposition
http://www.deeplearningbook.org/contents/linear_algebra.html

• Matrix Calculus Reference
http://www.atmos.washington.edu/~dennis/MatrixCalculus.pdf

• Pattern Recognition and Machine Learning (Book), by Christopher
Bishop
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