Tutorial 1. Linear Regression

January 11, 2017

1 Tutorial: Linear Regression

Agenda: 1. Spyder interface 2. Linear regression running example: boston data 3. Vectorize cost
function 4. Closed form solution 5. Gradient descent

In [1]: import matplotlib
import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

In [2]: from sklearn.datasets import load_boston

boston_data

= load_boston ()

print (boston_data['DESCR'])

Boston House Prices dataset

Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive

:Median Value

(attribute 14) is usually the target

:Attribute Information (in order) :

CRIM
ZN
INDUS
CHAS
NOX
RM
AGE
DIS
RAD
TAX

per capita crime rate by town

proportion of residential land zoned for lots over 25,000 sqg.ft.
proportion of non-retail business acres per town

Charles River dummy variable (= 1 if tract bounds river; 0 othe:
nitric oxides concentration (parts per 10 million)

average number of rooms per dwelling

proportion of owner-occupied units built prior to 1940

weighted distances to five Boston employment centres

index of accessibility to radial highways

full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

- B 1000(Bk — 0.63) "2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's

:Missing Attribute Values: None
:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.
http://archive.ics.uci.edu/ml/datasets/Housing

This dataset was taken from the StatLib library which is maintained at Carnegie Mel

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics

', Wiley, 1980. N.B. Various transformations are used in the table on
pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that add:

problems.

**References*x*

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data :
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proce

- many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

In [3]: # take the boston data
data = boston_data['data']
we will only work with two of the features: INDUS and RM
x_input = datal:, [2,5]]
y_target = boston_data['target']

In [5]: # Individual plots for the two features:
plt.title('Industrialness vs Med House Price')
plt.scatter(x_input[:, 0], y_target)
plt.xlabel ('Industrialness"')
plt.ylabel ('"Med House Price')
plt.show ()

plt.title('Avg Num Rooms vs Med House Price')
plt.scatter(x_input[:, 1], y_target)
plt.xlabel ('"Avg Num Rooms')

plt.ylabel ('Med House Price')

plt.show ()
- Industnalness vs Med House Price
B0 | . @ .
[]
g aor]
[
(=
i B}
2 3t . .
= . H s
- 9 %) -
= 0} F !I {: ! .
] ' | ‘ :
10 |]
]
-5] 5 10 15 20 25 30
Industrialness
- Avg Num Rooms vs Med House Price
B0 |]
Bar l
o
i
S 0t :
:E []
o
= 20]
10 |]
|::| i i i i i
3 4 5 G 7 g O 10

Avg Num Rooms

1.1 Define cost function

1

N .
Z(wlxg)

— ()2

+wpal) 4 b —)2

=1

In

[6]: def cost (

rrr

wl, w2, b, X,

Evaluate the cost function in a non-vectorized manner for
Sl

inputs "X

rr

costs 0

for i in range(len(t

y_1i wl *« X[1i,
t_1i t[i]
costs += 0.5 =

and targets

t) :

‘t°, at weights

)) e
0] + b

+ w2 + X[i, 1]

2

* *

(y_i — t_1)

return costs / len(t)

cost (3, 5, 20, x_input,

2241.1239166749006

cost (3, 5, 0, x_input,

Out[8]: 1195.1098850543478

1.2 Vectorizing the cost function:

1
E(y,t) = —||Xw + bl — t||?
(5,6) = 5 IXw + b1 — ¢
In [9]: def cost_vectorized(wl, w2, b, X, t):
Evaluate the cost function in a vectorized manner for
inputs "X and targets 't°, at weights “wl’
N = len(y_target)
w = np.array ([wl, w2])
y = np.dot (X, w) + b % np.ones (N)
return np.sum((y - t)**2) / (2.0 » N)
In [10] cost_vectorized (3, 5, 20, x_input, y_target)
Out [10] 2241.1239166749015
In [11] cost (3, 5, 0, x_input, y_target)
Out[11] 1195.1098850543478

y_target)

y_target)

1.3 Comparing speed of the vectorized vs unvectorized code

We’ll see below that the vectorized code already runs ~2x faster than the non-vectorized code!

Hopefully this will convince you to always vectorized your code whenever possible
In [12]: import time

t0 = time.time ()
print cost (4, 5,
tl = time.time ()
print tl - tO

20, x_input, y_target)

3182.40634167
0.00229597091675

In [13]: tO0 = time.time ()
print cost_vectorized (4, 5, 20, x_input, y_target)
tl = time.time ()
print tl - tO0

3182.40634167
0.000537872314453

1.4 Plotting cost in weight space

We'll plot the cost for two of our weights, assuming that bias = -22.89831573.
We'll see where that number comes from later.
Notice the shape of the contours are ovals.

In [15]: wls = np.arange(-1.0, 0.0, 0.01)
w2s = np.arange (6.0, 10.0, 0.1)
z_cost = []
for w2 in w2s:
z_cost.append([cost_vectorized(wl, w2, —-22.89831573,
z_cost = np.array(z_cost)
np.shape (z_cost)
Wl, W2 = np.meshgrid(wls, w2s)
CS = plt.contour (Wl, W2, z_cost, 25)
plt.clabel (CS, inline=1, fontsize=10)

X_input,

plt.title('Costs for various values of wl and w2 for b=0")

plt.xlabel ("wl")
plt.ylabel ("w2")

y_target

plt.plot ([-0.33471389], [7.82205511], 'o') # this will be the minima that

plt.show ()

Costs for various values of wl and w2 for b=0

—— — —

2 Exact Solution
Work this out on the board:

1. ignore biases (add an extra feature & weight instead)
2. get equations from partial derivative

3. vectorize

4. write code.

In [16]: # add an extra feature (column in the input) that are just all ones
X_1in = np.concatenate([x_input, np.ones([np.shape(x_input) [0], 1])], axiss
X_1in
Out[l6]: array([[2.31 , 6.575, 1. 1,
[7.07 , 6.421, 1. 1,
[7.07 , 7.185, 1. 1,
[11.93 , 6.976, 1. 1,
[11.93 , 6.794, 1. 1,
[11.93 , 6.03 , 1. 11)

In [17]: def solve_exactly (X, t):

rrir

Solve linear regression exactly. (fully vectorized)

Given "X - NxD matrix of inputs
‘'t - target outputs
Returns the optimal weights as a D-dimensional vector
v
N, D = np.shape (X)
A = np.matmul (X.T, X)
c = np.dot (X.T, t)
return np.matmul (np.linalg.inv (A), <)

In [18]: solve_exactly(x_in, y_target)
Out[18]: array ([-0.33471389, 7.82205511, -22.898315731)

In [19]: # In real 1life we don't want to code it directly
np.linalg.lstsg(x_in, y_target)

Out[19]: (array ([-0.33471389, 7.82205511, -22.898315731),
array ([19807.614505]),
3,
array ([318.75354429, 75.21961717, 2.101271991))

2.1 Implement Gradient Function

o0& 1 D, .

In [20]: # Vectorized gradient function
def gradfn(weights, X, t):

rrir

Given ‘weights' - a current "Guess" of what our weights should be
‘X' - matrix of shape (N,D) of input features
‘t' - target y values

Return gradient of each weight evaluated at the current value
rr

N, D = np.shape (X)

y_pred = np.matmul (X, weights)

error = y_pred - t

return np.matmul (np.transpose (x_in), error) / float (N)

In [23]: def solve_via_gradient_descent (X, t, print_every=5000,
niter=100000, alpha=0.005):
P
Given ‘X' - matrix of shape (N,D) of input features
't - target y values
Solves for linear regression weights.
Return weights after "niter 1iterations.

rri

N, D = np.shape (X)
initialize all the weights to zeros
np.zeros ([D])
for k in range(niter) :
dw = gradfn(w, X, t)

w =

w = w — alphaxdw
if k % print_every ==
print 'Weight after %d iteration: %s' %

return w

In [24]: solve_via_gradient_descent (X=x_in, t=y_target)
Weight after 0 iteration: [1.10241186 0.73047508 0.11266403]
Weight after 5000 iteration: [-0.48304613 5.10076868 -3.97899253]
Weight after 10000 iteration: [-0.45397323 5.63413678 -7.6871518]
Weight after 15000 iteration: [-0.43059857 6.06296553 -10.66851736]
Weight after 20000 iteration: [—-0.41180532 6.40774447 -13.06553969]
Weight after 25000 iteration: [-0.39669551 6.68494726 —-14.9927492]
Weight after 30000 iteration: [-0.38454721 6.90781871 -16.54222851]
Weight after 35000 iteration: [—-0.37477995 7.08700769 -17.78801217]
Weight after 40000 iteration: [-0.36692706 7.23107589 -18.78962409]
Weight after 45000 iteration: [-0.36061333 7.34690694 -19.59492155]
Weight after 50000 iteration: [-0.35553708 7.44003528 -20.24238191]
Weight after 55000 iteration: [-0.35145576 7.5149106 -20.762941]
Weight after 60000 iteration: [-0.34817438 7.57511047 -21.18147127]
Weight after 65000 iteration: [-0.34553614 7.62351125 -21.51797024]
Weight after 70000 iteration: [-0.343415 7.66242555 -21.78851591]
Weight after 75000 iteration: [-0.34170959 7.69371271 -22.00603503]
Weight after 80000 iteration: [-0.34033844 7.71886763 —-22.18092072]
Weight after 85000 iteration: [—-0.33923604 7.73909222 -22.32152908]
Weight after 90000 iteration: [—-0.3383497 7.75535283 -22.4345784]
Weight after 95000 iteration: [-0.33763709 7.76842638 —22.52547023]
Out[24]: array ([-0.33706425, 7.77893565, -22.598534327)
In [25] # For comparison, this was the exact result:
np.linalg.lstsg(x_in, y_target)

Out[25]: (array ([-0.33471389, 7.82205511, -22.898315731),

array ([19807.6145051]),

3,

array ([318.75354429, 75.21961717, 2.10127199]))

	Tutorial: Linear Regression
	Define cost function
	Vectorizing the cost function:
	Comparing speed of the vectorized vs unvectorized code
	Plotting cost in weight space

	Exact Solution
	Implement Gradient Function

