Tutorial 1. Linear Regression

January 11, 2017

1 Tutorial: Linear Regression

Agenda: 1. Spyder interface 2. Linear regression running example: boston data 3. Vectorize cost function 4. Closed form solution 5. Gradient descent

```
In [1]: import matplotlib
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
In [2]: from sklearn.datasets import load_boston
        boston_data = load_boston()
        print (boston_data['DESCR'])
Boston House Prices dataset
Notes
_____
Data Set Characteristics:
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive
    :Median Value (attribute 14) is usually the target
    :Attribute Information (in order):
        - CRIM
                 per capita crime rate by town
        - ZN
                  proportion of residential land zoned for lots over 25,000 sq.ft.
        - INDUS
                  proportion of non-retail business acres per town
        - CHAS
                   Charles River dummy variable (= 1 if tract bounds river; 0 other
        - NOX
                   nitric oxides concentration (parts per 10 million)
        - RM
                   average number of rooms per dwelling
        - AGE
                   proportion of owner-occupied units built prior to 1940
                   weighted distances to five Boston employment centres
        - DIS
        - RAD
                   index of accessibility to radial highways
                   full-value property-tax rate per $10,000
        - TAX
```

```
    PTRATIO pupil-teacher ratio by town
    B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
    LSTAT % lower status of the population
    MEDV Median value of owner-occupied homes in $1000's
```

:Missing Attribute Values: None

```
:Creator: Harrison, D. and Rubinfeld, D.L.
```

This is a copy of UCI ML housing dataset. http://archive.ics.uci.edu/ml/datasets/Housing

This dataset was taken from the StatLib library which is maintained at Carnegie Mel

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that add problems.

References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data a
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proce
- many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

```
In [3]: # take the boston data
    data = boston_data['data']
    # we will only work with two of the features: INDUS and RM
    x_input = data[:, [2,5]]
    y_target = boston_data['target']

In [5]: # Individual plots for the two features:
    plt.title('Industrialness vs Med House Price')
    plt.scatter(x_input[:, 0], y_target)
    plt.xlabel('Industrialness')
    plt.ylabel('Med House Price')
    plt.show()

plt.title('Avg Num Rooms vs Med House Price')
    plt.scatter(x_input[:, 1], y_target)
    plt.xlabel('Avg Num Rooms')
```

plt.ylabel('Med House Price')
plt.show()

1.1 Define cost function

1.2 Vectorizing the cost function:

1.3 Comparing speed of the vectorized vs unvectorized code

We'll see below that the vectorized code already runs ~2x faster than the non-vectorized code! Hopefully this will convince you to always vectorized your code whenever possible

1.4 Plotting cost in weight space

We'll plot the cost for two of our weights, assuming that bias = -22.89831573. We'll see where that number comes from later.

Notice the shape of the contours are ovals.

2 Exact Solution

Work this out on the board:

- 1. ignore biases (add an extra feature & weight instead)
- 2. get equations from partial derivative
- 3. vectorize
- 4. write code.

```
In [16]: # add an extra feature (column in the input) that are just all ones
          x_in = np.concatenate([x_input, np.ones([np.shape(x_input)[0], 1])], axis=
          x_in
Out[16]: array([[
                     2.31 ,
                               6.575,
                                               ],
                     7.07 ,
                               6.421,
                                         1.
                                               ],
                     7.07 ,
                               7.185,
                                         1.
                                               ],
                               6.976,
                  [ 11.93 ,
                                         1.
                                               ],
                  [ 11.93 ,
                               6.794,
                                         1.
                                               ],
                  [ 11.93 ,
                               6.03 ,
                                         1.
                                               11)
In [17]: def solve_exactly(X, t):
              r \cdot r \cdot r
```

```
Given `X` - NxD matrix of inputs
                     `t` - target outputs
              Returns the optimal weights as a D-dimensional vector
              N, D = np.shape(X)
              A = np.matmul(X.T, X)
              c = np.dot(X.T, t)
              return np.matmul(np.linalg.inv(A), c)
In [18]: solve exactly(x in, y target)
Out[18]: array([ -0.33471389, 7.82205511, -22.89831573])
In [19]: # In real life we don't want to code it directly
          np.linalg.lstsq(x_in, y_target)
Out[19]: (array([ -0.33471389, 7.82205511, -22.89831573]),
           array([ 19807.614505]),
           3.
           array([ 318.75354429, 75.21961717, 2.10127199]))
2.1 Implement Gradient Function
                            \frac{\partial \mathcal{E}}{\partial w_i} = \frac{1}{N} \sum_i x_j^{(i)} (y^{(i)} - t^{(i)})
In [20]: # Vectorized gradient function
          def gradfn(weights, X, t):
              I = I = I
              Given `weights` - a current "Guess" of what our weights should be
                     `X` - matrix of shape (N,D) of input features
                     `t` - target y values
              Return gradient of each weight evaluated at the current value
              N, D = np.shape(X)
              y_pred = np.matmul(X, weights)
              error = y_pred - t
              return np.matmul(np.transpose(x in), error) / float(N)
In [23]: def solve_via_gradient_descent(X, t, print_every=5000,
                                            niter=100000, alpha=0.005):
              Given X - matrix of shape (N, D) of input features
                     `t` - target y values
              Solves for linear regression weights.
              Return weights after `niter` iterations.
              \boldsymbol{r} \cdot \boldsymbol{r} \cdot \boldsymbol{r}
```

Solve linear regression exactly. (fully vectorized)

```
N_{\bullet} D = np.shape(X)
             # initialize all the weights to zeros
             w = np.zeros([D])
             for k in range(niter):
                dw = gradfn(w, X, t)
                 w = w - alpha*dw
                 if k % print every == 0:
                    print 'Weight after %d iteration: %s' % (k, str(w))
             return w
In [24]: solve_via_gradient_descent( X=x_in, t=y_target)
Weight after 0 iteration: [ 1.10241186  0.73047508  0.11266403]
Weight after 5000 iteration: [-0.48304613 5.10076868 -3.97899253]
Weight after 10000 iteration: [-0.45397323 5.63413678 -7.6871518 ]
Weight after 15000 iteration: [ -0.43059857 6.06296553 -10.66851736]
Weight after 20000 iteration: [ -0.41180532 6.40774447 -13.06553969]
Weight after 25000 iteration: [ -0.39669551 6.68494726 -14.9927492 ]
Weight after 30000 iteration: [ -0.38454721 6.90781871 -16.54222851]
Weight after 35000 iteration: [ -0.37477995 7.08700769 -17.78801217]
Weight after 40000 iteration: [ -0.36692706
                                             7.23107589 - 18.78962409
Weight after 45000 iteration: [ -0.36061333 7.34690694 -19.59492155]
Weight after 50000 iteration: [-0.35553708]
                                              7.44003528 -20.242381911
Weight after 55000 iteration: [ -0.35145576
                                             7.5149106 - 20.762941
Weight after 60000 iteration: [ -0.34817438
                                              7.57511047 -21.18147127]
Weight after 65000 iteration: [ -0.34553614
                                              7.62351125 -21.51797024]
Weight after 70000 iteration: [ -0.343415
                                              7.66242555 -21.78851591]
Weight after 75000 iteration: [ -0.34170959
                                              7.69371271 -22.006035031
Weight after 80000 iteration: [ -0.34033844
                                             7.71886763 -22.180920721
                                             7.73909222 -22.321529081
Weight after 85000 iteration: [ -0.33923604
Weight after 90000 iteration: [ -0.3383497
                                             7.75535283 -22.4345784 ]
Weight after 95000 iteration: [ -0.33763709
                                             7.76842638 -22.525470231
Out [24]: array([ -0.33706425, 7.77893565, -22.59853432])
In [25]: # For comparison, this was the exact result:
         np.linalg.lstsq(x_in, y_target)
Out[25]: (array([ -0.33471389, 7.82205511, -22.89831573]),
         array([ 19807.614505]),
          3,
          array([ 318.75354429, 75.21961717, 2.10127199]))
```