
CSC321 Lecture 9: Generalization

Roger Grosse

Roger Grosse CSC321 Lecture 9: Generalization 1 / 27

Overview

We’ve focused so far on how to optimize neural nets — how to get
them to make good predictions on the training set.

How do we make sure they generalize to data they haven’t seen
before?

Even though the topic is well studied, it’s still poorly understood.

Roger Grosse CSC321 Lecture 9: Generalization 2 / 27

Generalization

Recall: overfitting and underfitting

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

We’d like to minimize the generalization error, i.e. error on novel examples.

Roger Grosse CSC321 Lecture 9: Generalization 3 / 27

Generalization

Training and test error as a function of data and model capacity.

Note: capacity isn’t a formal term, or a quantity we can measure.

Roger Grosse CSC321 Lecture 9: Generalization 4 / 27

Bias/Variance Decomposition

There’s an interesting decomposition of generalization error in the particular case
of squared error loss.

It’s often convenient to suppose our training and test data are sampled from a
data generating distribution pD(x, t).

Suppose we’re given an input x. We’d like to minimize the expected loss:

EpD [(y − t)2 | x]

The best possible prediction we can make is the conditional expectation

y? = EpD [t | x].

Proof:

E[(y − t)2 | x] = E[y 2 − 2yt + t2 | x]

= y 2 − 2yE[t | x] + E[t2 | x]

= y 2 − 2yE[t | x] + E[t | x]2 + Var[t | x]

= (y − y?)2 + Var[t | x]

The term Var[t | x], called the Bayes error, is the best risk we can hope to achieve.

Roger Grosse CSC321 Lecture 9: Generalization 5 / 27

Bias/Variance Decomposition

Now suppose we sample a training set from the data generating distribution, train
a model on it, and use that model to make a prediction y on test example x.

Here, y is a random variable, and we get a new value each time we sample a new
training set.

We’d like to minimize the risk, or expected loss E[(y − t)2]. We can decompose
this into bias, variance, and Bayes error. (We suppress the conditioning on x for
clarity.)

E[(y − t)2] = E[(y − y?)2] + Var(t)

= E[y 2
? − 2y?y + y 2] + Var(t)

= y 2
? − 2y?E[y] + E[y 2] + Var(t)

= y 2
? − 2y?E[y] + E[y]2 + Var(y) + Var(t)

= (y? − E[y])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

Roger Grosse CSC321 Lecture 9: Generalization 6 / 27

Bias/Variance Decomposition

We can visualize this decomposition in prediction space, where the
axes correspond to predictions on the test examples.
If we have an overly simple model, it might have

high bias (because it’s too simplistic to capture the structure in the
data)
low variance (because there’s enough data to estimate the parameters,
so you get the same results for any sample of the training data)

Roger Grosse CSC321 Lecture 9: Generalization 7 / 27

Bias/Variance Decomposition

If you have an overly complex model, it might have
low bias (since it learns all the relevant structure)
high variance (it fits the idiosyncrasies of the data you happened to
sample)

The bias/variance decomposition holds only for squared error, but it
provides a useful intuition even for other loss functions.

Roger Grosse CSC321 Lecture 9: Generalization 8 / 27

Our Bag of Tricks

How can we train a model that’s complex enough to model the
structure in the data, but prevent it from overfitting? I.e., how to
achieve low bias and low variance?

Our bag of tricks

data augmentation
reduce the capacity (e.g. number of paramters)
weight decay
early stopping
ensembles (combine predictions of different models)
stochastic regularization (e.g. dropout, batch normalization)

The best-performing models on most benchmarks use some or all of
these tricks.

Roger Grosse CSC321 Lecture 9: Generalization 9 / 27

Data Augmentation

The best way to improve generalization is to collect more data!

Suppose we already have all the data we’re willing to collect. We can
augment the training data by transforming the examples. This is
called data augmentation.

Examples (for visual recognition)

translation
horizontal or vertical flip
rotation
smooth warping
noise (e.g. flip random pixels)

Only warp the training, not the test, examples.

The choice of transformations depends on the task. (E.g. horizontal
flip for object recognition, but not handwritten digit recognition.)

Roger Grosse CSC321 Lecture 9: Generalization 10 / 27

Reducing the Capacity

Roughly speaking, models with more parameters have more capacity. Therefore,
we can try to reduce the number of parameters.

One approach: reduce the number of layers or the number of paramters per layer.

Adding a linear bottleneck layer is another way to reduce the capacity:

The first network is strictly more expressive than the second (i.e. it can represent a
strictly larger class of functions). (Why?)

Remember how linear layers don’t make a network more expressive? They might
still improve generalization.

Roger Grosse CSC321 Lecture 9: Generalization 11 / 27

Weight Decay

We’ve already seen that we can regularize a network by penalizing
large weight values, thereby encouraging the weights to be small in
magnitude.

Ereg = E + λR = E +
λ

2

∑
j

w2
j

We saw that the gradient descent update can be interpreted as
weight decay:

w← w − α
(
∂E
∂w

+ λ
∂R
∂w

)
= w − α

(
∂E
∂w

+ λw

)
= (1− αλ)w − α ∂E

∂w

Roger Grosse CSC321 Lecture 9: Generalization 12 / 27

Weight Decay

Why we want weights to be small:

y = 0.1x5 + 0.2x4 + 0.75x3 − x2 − 2x + 2

y = −7.2x5 + 10.4x4 + 24.5x3 − 37.9x2 − 3.6x + 12

The red polynomial overfits. Notice it has really large coefficients.

Roger Grosse CSC321 Lecture 9: Generalization 13 / 27

Weight Decay

Why we want weights to be small:

Suppose inputs x1 and x2 are nearly identical. The following two
networks make nearly the same predictions:

But the second network might make weird predictions if the test
distribution is slightly different (e.g. x1 and x2 match less closely).

Roger Grosse CSC321 Lecture 9: Generalization 14 / 27

Weight Decay

The geometric picture:

Roger Grosse CSC321 Lecture 9: Generalization 15 / 27

Weight Decay

There are other kinds of regularizers which encourage weights to be small,
e.g. sum of the absolute values.

These alternative penalties are commonly used in other areas of machine learning,
but less commonly for neural nets.

Regularizers differ by how strongly they prioritize making weights exactly zero,
vs. not being very large.

— Hinton, Coursera lectures — Bishop, Pattern Recognition and Machine Learning

Roger Grosse CSC321 Lecture 9: Generalization 16 / 27

Early Stopping

We don’t always want to find a global (or even local) optimum of our
cost function. It may be advantageous to stop training early.

Roughly speaking, training for longer increases the capacity of the
model, which might make us overfit.

Early stopping: monitor performance on a validation set, stop training
when the validtion error starts going up.

Roger Grosse CSC321 Lecture 9: Generalization 17 / 27

Early Stopping

A slight catch: validation error fluctuates because of stochasticity in
the updates.

Determining when the validation error has actually leveled off can be
tricky.

Roger Grosse CSC321 Lecture 9: Generalization 18 / 27

Early Stopping

Why does early stopping work?

Weights start out small, so it takes time for them to grow large.
Therefore, it has a similar effect to weight decay.
If you are using sigmoidal units, and the weights start out small, then
the inputs to the activation functions take only a small range of values.

Therefore, the network starts out approximately linear, and gradually
becomes more nonlinear (and hence more powerful).

Roger Grosse CSC321 Lecture 9: Generalization 19 / 27

Ensembles

If a loss function is convex (with respect to the predictions), you have
a bunch of predictions, and you don’t know which one is best, you are
always better off averaging them.

L(λ1y1 + · · ·+ λNyN , t) ≤ λ1L(y1, t) + · · ·+ λNL(yN , t) for λi ≥ 0,
∑
i

λi = 1

This is true no matter where they came from (trained neural net,
random guessing, etc.). Note that only the loss function needs to be
convex, not the optimization problem.

Examples: squared error, cross-entropy, hinge loss

If you have multiple candidate models and don’t know which one is
the best, maybe you should just average their predictions on the test
data. The set of models is called an ensemble.

Averaging often helps even when the loss is nonconvex (e.g. 0–1 loss).

Roger Grosse CSC321 Lecture 9: Generalization 20 / 27

Ensembles

Some examples of ensembles:

Train networks starting from different random initializations. But this
might not give enough diversity to be useful.
Train networks on differnet subsets of the training data. This is called
bagging.
Train networks with different architectures or hyperparameters, or even
use other algorithms which aren’t neural nets.

Ensembles can improve generalization quite a bit, and the winning
systems for most machine learning benchmarks are ensembles.

But they are expensive, and the predictions can be hard to interpret.

Roger Grosse CSC321 Lecture 9: Generalization 21 / 27

Stochastic Regularization

For a network to overfit, its computations need to be really precise. This
suggests regularizing them by injecting noise into the computations, a
strategy known as stochastic regularization.

Dropout is a stochastic regularizer which randomly deactivates a subset of
the units (i.e. sets their activations to zero).

hi =

{
φ(zi) with probability 1− ρ
0 with probability ρ,

where ρ is a hyperparameter.

Equivalently,
hi = mi · φ(zi),

where mi is a Bernoulli random variable, independent for each hidden unit.

Backprop rule:
zi = hi ·mi · φ′(zi)

Roger Grosse CSC321 Lecture 9: Generalization 22 / 27

Stochastic Regularization

Dropout can be seen as training an ensemble of 2D different
architectures with shared weights (where D is the number of units):

— Goodfellow et al., Deep Learning

Roger Grosse CSC321 Lecture 9: Generalization 23 / 27

Stochastic Regularization

Dropout can help performance quite a bit, even if you’re already using
weight decay.

Lots of other stochastic regularizers have been proposed:

DropConnect drops connections instead of activations.
Batch normalization (mentioned last week for its optimization benefits)
also introduces stochasticity, thereby acting as a regularizer.
The stochasticity in SGD updates has been observed to act as a
regularizer, helping generalization.

Increasing the mini-batch size may improve training error at the
expense of test error!

Roger Grosse CSC321 Lecture 9: Generalization 24 / 27

Our Bag of Tricks

Techniques we just covered:

data augmentation
reduce the capacity (e.g. number of paramters)
weight decay
early stopping
ensembles (combine predictions of different models)
stochastic regularization (e.g. dropout, batch normalization)

The best-performing models on most benchmarks use some or all of
these tricks.

Many of these techniques involve hyperparameters. How do we
choose these?

Roger Grosse CSC321 Lecture 9: Generalization 25 / 27

Choosing Hyperparameters

Many hyperparameters are relevant to generalization

number of layers
number of units per layer
L2 weight cost
dropout probability

Ideally, we want to choose hyperparameters which perform the best
on a validation set.

Ways to approximate this

manual (“graduate student descent”)
grid search
random search
Bayesian optimization (covered later in the course)
use Autograd to differentiate through the whole training procedure,
and do gradient descent on hyperparameters (only practical for very
small problems)

Roger Grosse CSC321 Lecture 9: Generalization 26 / 27

Choosing Hyperparameters

Random search can be more efficient than grid search when some of
the hyperparamters are unimportant:

But grid search can be more reproducible.

Roger Grosse CSC321 Lecture 9: Generalization 27 / 27

