
CSC321 Lecture 6: Backpropagation

Roger Grosse

Roger Grosse CSC321 Lecture 6: Backpropagation 1 / 21



Overview

We’ve seen that multilayer neural networks are powerful. But how can
we actually learn them?

Backpropagation is the central algorithm in this course.

It’s is an algorithm for computing gradients.
Really it’s an instance of reverse mode automatic differentiation, which
is much more broadly applicable than just neural nets.

This is “just” a clever and efficient use of the Chain Rule for derivatives.
David Duvenaud will tell you more about this next week.

Roger Grosse CSC321 Lecture 6: Backpropagation 2 / 21



Overview

Design choices so far

Task: regression, binary classification, multiway classification

Model/Architecture: linear, log-linear, multilayer perceptron

Loss function: squared error, 0–1 loss, cross-entropy, hinge loss

Optimization algorithm: direct solution, gradient descent,
perceptron

Compute gradients using backpropagation

Roger Grosse CSC321 Lecture 6: Backpropagation 3 / 21



Recap: Gradient Descent

Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

Conceptually, not any different from what we’ve seen so far — just higher
dimensional and harder to visualize!

We want to compute the cost gradient dE/dw, which is the vector of partial
derivatives.

This is the average of dL/dw over all the training examples, so in this
lecture we focus on computing dL/dw.

Roger Grosse CSC321 Lecture 6: Backpropagation 4 / 21



Univariate Chain Rule

We’ve already been using the univariate Chain Rule.

Recall: if f (x) and x(t) are univariate functions, then

d

dt
f (x(t)) =

df

dx
· dx
dt
.

Roger Grosse CSC321 Lecture 6: Backpropagation 5 / 21



Univariate Chain Rule

Recall: Univariate logistic least squares model

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Let’s compute the loss derivatives.

Roger Grosse CSC321 Lecture 6: Backpropagation 6 / 21



Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(σ(wx + b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx + b)− t)2

]
=

1

2

∂

∂w
(σ(wx + b)− t)2

= (σ(wx + b)− t)
∂

∂w
(σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b)
∂

∂w
(wx + b)

= (σ(wx + b)− t)σ′(wx + b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx + b)− t)2

]
=

1

2

∂

∂b
(σ(wx + b)− t)2

= (σ(wx + b)− t)
∂

∂b
(σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b)
∂

∂b
(wx + b)

= (σ(wx + b)− t)σ′(wx + b)

What are the disadvantages of this approach?

Roger Grosse CSC321 Lecture 6: Backpropagation 7 / 21



Univariate Chain Rule

A more structured way to do it

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

dL
dy

= y − t

dL
dz

=
dL
dy
· σ′(z)

∂L
∂w

=
dL
dz
· x

∂L
∂b

=
dL
dz

Remember, the goal isn’t to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.

Roger Grosse CSC321 Lecture 6: Backpropagation 8 / 21



Univariate Chain Rule

We can diagram out the computations using a computation graph.

The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Roger Grosse CSC321 Lecture 6: Backpropagation 9 / 21



Univariate Chain Rule

A slightly more convenient notation:

Use y to denote the derivative dL/dy , sometimes called the error signal.

This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

This is not a standard notation, but I couldn’t find another one that I liked.

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = y − t

z = y · σ′(z)

w = z · x
b = z

Roger Grosse CSC321 Lecture 6: Backpropagation 10 / 21



Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1?
This requires the multivariate Chain Rule!

L2-Regularized regression

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w 2

Lreg = L+ λR

Multclass logistic regression

z` =
∑
j

w`jxj + b`

yk =
ezk∑
` e

z`

L = −
∑
k

tk log yk

Roger Grosse CSC321 Lecture 6: Backpropagation 11 / 21



Multivariate Chain Rule

Suppose we have a function f (x , y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d

dt
f (x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Example:

f (x , y) = y + exy

x(t) = cos t

y(t) = t2

Plug in to Chain Rule:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

= (yexy ) · (− sin t) + (1 + xexy ) · 2t

Roger Grosse CSC321 Lecture 6: Backpropagation 12 / 21



Multivariable Chain Rule

In the context of backpropagation:

In our notation:

t = x · dx
dt

+ y · dy
dt

Roger Grosse CSC321 Lecture 6: Backpropagation 13 / 21



Backpropagation

Full backpropagation algorithm:

Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).

Roger Grosse CSC321 Lecture 6: Backpropagation 14 / 21



Backpropagation

Example: univariate logistic least squares regression

Forward pass:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w 2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz

= y σ′(z)

w= z
∂z

∂w
+RdR

dw

= z x +Rw

b = z
∂z

∂b

= z

Roger Grosse CSC321 Lecture 6: Backpropagation 15 / 21



Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi )

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi )

w
(1)
ij = zi xj

b
(1)
i = zi

Roger Grosse CSC321 Lecture 6: Backpropagation 16 / 21



Backpropagation

In vectorized form:

Forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖t− y‖2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h · σ′(z)

W(1) = zx>

b(1) = z

Roger Grosse CSC321 Lecture 6: Backpropagation 17 / 21



Backpropagation

Backprop as message passing:

Each node receives a bunch of messages from its children, which it
aggregates to get its error signal. It then passes messages to its
parents.
This provides modularity, since each node only has to know how to
compute derivatives with respect to its arguments, and doesn’t have
to know anything about the rest of the graph.

Roger Grosse CSC321 Lecture 6: Backpropagation 18 / 21



Computational Cost

Computational cost of forward pass: one add-multiply operation per
weight

zi =
∑
j

w
(1)
ij xj + b

(1)
i

Computational cost of backward pass: two add-multiply operations
per weight

w
(2)
ki = yk hi

hi =
∑
k

ykw
(2)
ki

Rule of thumb: the backward pass is about as expensive as two
forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Roger Grosse CSC321 Lecture 6: Backpropagation 19 / 21



Backpropagation

Backprop is used to train the overwhelming majority of neural nets today.

Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

Despite its practical success, backprop is believed to be neurally implausible.

No evidence for biological signals analogous to error derivatives.
All the biologically plausible alternatives we know about learn much
more slowly (on computers).
So how on earth does the brain learn?

Roger Grosse CSC321 Lecture 6: Backpropagation 20 / 21



Backpropagation

By now, we’ve seen three different ways of looking at gradients:

Geometric: visualization of gradient in weight space
Algebraic: mechanics of computing the derivatives
Implementational: efficient implementation on the computer

When thinking about neural nets, it’s important to be able to shift
between these different perspectives!

Roger Grosse CSC321 Lecture 6: Backpropagation 21 / 21


