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Overview

@ Today's lecture: a neat application of Bayesian parameter estimation
to automatically tuning hyperparameters

@ Recall that neural nets have certain hyperparmaeters which aren’t
part of the training procedure

e E.g. number of units, learning rate, L, weight cost, dropout probability

@ You can evaluate them using a validation set, but there's still the
problem of which values to try

o Brute force search (e.g. grid search, random search) is very expensive,
and wastes time trying silly hyperparameter configurations
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Overview

@ Hyperparamter tuning is a kind of black-box optimization: you want
to minimize a function f(6), but you only get to query values, not
compute gradients

e Input #: a configuration of hyperparameters
o Function value f(6): error on the validation set

@ Each evaluation is expensive, so we want to use few evaluations.

@ Suppose you've observed the following function values. Where would
you try next?
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Overview

@ You want to query a point which:

e you expect to be good
@ you are uncertain about

@ How can we model our uncertainty about the function?

@ Bayesian regression lets us predict not just a value, but a distribution.
That's what the first half of this lecture is about.
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Linear Regression as Maximum Likelihood

@ Recall linear regression:
y= w'x+b
1
£(y,8) = 5(t = y)*

@ This has a probabilistic interpretation, where the targets are assumed to be a linear
function of the inputs, plus Gaussian noise:

t|x ~N(w'x+ b, 6°)

@ Linear regression is just maximum likelihood under this model:
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Bayesian Linear Regression

@ We're interested in the uncertainty

@ Bayesian linear regression considers various plausible explanations for
how the data were generated.

@ It makes predictions using all possible regression weights, weighted by
their posterior probability.

== |

one observation two observations

no observations
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Bayesian Linear Regression

@ Leave out the bias for simplicity

@ Prior distribution: a broad, spherical (multivariate) Gaussian centered at
zero:

w ~ N(0,°1)
@ Likelihood: same as in the maximum likelihood formulation:
t|x,w~N(w'x, o?)
@ Posterior:

log p(w | D) = const + log p(w +Z|0gp (£ | w, x1)
i=1

= const + log V'(w; 0, 2%1) + E log V(¢ ,0)
1
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Bayesian Linear Regression

@ Posterior distribution in the univariate case:

log p(w | D) = const — — Z(t — wx{

= const — = < Z[X()] ) ( 1 ix(i)t(i)> w

i=1
@ This is a Gaussian distribution with
% Zf"zl (1) ()
L+ 5L 0P
1

Npost

2
Oy = _
post %‘F%Z;\I:JX(’)F

@ The formula for ppes is basically the same as Homework 5, Question 1

@ The posterior in the multivariate case is a multivariate Gaussian. The
derivation is analogous, but with some linear algebra.
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Bayesian Linear Regression
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1 1
wy Y
0 0
-1 -1
-1 [ -1 0 oz 1

g
, =
) = T -

i 0w | ] 0 o 1 ] 0 oz 1
1 1 I
wy w1 v

0 0 0 S
E| -1 -1

-1 0 u‘“\ -1 0 ﬂ'[]l 1 0 T 1

&
& a B

wo

— Bishop, Pattern Recognition and Machine_Learning

ger Grosse (CSC321 Lecture 21: Bayesian Hyperparamete 9/25




Bayesian Linear Regression

@ We can turn this into nonlinear regression using basis functions.

@ E.g., Gaussian basis functions
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Bayesian Linear Regression

Functions sampled from the posterior:
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Bayesian Linear Regression

Posterior predictive distribution:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Neural Networks

@ Basis functions (i.e. feature maps) are great in one dimension, but don’t
scale to high-dimensional spaces.

@ Recall that the second-to-last layer of an MLP can be thought of as a
feature map:

linear regressor.
/ clasifier

@ It is possible to train a Bayesian neural network, where we define a prior over
all the weights for all layers, and make predictions using Bayesian parameter
estimation.

@ The algorithms are complicated, and beyond the scope of this class.
@ A simple approximation which sometimes works: first train the MLP the
usual way, and then do Bayesian linear regression with the learned features.
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Bayesian Optimization

o Now let's apply all of this to black-box optimization. The technique
we'll cover is called Bayesian optimization.

@ The actual function we're trying to optimize (e.g. validation error as a
function of hyperparameters) is really complicated. Let's approximate
it with a simple function, called the surrogate function.

o After we've queried a certian number of points, we can condition on
these to infer the posterior over the surrogate function using Bayesian
linear regression.
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x
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Bayesian Optimization

@ To choose the next point to query, we must define an acquisition
function, which tells us how promising a candidate it is.
@ What's wrong with the following acquisition functions:

e posterior mean: —E[f(0)]
e posterior variance: Var(f(0))

@ Desiderata:

e high for points we expect to be good
e high for points we're uncertain about
o low for points we've already tried

e Candidate 1: probability of improvement (PI)
PI =Pr(f(0) < v —e),

where v is the best value so far, and € is small.
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Bayesian Optimization

Examples:

~— best value
so far

PI=0.5 Pl =0.023

Pl =0.309 Pl =0.999

@ Plots show the posterior predictive distribution for f(8).
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Bayesian Optimization

@ The problem with Probability of Improvement (PI): it queries points it
is highly confident will have a small imporvement

o Usually these are right next to ones we've already evaluated

@ A better choice: Expected Improvement (EI)

EI = E[max(y — f(0),0)]

e The idea: if the new value is much better, we win by a lot; if it's much
worse, we haven't lost anything.

o There is an explicit formula for this if the posterior predictive
distribution is Gaussian.
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Bayesian Optimization

Examples:

~— pest value
so far

El =0.199

El = 0.004

El = 0.396

El=0.15

CSC321 Lecture 21: Bayesian Hyperparamete

18 / 25



True Function with Three Observations
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2 - Bayesian nonlinear regression predictive distributions

— 95%
— 90%

+— 80%

S S C5C321 Lecture 21: Bayesian Hyperparamete 20 / 25



2~

How do the predictions compare to the current best?
— 95%
— 90%
— 80%
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2 - How do the predictions compare to the current best?
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Bayesian Optimization

@ | showed one-dimensional visualizations, but the higher-dimensional
case is conceptually no different.
e Maximize the acquisition function using gradient descent
o Use lots of random restarts, since it is riddled with local maxima
e BayesOpt can be used to optimize tens of hyperparameters.
@ I've described BayesOpt in terms of Bayesian linear regression with
basis functions learned by a neural net.
e In practice, it's typically done with a more advanced model called
Gaussian processes, which you learn about in CSC 412,
o But Bayesian linear regression is actually useful, since it scales better to
large numbers of queries.
@ One variation: some configurations can be much more expensive than
others
o Use another Bayesian regression model to estimate the computational
cost, and query the point that maximizes expected improvement per
second
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Bayesian Optimization

@ BayesOpt can often beat hand-tuned configurations in a relatively
small number of steps.

@ Results on optimizing hyperparameters (layer-specific learning rates,
weight decay, and a few other parameters) for a CIFAR-10 conv net:
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Function evaluations

@ Each function evaluation takes about an hour
@ Human expert = Alex Krizhevsky, the creator of AlexNet
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Bayesian Optimization

@ Spearmint is an open-source BayesOpt software package that
optimizes hyperparameters for you:

https://github.com/JasperSnoek/spearmint

@ Much of this talk was taken from the following two papers:

e J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms. NIPS, 2012.

http://papers.nips.cc/paper/
4522-practical-bayesian-optimization-of-machine-learning-algorithms

e J. Snoek et al. Scalable Bayesian optimization using deep neural
networks. ICML, 2015.

http://www. jmlr.org/proceedings/papers/v37/snoekl5. pdf
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