
CSC321 Lecture 21: Bayesian Hyperparameter
Optimization

Roger Grosse

Roger Grosse CSC321 Lecture 21: Bayesian Hyperparameter Optimization 1 / 25



Overview

Today’s lecture: a neat application of Bayesian parameter estimation
to automatically tuning hyperparameters

Recall that neural nets have certain hyperparmaeters which aren’t
part of the training procedure

E.g. number of units, learning rate, L2 weight cost, dropout probability

You can evaluate them using a validation set, but there’s still the
problem of which values to try

Brute force search (e.g. grid search, random search) is very expensive,
and wastes time trying silly hyperparameter configurations
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Overview

Hyperparamter tuning is a kind of black-box optimization: you want
to minimize a function f (θ), but you only get to query values, not
compute gradients

Input θ: a configuration of hyperparameters
Function value f (θ): error on the validation set

Each evaluation is expensive, so we want to use few evaluations.

Suppose you’ve observed the following function values. Where would
you try next?
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Overview

You want to query a point which:

you expect to be good
you are uncertain about

How can we model our uncertainty about the function?

Bayesian regression lets us predict not just a value, but a distribution.
That’s what the first half of this lecture is about.
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Linear Regression as Maximum Likelihood

Recall linear regression:

y = w>x + b

L(y , t) =
1

2
(t − y)2

This has a probabilistic interpretation, where the targets are assumed to be a linear
function of the inputs, plus Gaussian noise:

t | x ∼ N (w>x + b, σ2)

Linear regression is just maximum likelihood under this model:
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Bayesian Linear Regression

We’re interested in the uncertainty

Bayesian linear regression considers various plausible explanations for
how the data were generated.

It makes predictions using all possible regression weights, weighted by
their posterior probability.
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Bayesian Linear Regression

Leave out the bias for simplicity

Prior distribution: a broad, spherical (multivariate) Gaussian centered at
zero:

w ∼ N (0, ν2I)

Likelihood: same as in the maximum likelihood formulation:

t | x,w ∼ N (w>x, σ2)

Posterior:

log p(w | D) = const + log p(w) +
N∑
i=1

log p(t(i) |w, x(i))

= const + logN (w; 0, ν2I) +
N∑
i=1

logN (t(i);w>x(i), σ)

= cost− 1

2ν2
w>w − 1

2σ2

N∑
i=1

(t(i) −w>x(i))2
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Bayesian Linear Regression

Posterior distribution in the univariate case:

log p(w | D) = const− 1
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This is a Gaussian distribution with
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i=1 x
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1
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i=1[x (i)]2
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1
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The formula for µpost is basically the same as Homework 5, Question 1

The posterior in the multivariate case is a multivariate Gaussian. The
derivation is analogous, but with some linear algebra.

Roger Grosse CSC321 Lecture 21: Bayesian Hyperparameter Optimization 8 / 25



Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

We can turn this into nonlinear regression using basis functions.

E.g., Gaussian basis functions

φj(x) = exp

(
−

(x − µj)2

2s2

)

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Posterior predictive distribution:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Neural Networks

Basis functions (i.e. feature maps) are great in one dimension, but don’t
scale to high-dimensional spaces.

Recall that the second-to-last layer of an MLP can be thought of as a
feature map:

It is possible to train a Bayesian neural network, where we define a prior over
all the weights for all layers, and make predictions using Bayesian parameter
estimation.

The algorithms are complicated, and beyond the scope of this class.

A simple approximation which sometimes works: first train the MLP the

usual way, and then do Bayesian linear regression with the learned features.
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Bayesian Optimization

Now let’s apply all of this to black-box optimization. The technique
we’ll cover is called Bayesian optimization.
The actual function we’re trying to optimize (e.g. validation error as a
function of hyperparameters) is really complicated. Let’s approximate
it with a simple function, called the surrogate function.
After we’ve queried a certian number of points, we can condition on
these to infer the posterior over the surrogate function using Bayesian
linear regression.
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Bayesian Optimization

To choose the next point to query, we must define an acquisition
function, which tells us how promising a candidate it is.

What’s wrong with the following acquisition functions:

posterior mean: −E[f (θ)]
posterior variance: Var(f (θ))

Desiderata:

high for points we expect to be good
high for points we’re uncertain about
low for points we’ve already tried

Candidate 1: probability of improvement (PI)

PI = Pr(f (θ) < γ − ε),

where γ is the best value so far, and ε is small.
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Bayesian Optimization

Examples:

Plots show the posterior predictive distribution for f (θ).
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Bayesian Optimization

The problem with Probability of Improvement (PI): it queries points it
is highly confident will have a small imporvement

Usually these are right next to ones we’ve already evaluated

A better choice: Expected Improvement (EI)

EI = E[max(γ − f (θ), 0)]

The idea: if the new value is much better, we win by a lot; if it’s much
worse, we haven’t lost anything.
There is an explicit formula for this if the posterior predictive
distribution is Gaussian.
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Bayesian Optimization

Examples:
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Bayesian Optimization

I showed one-dimensional visualizations, but the higher-dimensional
case is conceptually no different.

Maximize the acquisition function using gradient descent
Use lots of random restarts, since it is riddled with local maxima
BayesOpt can be used to optimize tens of hyperparameters.

I’ve described BayesOpt in terms of Bayesian linear regression with
basis functions learned by a neural net.

In practice, it’s typically done with a more advanced model called
Gaussian processes, which you learn about in CSC 412.
But Bayesian linear regression is actually useful, since it scales better to
large numbers of queries.

One variation: some configurations can be much more expensive than
others

Use another Bayesian regression model to estimate the computational
cost, and query the point that maximizes expected improvement per
second
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Bayesian Optimization

BayesOpt can often beat hand-tuned configurations in a relatively
small number of steps.

Results on optimizing hyperparameters (layer-specific learning rates,
weight decay, and a few other parameters) for a CIFAR-10 conv net:

Each function evaluation takes about an hour

Human expert = Alex Krizhevsky, the creator of AlexNet
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Bayesian Optimization

Spearmint is an open-source BayesOpt software package that
optimizes hyperparameters for you:

https://github.com/JasperSnoek/spearmint

Much of this talk was taken from the following two papers:
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms. NIPS, 2012.

http://papers.nips.cc/paper/

4522-practical-bayesian-optimization-of-machine-learning-algorithms

J. Snoek et al. Scalable Bayesian optimization using deep neural
networks. ICML, 2015.

http://www.jmlr.org/proceedings/papers/v37/snoek15.pdf
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