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Overview

First learning algorithm of the course: linear regression

Task: predict scalar-valued targets, e.g. stock prices (hence
“regression”)
Architecture: linear function of the inputs (hence “linear”)

Example of recurring themes throughout the course:

choose an architecture and a loss function
formulate an optimization problem
solve the optimization problem using one of two strategies

direct solution (set derivatives to zero)
gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra
make a linear model more powerful using features
understand how well the model generalizes
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Problem Setup

Want to predict a scalar t as a function of a scalar x

Given a training set of pairs {(x(i), t(i))}Ni=1
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Problem Setup

Model: y is a linear function of x :

y = wx + b

y is the prediction

w is the weight

b is the bias

w and b together are the parameters

Settings of the parameters are called hypotheses
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Problem Setup

Loss function: squared error

L(y , t) =
1

2
(y − t)2

y − t is the residual, and we want to make this small in magnitude

Cost function: loss function averaged over all training examples

E(w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
wx (i) + b − t(i)

)2
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Problem Setup
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Problem setup

Suppose we have multiple inputs x1, . . . , xD . This is referred to as
multivariable regression.

This is no different than the single input case, just harder to visualize.

Linear model:
y =

∑
j

wjxj + b
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Vectorization

Computing the prediction using a for loop:

For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.

w = (w1, . . . ,wD)> x = (x1, . . . , xD)

y = w>x + b

This is simpler and much faster:
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Vectorization

We can take this a step further. Organize all the training examples
into a matrix X with one row per training example, and all the targets
into a vector t.

Computing the squared error cost across the whole dataset:

y = Xw + b1

E =
1

2N
‖y − t‖2

In Python:

Example in tutorial
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Solving the optimization problem

We defined a cost function. This is what we’d like to minimize.

Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

Multivariate generalization: set the partial derivatives to zero. We call
this direct solution.
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Direct solution

Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

∂

∂x1
f (x1, x2) = lim

h→0

f (x1 + h, x2)− f (x1, x2)

h

To compute, take the single variable derivatives, pretending the other
arguments are constant.
Example: partial derivatives of the prediction y

∂y

∂wj
=

∂

∂wj

∑
j′

wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′

wj′xj′ + b


= 1
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Direct solution

Chain rule for derivatives:
∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj

∂L
∂b

= y − t

We will give a more precise statement of the Chain Rule in a few
weeks. It’s actually pretty complicated.
Cost derivatives (average over data points):

∂E
∂wj

=
1

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

∂E
∂b

=
1

N

N∑
i=1

y (i) − t(i)
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Direct solution

The minimum must occur at a point where the partial derivatives are
zero.

∂E
∂wj

= 0
∂E
∂b

= 0.

If ∂E/∂wj 6= 0, you could reduce the cost by changing wj .

This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in tutorial.

Optimal weights:
w = (X>X)−1X>t

Linear regression is one of only a handful of models in this course that
permit direct solution.
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Gradient descent

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Observe:

if ∂E/∂wj > 0, then increasing wj increases E .
if ∂E/∂wj < 0, then increasing wj decreases E .

The following update decreases the cost function:

wj ← wj − α
∂E
∂wj

= wj −
α

N

N∑
i=1

(y (i) − t(i)) x
(i)
j
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Gradient descent

This gets its name from the gradient:

∂E
∂w

=


∂E
∂w1

...
∂E
∂wD


This is the direction of fastest increase in E .

Update rule in vector form:

w← w − α ∂E
∂w

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.
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Gradient descent

Visualization:
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_

regression.pdf#page=21
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Gradient descent

Why gradient descent, if we can find the optimum directly?

GD can be applied to a much broader set of models
GD can be easier to implement than direct solutions, especially with
automatic differentiation software
For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).
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Feature mappings

Suppose we want to model the following data

x

t

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

One option: fit a low-degree polynomial; this is known as polynomial
regression

y = w3x
3 + w2x

2 + w1x + w0

Do we need to derive a whole new algorithm?
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Feature mappings

We get polynomial regression for free!

Define the feature map

φ(x) =


1
x
x2

x3


Polynomial regression model:

y = w>φ(x)

All of the derivations and algorithms so far in this lecture remain
exactly the same!
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Fitting polynomials

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting : The model is too simple - does not fit the data.

x

t

M = 0

0 1

−1

0

1

Overfitting : The model is too complex - fits perfectly, does not generalize.

x

t

M = 9

0 1

−1

0

1
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Generalization

We would like our models to generalize to data they haven’t seen
before

The degree of the polynomial is an example of a hyperparameter,
something we can’t include in the training procedure itself

We can tune hyperparameters using validation: partition the data into
three subsets

Training set: used to train the model
Validation set: used to evaluate generalization error of a trained model
Test set: used to evaluate final performance once, after
hyperparameters are chosen

Tune the hyperparameters on the validation set, then report the
performance on the test set.
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Foreshadowing

Feature maps aren’t a silver bullet:

It’s not always easy to pick good features.
In high dimensions, polynomial expansions can get very large!

Until the last few years, a large fraction of the effort of building a
good machine learning system was feature engineering

We’ll see that neural networks are able to learn nonlinear functions
directly, avoiding hand-engineering of features
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