CSC321 Lecture 19: Boltzmann Machines

Roger Grosse

Overview

- Last time: fitting mixture models
- This is a kind of localist representation: each data point is explained by exactly one category
- Distributed representations are much more powerful.
- Today, we'll talk about a different kind of latent variable model, called Boltzmann machines.
- It's a kind of distributed representation.
- The idea is to learn soft constraints between variables.

Overview

- In Assignment 4, you will fit a mixture model to images of handwritten digits.

MoB (100)

- Problem: if you use one component per digit class, there's still lots of variability. Each component distribution would have to be really complicated.
- Some 7's have strokes through them. Should those belong to a separate mixture component?

Boltzmann Machines

- A lot of what we know about images consists of soft constraints, e.g. that neighboring pixels probably take similar values
- A Boltzmann machine is a collection of binary random variables which are coupled through soft constraints. For now, assume they take values in $\{-1,1\}$.
- We represent it as an undirected graph:

- The biases determine how much each unit likes to be on (i.e. $=1$)
- The weights determine how much two units like to take the same value

Boltzmann Machines

- A Boltzmann machine defines a probability distribution, where the probability of any joint configuration is log-linear in a happiness function H.

$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{\mathcal{Z}} \exp (H(\mathbf{x})) \\
\mathcal{Z} & =\sum_{\mathbf{x}} \exp (H(\mathbf{x})) \\
H(\mathbf{x}) & =\sum_{i \neq j} w_{i j} x_{i} x_{j}+\sum_{i} b_{i} x_{i}
\end{aligned}
$$

- \mathcal{Z} is a normalizing constant called the partition function
- This sort of distribution is called a Boltzmann distribution, or Gibbs distribution.
- Note: the happiness function is the negation of what physicists call the energy. Low energy $=$ happy.
- In this class, we'll use happiness rather than energy so that we don't have lots of minus signs everywhere.

Boltzmann Machines

Example:

x_{1}	x_{2}	x_{3}	$w_{12} x_{1} x_{2}$	$w_{13} x_{1} x_{3}$	$w_{23} x_{2} x_{3}$	$b_{2} x_{2}$	$H(\mathbf{x})$	$\exp (H(\mathbf{x}))$	$p(\mathbf{x})$
-1	-1	-1	-1	-1	2	-1	-1	0.368	0.0021
-1	-1	1	-1	1	-2	-1	-3	0.050	0.0003
-1	1	-1	1	-1	-2	1	-3	0.368	0.0021
-1	1	1	1	1	2	1	5	148.413	0.8608
1	-1	-1	1	1	2	-1	3	20.086	0.1165
1	-1	1	1	-1	-2	-1	-3	0.050	0.0003
1	1	-1	-1	1	-2	1	-1	0.368	0.0021
1	1	1	-1	-1	2	1	1	2.718	0.0158

$$
\mathcal{Z}=172.420
$$

Boltzmann Machines

Marginal probabilities:

$$
\begin{aligned}
p\left(x_{1}=1\right) & =\frac{1}{\mathcal{Z}} \sum_{\mathrm{x}: x_{1}=1} \exp (H(\mathbf{x})) \\
& =\frac{20.086+0.050+0.368+2.718}{172.420} \\
& =0.135
\end{aligned}
$$

x_{1}	x_{2}	x_{3}	$w_{12} x_{1} x_{2}$	$w_{13} x_{1} x_{3}$	$w_{23} x_{2} x_{3}$	$b_{2} x_{2}$	$H(\mathbf{x})$	$\exp (H(\mathbf{x}))$	$p(\mathbf{x})$
-1	-1	-1	-1	-1	2	-1	-1	0.368	0.0021
-1	-1	1	-1	1	-2	-1	-3	0.050	0.0003
-1	1	-1	1	-1	-2	1	-3	0.368	0.0021
-1	1	1	1	1	2	1	5	148.413	0.8608
1	-1	-1	1	1	2	-1	3	20.086	0.1165
1	-1	1	1	-1	-2	-1	-3	0.050	0.0003
1	1	-1	-1	1	-2	1	-1	0.368	0.0021
1	1	1	-1	-1	2	1	1	2.718	0.0158

$$
\mathcal{Z}=172.420
$$

Boltzmann Machines

Conditional probabilities:

$$
\begin{aligned}
p\left(x_{1}=1 \mid x_{2}=-1\right) & =\frac{\sum_{\mathrm{x}: x_{1}=1, x_{2}=-1} \exp (H(\mathbf{x}))}{\sum_{\mathrm{x}: x_{2}=-1} \exp (H(\mathbf{x}))} \\
& =\frac{20.086+0.050}{0.368+0.050+20.086+0.050} \\
& =0.980
\end{aligned}
$$

x_{1}	x_{2}	x_{3}	$w_{12} x_{1} x_{2}$	$w_{13} x_{1} x_{3}$	$w_{23} x_{2} x_{3}$	$b_{2} x_{2}$	$H(\mathbf{x})$	$\exp (H(\mathbf{x}))$	$p(\mathbf{x})$
-1	-1	-1	-1	-1	2	-1	-1	0.368	0.0021
-1	-1	1	-1	1	-2	-1	-3	0.050	0.0003
-1	1	-1	1	-1	-2	1	-3	0.368	0.0021
-1	1	1	1	1	2	1	5	148.413	0.8608
1	-1	-1	1	1	2	-1	3	20.086	0.1165
1	-1	1	1	-1	-2	-1	-3	0.050	0.0003
1	1	-1	-1	1	-2	1	-1	0.368	0.0021
1	1	1	-1	-1	2	1	1	2.718	0.0158

Boltzmann Machines

- We just saw conceptually how to compute:
- the partition function \mathcal{Z}
- the probability of a configuration, $p(\mathbf{x})=\exp (H(\mathbf{x})) / \mathcal{Z}$
- the marginal probability $p\left(x_{i}\right)$
- the conditional probability $p\left(x_{i} \mid x_{j}\right)$
- But these brute force strategies are impractical, since they require summing over exponentially many configurations!
- For those of you who have taken complexity theory: these tasks are \#P-hard.
- Two ideas which can make the computations more practical
- Obtain approximate samples from the model using Gibbs sampling
- Design the pattern of connections to make inference easy

Conditional Independence

- Two sets of random variables \mathcal{X} and \mathcal{Y} are conditionally independent given a third set \mathcal{Z} if they are independent under the conditional distribution given values of \mathcal{Z}.
- Example:

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{5} \mid x_{3}, x_{4}\right) \\
& \propto \exp \left(w_{12} x_{1} x_{2}+w_{13} x_{1} x_{3}+w_{24} x_{2} x_{4}+w_{35} x_{3} x_{5}+w_{45} x_{4} x_{5}\right) \\
& =\underbrace{\exp \left(w_{12} x_{1} x_{2}+w_{13} x_{1} x_{3}+w_{24} x_{2} x_{4}\right)}_{\text {only depends on } x_{1}, x_{2}} \underbrace{\exp \left(w_{35} x_{3} x_{5}+w_{4} x_{4} x_{5}\right)}_{\text {only depends on } x_{5}}
\end{aligned}
$$

- In this case, x_{1} and x_{2} are conditionally independent of x_{5} given x_{3} and x_{4}.
- In general, two random variables are conditionally independent if they are in disconnected components of the graph when the observed nodes are removed.
- This is covered in much more detail in CSC 412.

Conditional Probabilities

- We can compute the conditional probability of x_{i} given its neighbors in the graph.
- For this formula, it's convenient to make the variables take values in $\{0,1\}$, rather than $\{-1,1\}$.
- Formula for the conditionals (derivation in the lecture notes):

$$
\begin{aligned}
\operatorname{Pr}\left(x_{i}=1 \mid \mathbf{x}_{N}, \mathbf{x}_{R}\right) & =\operatorname{Pr}\left(x_{i}=1 \mid \mathbf{x}_{N}\right) \\
& =\sigma\left(\sum_{j \in N} w_{i j} x_{j}+b_{i}\right)
\end{aligned}
$$

- Note that it doesn't matter whether we condition on \mathbf{x}_{R} or what its values are.
- This is the same as the formula for the activations in an MLP with logistic units.
- For this reason, Boltzmann machines are sometimes drawn with bidirectional arrows.

Gibbs Sampling

- Consider the following process, called Gibbs sampling
- We cycle through all the units in the network, and sample each one from its conditional distribution given the other units:

$$
\operatorname{Pr}\left(x_{i}=1 \mid \mathbf{x}_{-i}\right)=\sigma\left(\sum_{j \neq i} w_{i j} x_{j}+b_{i}\right)
$$

- It's possible to show that if you run this procedure long enough, the configurations will be distributed approximately according to the model distribution.
- Hence, we can run Gibbs sampling for a long time, and treat the configurations like samples from the model
- To sample from the conditional distribution $p\left(x_{i} \mid \mathbf{x}_{A}\right)$, for some set \mathbf{x}_{A}, simply run Gibbs sampling with the variables in \mathbf{x}_{A} clamped

Learning a Boltzmann Machine

- A Boltzmann machine is parameterized by weights and biases, just like a neural net.
- So far, we've taken these for granted. How can we learn them?
- For now, suppose all the units correspond to observables (e.g. image pixels), and we have a training set $\left\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}\right\}$.
- Log-likelihood:

$$
\begin{aligned}
\ell & =\frac{1}{N} \sum_{i=1}^{N} \log p\left(\mathbf{x}^{(i)}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N}\left[H\left(\mathbf{x}^{(i)}\right)-\log \mathcal{Z}\right] \\
& =\left[\frac{1}{N} \sum_{i=1}^{N} H\left(\mathbf{x}^{(i)}\right)\right]-\log \mathcal{Z}
\end{aligned}
$$

- Want to increase the average happiness and decrease $\log \mathcal{Z}_{\equiv}$

Learning a Boltzmann Machine

- Derivatives of average happiness:

$$
\begin{aligned}
\frac{\partial}{\partial w_{j k}} \frac{1}{N} \sum_{i} H\left(\mathbf{x}^{(i)}\right) & =\frac{1}{N} \sum_{i} \frac{\partial}{\partial w_{j k}} H\left(\mathbf{x}^{(i)}\right) \\
& =\frac{1}{N} \sum_{i} \frac{\partial}{\partial w_{j k}}\left[\sum_{j^{\prime} \neq k^{\prime}} w_{j \prime, k^{\prime}} x_{j^{\prime}} x_{k^{\prime}}+\sum_{j^{\prime}} b_{j^{\prime}} x_{j^{\prime}}\right] \\
& =\frac{1}{N} \sum_{i} x_{j} x_{k} \\
& =\mathbb{E}_{\text {data }}\left[x_{j} x_{k}\right]
\end{aligned}
$$

Learning a Boltzmann Machine

- Derivatives of $\log \mathcal{Z}$:

$$
\begin{aligned}
\frac{\partial}{\partial w_{j k}} \log \mathcal{Z} & =\frac{\partial}{\partial w_{j k}} \log \sum_{\mathbf{x}} \exp (H(\mathbf{x})) \\
& =\frac{\frac{\partial}{\partial w_{j k}} \sum_{\mathbf{x}} \exp (H(\mathbf{x}))}{\sum_{\mathbf{x}} \exp (H(\mathbf{x}))} \\
& =\frac{\sum_{\mathbf{x}} \exp (H(\mathbf{x})) \frac{\partial}{\partial w_{j k}} H(\mathbf{x})}{\mathcal{Z}} \\
& =\sum_{\mathbf{x}} p(\mathbf{x}) \frac{\partial}{\partial w_{j k}} H(\mathbf{x}) \\
& =\sum_{\mathbf{x}} p(\mathbf{x}) x_{j} x_{k} \\
& =\mathbb{E}_{\text {model }}\left[x_{j} x_{k}\right]
\end{aligned}
$$

Learning a Boltzmann Machine

- Putting this together:

$$
\frac{\partial \ell}{\partial w_{j k}}=\mathbb{E}_{\text {data }}\left[x_{j} x_{k}\right]-\mathbb{E}_{\text {model }}\left[x_{j} x_{k}\right]
$$

- Intuition: if x_{j} and x_{k} co-activate more often in the data than in samples from the model, then increase the weight to make them co-activate more often.
- The two terms are called the positive and negative statistics
- Can estimate $\mathbb{E}_{\text {data }}\left[x_{j} x_{k}\right]$ stochastically using mini-batches
- Can estimate $\mathbb{E}_{\text {model }}\left[x_{j} x_{k}\right]$ by running a long Gibbs chain

Restricted Boltzmann Machines

- We've assumed the Boltzmann machine was fully observed. But more commonly, we'll have hidden units as well.
- A classic architecture called the restricted Boltzmann machine assumes a bipartite graph over the visible units and hidden units:

- We would like the hidden units to learn more abstract features of the data.

Restricted Boltzmann Machines

- Our maximum likelihood update rule generalizes to the case of unobserved variables (derivation in the notes)

$$
\frac{\partial \ell}{\partial w_{j k}}=\mathbb{E}_{\text {data }}\left[v_{j} h_{k}\right]-\mathbb{E}_{\text {model }}\left[v_{j} h_{k}\right]
$$

- Here, the data distribution refers to the conditional distribution given v

$$
\mathbb{E}_{\text {data }}\left[v_{j} h_{k}\right]=\frac{1}{N} \sum_{i=1}^{N} v_{j}^{(i)} \mathbb{E}\left[h_{k} \mid \mathbf{v}^{(i)}\right]
$$

- We're filling in the hidden variables using their posterior expectations, just like in E-M!

Restricted Boltzmann Machines

- Under the bipartite structure, the hidden units are all conditionally independent given the visibles, and vice versa:
- Since the units are independent, we can vectorize the computations just like for MLPs:

$$
\begin{aligned}
& \tilde{\mathbf{h}}=\mathbb{E}[\mathbf{h} \mid \mathbf{v}]=\sigma\left(\mathbf{W} \mathbf{v}+\mathbf{b}_{\mathbf{h}}\right) \\
& \tilde{\mathbf{v}}=\mathbb{E}[\mathbf{v} \mid \mathbf{h}]=\sigma\left(\mathbf{W}^{\top} \mathbf{h}+\mathbf{b}_{\mathbf{v}}\right)
\end{aligned}
$$

- Vectorized updates:

$$
\frac{\partial \ell}{\partial \mathbf{W}}=\mathbb{E}_{\mathbf{v} \sim \text { data }}\left[\tilde{\mathbf{h}}^{\top}\right]-\mathbb{E}_{\mathbf{v}, \mathbf{h} \sim \operatorname{model}}\left[\mathbf{h} \mathbf{v}^{\top}\right]
$$

Restricted Boltzmann Machines

- To estimate the model statistics for the negative update, start from the data and run a few steps of Gibbs sampling.
- By the conditional independence property, all the hiddens can be sampled in parallel, and then all the visibles can be sampled in parallel.

- This procedure is called contrastive divergence.
- It's a terrible approximation to the model distribution, but it appears to work well anyway.

Restricted Boltzmann Machines

Some features learned by an RBM on MNIST:

Restricted Boltzmann Machines

Some features learned on MNIST with an additional sparsity constraint (so that each hidden unit activates only rarely):

\checkmark		0	,	7	8	+	,	\%	6	\bigcirc	3	t	3	9	\cdots	1	c	,	\square
6	c)	1	$=$	k	8	2	\cdots	4	,	*	8	r	,	l	\bar{T}	1	1	7	-
\square	\cdots	$=$	\bigcirc	-	$=$	π	$=$	II	$!$	\square	1	$\stackrel{+}{2}$,	$=$	\checkmark	1	1	8	\cdots
,	\cdots	,		-	1	41	9	1	d	\checkmark	1	\%	4	\cdots		,	\bigcirc	1	1
4,	!	*	9	ε	1	-	®	,	-	6	,	7	G	-		0	c	$=$	2
-	1	3	?		-	*	,	1	2	$=$	1	,	1	7	二	$=$	4	-	
3	$=$	c	1	\checkmark	,	$\sqrt{5}$)	4	?	1	2	3	6	7	$=$	5	1	$=$	8
6	\cdots)	7	(4	4	1	-	\leqslant		\&	?		$=$	$\bar{\square}$	9	$1)$,	C	
0	3	-	$?$	f	1		$\overline{7}$			\%	1	θ	-	,	2	7	\checkmark	1	0
$=$	2	r	6	,	,	1	1	\bigcirc	6	\bigcirc	-	6	7)	c	S	3	-	,

Restricted Boltzmann Machines

- RBMs vs. mixture of Bernoullis as generative models of MNIST (baseline)
Training samples

MoB (100)

CD1(500)

(RBMs)

CD25(500)

- Log-likelihood scores on the test set:
- MoB: -137.64 nats
- RBM: -86.34 nats
- 50 nat difference!

Restricted Boltzmann Machines

- Other complex datasets that Boltzmann machines can model:

NORB (action figures)

Omniglot (characters in many world languages)

