CSC321 Lecture 19: Boltzmann Machines

Roger Grosse

Roger Grosse

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Last time: fitting mixture models
 - This is a kind of localist representation: each data point is explained by exactly one category
 - Distributed representations are much more powerful.
- Today, we'll talk about a different kind of latent variable model, called Boltzmann machines.
 - It's a kind of distributed representation.
 - The idea is to learn soft constraints between variables.

Overview

• In Assignment 4, you will fit a mixture model to images of handwritten digits.

- Problem: if you use one component per digit class, there's still lots of variability. Each component distribution would have to be really complicated.
- Some 7's have strokes through them. Should those belong to a separate mixture component?

- 4 回 ト - 4 回 ト

- A lot of what we know about images consists of soft constraints, e.g. that neighboring pixels probably take similar values
- A Boltzmann machine is a collection of binary random variables which are coupled through soft constraints. For now, assume they take values in $\{-1, 1\}$.
- We represent it as an undirected graph:

- The biases determine how much each unit likes to be on (i.e. = 1)
- The weights determine how much two units like to take the same value

• A Boltzmann machine defines a probability distribution, where the probability of any joint configuration is log-linear in a happiness function *H*.

$$p(\mathbf{x}) = \frac{1}{\mathcal{Z}} \exp(H(\mathbf{x}))$$
$$\mathcal{Z} = \sum_{\mathbf{x}} \exp(H(\mathbf{x}))$$
$$H(\mathbf{x}) = \sum_{i \neq j} w_{ij} x_i x_j + \sum_i b_i x_i$$

- \mathcal{Z} is a normalizing constant called the partition function
- This sort of distribution is called a Boltzmann distribution, or Gibbs distribution.
 - Note: the happiness function is the negation of what physicists call the energy. Low energy = happy.
 - In this class, we'll use happiness rather than energy so that we don't have lots of minus signs everywhere.

Roger Grosse

Example:

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$w_{12}x_1x_2$	$W_{13}X_1X_3$	$W_{23}X_2X_3$	$b_2 x_2$	$H(\mathbf{x})$	$\exp(H(\mathbf{x}))$	p(x)
-1	-1	-1	-1	-1	2	-1	-1	0.368	0.0021
-1	-1	1	-1	1	-2	-1	-3	0.050	0.0003
-1	1	-1	1	-1	-2	1	-3	0.368	0.0021
-1	1	1	1	1	2	1	5	148.413	0.8608
1	-1	-1	1	1	2	-1	3	20.086	0.1165
1	-1	1	1	-1	-2	-1	-3	0.050	0.0003
1	1	-1	-1	1	-2	1	-1	0.368	0.0021
1	1	1	-1	-1	2	1	1	2.718	0.0158

 $\mathcal{Z} = 172.420$

ヘロト 人間 ト 人 ヨト 人 ヨトー

3

Marginal probabilities:

$$p(x_1 = 1) = \frac{1}{Z} \sum_{\mathbf{x}: x_1 = 1} \exp(H(\mathbf{x}))$$
$$= \frac{20.086 + 0.050 + 0.368 + 2.718}{172.420}$$

3.5 3

= 0.135

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$w_{12}x_1x_2$	$W_{13}X_1X_3$	$W_{23}X_2X_3$	$b_2 x_2$	$H(\mathbf{x})$	$\exp(H(\mathbf{x}))$	<i>p</i> (x)
-1	-1	-1	-1	-1	2	-1	-1	0.368	0.0021
-1	-1	1	-1	1	-2	-1	-3	0.050	0.0003
-1	1	-1	1	-1	-2	1	-3	0.368	0.0021
-1	1	1	1	1	2	1	5	148.413	0.8608
1	-1	-1	1	1	2	-1	3	20.086	0.1165
1	-1	1	1	-1	-2	-1	-3	0.050	0.0003
1	1	-1	-1	1	-2	1	-1	0.368	0.0021
1	1	1	-1	-1	2	1	1	2.718	0.0158

$$Z = 172.420$$

Conditional probabilities:

$$p(x_1 = 1 | x_2 = -1) = \frac{\sum_{\mathbf{x}: x_1 = 1, x_2 = -1} \exp(H(\mathbf{x}))}{\sum_{\mathbf{x}: x_2 = -1} \exp(H(\mathbf{x}))}$$
$$= \frac{20.086 + 0.050}{0.368 + 0.050 + 20.086 + 0.050}$$
$$= 0.980$$

(日)

x_1	<i>x</i> ₂	<i>X</i> 3	$w_{12}x_1x_2$	$W_{13}X_1X_3$	$W_{23}X_2X_3$	$b_2 x_2$	$H(\mathbf{x})$	$\exp(H(\mathbf{x}))$	p(x)
-1	-1	-1	-1	-1	2	-1	-1	0.368	0.0021
-1	-1	1	-1	1	-2	-1	-3	0.050	0.0003
-1	1	-1	1	-1	-2	1	-3	0.368	0.0021
-1	1	1	1	1	2	1	5	148.413	0.8608
1	-1	-1	1	1	2	-1	3	20.086	0.1165
1	-1	1	1	-1	-2	-1	-3	0.050	0.0003
1	1	-1	-1	1	-2	1	-1	0.368	0.0021
1	1	1	-1	-1	2	1	1	2.718	0.0158

3

• We just saw conceptually how to compute:

- $\bullet\,$ the partition function ${\cal Z}$
- the probability of a configuration, $p(\mathbf{x}) = \exp(H(\mathbf{x}))/\mathcal{Z}$
- the marginal probability $p(x_i)$
- the conditional probability $p(x_i | x_j)$
- But these brute force strategies are impractical, since they require summing over exponentially many configurations!
- For those of you who have taken complexity theory: these tasks are #P-hard.
- Two ideas which can make the computations more practical
 - Obtain approximate samples from the model using Gibbs sampling
 - Design the pattern of connections to make inference easy

Conditional Independence

- Two sets of random variables \mathcal{X} and \mathcal{Y} are conditionally independent given a third set \mathcal{Z} if they are independent under the conditional distribution given values of \mathcal{Z} .
- Example:

- In this case, x₁ and x₂ are conditionally independent of x₅ given x₃ and x₄.
- In general, two random variables are conditionally independent if they are in disconnected components of the graph when the observed nodes are removed.
- This is covered in much more detail in CSC 412.

Conditional Probabilities

- We can compute the conditional probability of x_i given its neighbors in the graph.
- For this formula, it's convenient to make the variables take values in {0,1}, rather than {-1,1}.
- Formula for the conditionals (derivation in the lecture notes):

$$egin{aligned} &\Pr(\mathbf{x}_i = 1 \,|\, \mathbf{x}_N, \mathbf{x}_R) = \Pr(\mathbf{x}_i = 1 \,|\, \mathbf{x}_N) \ &= \sigma\left(\sum_{j \in N} w_{ij} x_j + b_i
ight) \end{aligned}$$

- Note that it doesn't matter whether we condition on **x**_R or what its values are.
- This is the same as the formula for the activations in an MLP with logistic units.
 - For this reason, Boltzmann machines are sometimes drawn with bidirectional arrows.

Gibbs Sampling

- Consider the following process, called Gibbs sampling
- We cycle through all the units in the network, and sample each one from its conditional distribution given the other units:

$$\Pr(x_i = 1 \,|\, \mathbf{x}_{-i}) = \sigma\left(\sum_{j \neq i} w_{ij} x_j + b_i\right)$$

- It's possible to show that if you run this procedure long enough, the configurations will be distributed approximately according to the model distribution.
- Hence, we can run Gibbs sampling for a long time, and treat the configurations like samples from the model
- To sample from the conditional distribution $p(\mathbf{x}_i | \mathbf{x}_A)$, for some set \mathbf{x}_A , simply run Gibbs sampling with the variables in \mathbf{x}_A clamped

- A Boltzmann machine is parameterized by weights and biases, just like a neural net.
- So far, we've taken these for granted. How can we learn them?
- For now, suppose all the units correspond to observables (e.g. image pixels), and we have a training set {**x**⁽¹⁾,...,**x**^(N)}.
- Log-likelihood:

$$\ell = \frac{1}{N} \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)})$$
$$= \frac{1}{N} \sum_{i=1}^{N} [H(\mathbf{x}^{(i)}) - \log \mathcal{Z}]$$
$$= \left[\frac{1}{N} \sum_{i=1}^{N} H(\mathbf{x}^{(i)})\right] - \log \mathcal{Z}$$

• Want to increase the average happiness and decrease log \mathcal{Z}_{\equiv} .

Roger Grosse

• Derivatives of average happiness:

$$\frac{\partial}{\partial w_{jk}} \frac{1}{N} \sum_{i} H(\mathbf{x}^{(i)}) = \frac{1}{N} \sum_{i} \frac{\partial}{\partial w_{jk}} H(\mathbf{x}^{(i)})$$
$$= \frac{1}{N} \sum_{i} \frac{\partial}{\partial w_{jk}} \left[\sum_{j' \neq k'} w_{j',k'} x_{j'} x_{k'} + \sum_{j'} b_{j'} x_{j'} \right]$$
$$= \frac{1}{N} \sum_{i} x_{j} x_{k}$$
$$= \mathbb{E}_{\text{data}}[x_{j} x_{k}]$$

3

소리가 소문가 소문가 소문가 ...

• Derivatives of log \mathcal{Z} :

$$\frac{\partial}{\partial w_{jk}} \log \mathcal{Z} = \frac{\partial}{\partial w_{jk}} \log \sum_{\mathbf{x}} \exp(H(\mathbf{x}))$$
$$= \frac{\frac{\partial}{\partial w_{jk}} \sum_{\mathbf{x}} \exp(H(\mathbf{x}))}{\sum_{\mathbf{x}} \exp(H(\mathbf{x}))}$$
$$= \frac{\sum_{\mathbf{x}} \exp(H(\mathbf{x})) \frac{\partial}{\partial w_{jk}} H(\mathbf{x})}{\mathcal{Z}}$$
$$= \sum_{\mathbf{x}} p(\mathbf{x}) \frac{\partial}{\partial w_{jk}} H(\mathbf{x})$$
$$= \sum_{\mathbf{x}} p(\mathbf{x}) x_j x_k$$
$$= \mathbb{E}_{\text{model}} [x_j x_k]$$

CSC321 Lecture 19: Boltzmann Machines

æ

ヘロト 人間 ト 人 ヨト 人 ヨトー

Putting this together:

$$\frac{\partial \ell}{\partial w_{jk}} = \mathbb{E}_{\text{data}}[x_j x_k] - \mathbb{E}_{\text{model}}[x_j x_k]$$

- Intuition: if x_j and x_k co-activate more often in the data than in samples from the model, then increase the weight to make them co-activate more often.
- The two terms are called the positive and negative statistics
- Can estimate $\mathbb{E}_{data}[x_j x_k]$ stochastically using mini-batches
- Can estimate $\mathbb{E}_{\text{model}}[x_j x_k]$ by running a long Gibbs chain

- We've assumed the Boltzmann machine was fully observed. But more commonly, we'll have hidden units as well.
- A classic architecture called the restricted Boltzmann machine assumes a bipartite graph over the visible units and hidden units:

• We would like the hidden units to learn more abstract features of the data.

過 ト イヨト イヨト

 Our maximum likelihood update rule generalizes to the case of unobserved variables (derivation in the notes)

$$\frac{\partial \ell}{\partial w_{jk}} = \mathbb{E}_{\text{data}}[v_j h_k] - \mathbb{E}_{\text{model}}[v_j h_k]$$

Here, the data distribution refers to the conditional distribution given

$$\mathbb{E}_{\text{data}}[v_j h_k] = \frac{1}{N} \sum_{i=1}^N v_j^{(i)} \mathbb{E}[h_k \mid \mathbf{v}^{(i)}]$$

 We're filling in the hidden variables using their posterior expectations, just like in E-M!

ロト 不得下 不良下 不良下

- Under the bipartite structure, the hidden units are all conditionally independent given the visibles, and vice versa:
- Since the units are independent, we can vectorize the computations just like for MLPs:

$$\begin{split} \tilde{\mathbf{h}} &= \mathbb{E}[\mathbf{h} \,|\, \mathbf{v}] = \sigma \left(\mathbf{W} \mathbf{v} + \mathbf{b}_{\mathbf{h}} \right) \\ \tilde{\mathbf{v}} &= \mathbb{E}[\mathbf{v} \,|\, \mathbf{h}] = \sigma \left(\mathbf{W}^\top \mathbf{h} + \mathbf{b}_{\mathbf{v}} \right) \end{split}$$

• Vectorized updates:

$$\frac{\partial \ell}{\partial \mathbf{W}} = \mathbb{E}_{\mathbf{v} \sim \text{data}}[\tilde{\mathbf{h}} \mathbf{v}^\top] - \mathbb{E}_{\mathbf{v}, \mathbf{h} \sim \text{model}}[\mathbf{h} \mathbf{v}^\top]$$

- To estimate the model statistics for the negative update, start from the data and run a few steps of Gibbs sampling.
- By the conditional independence property, all the hiddens can be sampled in parallel, and then all the visibles can be sampled in parallel.

- This procedure is called contrastive divergence.
- It's a terrible approximation to the model distribution, but it appears to work well anyway.

A D A D A D A

Some features learned by an RBM on MNIST:

Roger Grosse

CSC321 Lecture 19: Boltzmann Machines

Some features learned on MNIST with an additional sparsity constraint (so that each hidden unit activates only rarely):

1	1	1		TE)	64	3	4	6.0	ê	6	104	18	(1)	-	16	0	C	۲	
Ċ	0	1	5	\mathcal{O}	24	0	2	R	3	1	E.	11	1	2	4	0	1	1	8
2	63	36	0	A.	(64	影	100	I.	5	35	1	2	9	1		I.	I.	Ċ	5
Ø	9	10	2	1	1	1	0	9	(internet	U.	7	0	Y.	2	121	47	100	3	1
37	3	1	9	Re	7		Pro-	1	100	2)	7	C	24	6		C	1993	1
1	1	E	60	2	13		39	2	A	1	6	1	2	1	16	19	6	The second	
5	41	(e)	6	B	N.	3	5	11	(63)	1	4	1	6	10	36	4	11	No.	3
6	10	۲	2	G	07	2	Not	34	14	1	1	10	(10)	13	5	20	Ì	6	1
the.	1	14	3	9	9).	0	3	3	5	3	10	0	(e)	2	the	10	1	e	19
	AC.	1	45	5	10	J	The	1	0	10		0	1	6	6	100	0	2	1

・ロン ・聞と ・ ほと ・ ほと

• RBMs vs. mixture of Bernoullis as generative models of MNIST

- Log-likelihood scores on the test set:
 - MoB: -137.64 nats
 - RBM: -86.34 nats
 - 50 nat difference!

· · · · · · · · ·

• Other complex datasets that Boltzmann machines can model:

×	R.	80C	U	25	K	4 同时成时日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日
边	3	\$	×	F	*	シタカダイの平ちが用
U	~	9	8	V	1º	侧产品的有口名的 化化合金
X	*	1	X	251	4	田下司四兄王武田御堂
Ś	Y	fel	1	T	交	अउ प्रत ७ जा १ म २ १ ई द्र म र ध छ ७ ह त्र
Ser.	6	乱	×	X	奈	でれいちをしめってい

NORB (action figures)

Omniglot (characters in many world languages)

イロト イポト イヨト イヨト