
CSC321 Lecture 19: Boltzmann Machines

Roger Grosse

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 1 / 24

Overview

Last time: fitting mixture models

This is a kind of localist representation: each data point is explained by
exactly one category
Distributed representations are much more powerful.

Today, we’ll talk about a different kind of latent variable model,
called Boltzmann machines.

It’s a kind of distributed representation.
The idea is to learn soft constraints between variables.

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 2 / 24

Overview

In Assignment 4, you will fit a mixture model to images of
handwritten digits.

Problem: if you use one component per digit class, there’s still lots of
variability. Each component distribution would have to be really
complicated.

Some 7’s have strokes through them. Should those belong to a
separate mixture component?

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 3 / 24

Boltzmann Machines

A lot of what we know about images consists of soft constraints,
e.g. that neighboring pixels probably take similar values

A Boltzmann machine is a collection of binary random variables which
are coupled through soft constraints. For now, assume they take
values in {−1, 1}.
We represent it as an undirected graph:

The biases determine how much each unit likes to be on (i.e. = 1)

The weights determine how much two units like to take the same
value

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 4 / 24

Boltzmann Machines

A Boltzmann machine defines a probability distribution, where the
probability of any joint configuration is log-linear in a happiness
function H.

p(x) =
1

Z
exp(H(x))

Z =
∑
x

exp(H(x))

H(x) =
∑
i 6=j

wijxixj +
∑
i

bixi

Z is a normalizing constant called the partition function
This sort of distribution is called a Boltzmann distribution, or Gibbs
distribution.

Note: the happiness function is the negation of what physicists call the
energy. Low energy = happy.
In this class, we’ll use happiness rather than energy so that we don’t
have lots of minus signs everywhere.

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 5 / 24

Boltzmann Machines

Example:

x1 x2 x3 w12x1x2 w13x1x3 w23x2x3 b2x2 H(x) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z = 172.420

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 6 / 24

Boltzmann Machines

Marginal probabilities:

p(x1 = 1) =
1

Z
∑
x:x1=1

exp(H(x))

=
20.086 + 0.050 + 0.368 + 2.718

172.420

= 0.135

x1 x2 x3 w12x1x2 w13x1x3 w23x2x3 b2x2 H(x) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z = 172.420

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 7 / 24

Boltzmann Machines

Conditional probabilities:

p(x1 = 1 | x2 = −1) =

∑
x:x1=1,x2=−1 exp(H(x))∑

x:x2=−1 exp(H(x))

=
20.086 + 0.050

0.368 + 0.050 + 20.086 + 0.050

= 0.980

x1 x2 x3 w12x1x2 w13x1x3 w23x2x3 b2x2 H(x) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 8 / 24

Boltzmann Machines

We just saw conceptually how to compute:

the partition function Z
the probability of a configuration, p(x) = exp(H(x))/Z
the marginal probability p(xi)
the conditional probability p(xi | xj)

But these brute force strategies are impractical, since they require
summing over exponentially many configurations!

For those of you who have taken complexity theory: these tasks are
#P-hard.

Two ideas which can make the computations more practical

Obtain approximate samples from the model using Gibbs sampling
Design the pattern of connections to make inference easy

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 9 / 24

Conditional Independence

Two sets of random variables X and Y are conditionally independent
given a third set Z if they are independent under the conditional
distribution given values of Z.

Example:

p(x1, x2, x5 | x3, x4)
∝ exp (w12x1x2 + w13x1x3 + w24x2x4 + w35x3x5 + w45x4x5)

= exp (w12x1x2 + w13x1x3 + w24x2x4)︸ ︷︷ ︸
only depends on x1, x2

exp (w35x3x5 + w45x4x5)︸ ︷︷ ︸
only depends on x5

In this case, x1 and x2 are conditionally independent of x5 given x3
and x4.

In general, two random variables are conditionally independent if they
are in disconnected components of the graph when the observed
nodes are removed.

This is covered in much more detail in CSC 412.
Roger Grosse CSC321 Lecture 19: Boltzmann Machines 10 / 24

Conditional Probabilities

We can compute the conditional probability of xi given its
neighbors in the graph.

For this formula, it’s convenient to make the variables take
values in {0, 1}, rather than {−1, 1}.
Formula for the conditionals (derivation in the lecture notes):

Pr(xi = 1 | xN , xR) = Pr(xi = 1 | xN)

= σ

∑
j∈N

wijxj + bi

Note that it doesn’t matter whether we condition on xR or
what its values are.

This is the same as the formula for the activations in an

MLP with logistic units.

For this reason, Boltzmann machines are sometimes

drawn with bidirectional arrows.

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 11 / 24

Gibbs Sampling

Consider the following process, called Gibbs sampling

We cycle through all the units in the network, and sample each one
from its conditional distribution given the other units:

Pr(xi = 1 | x−i) = σ

∑
j 6=i

wijxj + bi

It’s possible to show that if you run this procedure long enough, the
configurations will be distributed approximately according to the
model distribution.

Hence, we can run Gibbs sampling for a long time, and treat the
configurations like samples from the model

To sample from the conditional distribution p(xi | xA), for some set
xA, simply run Gibbs sampling with the variables in xA clamped

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 12 / 24

Learning a Boltzmann Machine

A Boltzmann machine is parameterized by weights and biases, just
like a neural net.
So far, we’ve taken these for granted. How can we learn them?
For now, suppose all the units correspond to observables (e.g. image
pixels), and we have a training set {x(1), . . . , x(N)}.
Log-likelihood:

` =
1

N

N∑
i=1

log p(x(i))

=
1

N

N∑
i=1

[H(x(i))− logZ]

=

[
1

N

N∑
i=1

H(x(i))

]
− logZ

Want to increase the average happiness and decrease logZ
Roger Grosse CSC321 Lecture 19: Boltzmann Machines 13 / 24

Learning a Boltzmann Machine

Derivatives of average happiness:

∂

∂wjk

1

N

∑
i

H(x(i)) =
1

N

∑
i

∂

∂wjk
H(x(i))

=
1

N

∑
i

∂

∂wjk

∑
j ′ 6=k ′

wj ′,k ′xj ′xk ′ +
∑
j ′

bj ′xj ′

=

1

N

∑
i

xjxk

= Edata[xjxk]

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 14 / 24

Learning a Boltzmann Machine

Derivatives of logZ:

∂

∂wjk
logZ =

∂

∂wjk
log
∑
x

exp(H(x))

=

∂
∂wjk

∑
x exp(H(x))∑

x exp(H(x))

=

∑
x exp(H(x)) ∂

∂wjk
H(x)

Z

=
∑
x

p(x)
∂

∂wjk
H(x)

=
∑
x

p(x)xjxk

= Emodel[xjxk]

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 15 / 24

Learning a Boltzmann Machine

Putting this together:

∂`

∂wjk
= Edata[xjxk]− Emodel[xjxk]

Intuition: if xj and xk co-activate more often in the data than in
samples from the model, then increase the weight to make them
co-activate more often.

The two terms are called the positive and negative statistics

Can estimate Edata[xjxk] stochastically using mini-batches

Can estimate Emodel[xjxk] by running a long Gibbs chain

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 16 / 24

Restricted Boltzmann Machines

We’ve assumed the Boltzmann machine was fully observed. But more
commonly, we’ll have hidden units as well.

A classic architecture called the restricted Boltzmann machine
assumes a bipartite graph over the visible units and hidden units:

We would like the hidden units to learn more abstract features of the
data.

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 17 / 24

Restricted Boltzmann Machines

Our maximum likelihood update rule generalizes to the case of
unobserved variables (derivation in the notes)

∂`

∂wjk
= Edata[vjhk]− Emodel[vjhk]

Here, the data distribution refers to the conditional distribution given
v

Edata[vjhk] =
1

N

N∑
i=1

v
(i)
j E[hk | v(i)]

We’re filling in the hidden variables using their posterior expectations,
just like in E-M!

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 18 / 24

Restricted Boltzmann Machines

Under the bipartite structure, the hidden units are all conditionally
independent given the visibles, and vice versa:

Since the units are independent, we can vectorize the computations
just like for MLPs:

h̃ = E[h | v] = σ (Wv + bh)

ṽ = E[v |h] = σ
(
W>h + bv

)
Vectorized updates:

∂`

∂W
= Ev∼data[h̃v>]− Ev,h∼model[hv

>]

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 19 / 24

Restricted Boltzmann Machines

To estimate the model statistics for the negative update, start from
the data and run a few steps of Gibbs sampling.

By the conditional independence property, all the hiddens can be
sampled in parallel, and then all the visibles can be sampled in parallel.

This procedure is called contrastive divergence.

It’s a terrible approximation to the model distribution, but it appears
to work well anyway.

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 20 / 24

Restricted Boltzmann Machines

Some features learned by an RBM on MNIST:

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 21 / 24

Restricted Boltzmann Machines

Some features learned on MNIST with an additional sparsity constraint (so
that each hidden unit activates only rarely):

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 22 / 24

Restricted Boltzmann Machines

RBMs vs. mixture of Bernoullis as generative models of MNIST

Log-likelihood scores on the test set:

MoB: -137.64 nats
RBM: -86.34 nats
50 nat difference!

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 23 / 24

Restricted Boltzmann Machines

Other complex datasets that Boltzmann machines can model:

Roger Grosse CSC321 Lecture 19: Boltzmann Machines 24 / 24

