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Overview

@ Some examples of situations where you'd use unupservised learning

e You want to understand how a scientific field has changed over time.
You want to take a large database of papers and model how the
distribution of topics changes from year to year. But what are the
topics?

e You're a biologist studying animal behavior, so you want to infer a
high-level description of their behavior from video. You don't know the
set of behaviors ahead of time.

e You want to reduce your energy consumption, so you take a time series
of your energy consumption over time, and try to break it down into
separate components (refrigerator, washing machine, etc.).

@ Common theme: you have some data, and you want to infer the
causal structure underlying the data.

@ This structure is latent, which means it's never observed.
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Overview

@ In last lecture, we looked at density modeling where all the random
variables were fully observed.
@ The more interesting case is when some of the variables are latent, or
never observed. These are called latent variable models.
o Today's lecture: mixture models, where the latent variable comes from

a small discrete set
o Next week: latent variable models which have distributed

representations — these are much more powerful
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Clustering

@ Sometimes the data form clusters, where examples within a cluster are
similar to each other, and examples in different clusters are dissimilar:

@ Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.
@ Grouping data points into clusters, with no labels, is called clustering

e E.g. clustering machine learning papers based on topic (deep learning,
Bayesian models, etc.)

o This is an overly simplistic model — more on that later
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K-Means

o First, let's look at a simple clustering algorithm, called k-means.
@ This is an iterative algorithm. In each iteration, we keep track of:
e An assignment of data points to clusters
e The center of each cluster
@ Start with random cluster locations, then alternate between:
e Assignment step: assign each data point to the nearest cluster
o Refitting step: move each cluster center to the average of its data

points
e  Assignments e Refitted
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K-Means

@ Each iteration can be shown to decrease a particular cost function: the sum of
squared distances from data points to their corresponding cluster centers.
e More on this in CSC411.
@ Problem: what if the clusters aren’t spherical?

0 05 1

@ Let's instead treat clustering as a distribution modeling problem.
o Last lecture, we fit Gaussian distributions to data.
o To model multimodal distributions, let's fit a mixture model, where
each data point belongs to a different component.
e E.g., in a mixture of Gaussians, each data point comes from one of
several different Gaussian distributions.
e We don't need to use Gaussians — we can pick whatever distribution

best represents our data.
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Mixture of Gaussians

@ In a mixture model, we define a generative process where we first
sample the latent variable z, and then sample the observations x from
a distribution which depends on z.

p(z,x) = p(z) p(x| 2).

o E.g. mixture of Gaussians:

z ~ Multinomial(0.7,0.3) (1)
x|z =1~ Gaussian(0, 1) (2)
x|z =2 ~ Gaussian(6, 2) (3)

@ The probabilities used to sample z are called the mixing proportions.
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Mixture of Gaussians

Example:

— Component 1

— Component 2

— Mixture

—— Posterior prob z=1
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@ The probability density function over x is defined by marginalizing, or
summing out, z:

K
p(x) = > Pr(z = k) plx| z = k)
k=1
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Posterior Inference

@ Suppose we know the model parameters (mixture probabilities and
component means and variances)

@ In posterior inference, we infer the posterior over z using Bayes’ Rule:
p(z|x) o< p(z) p(x | 2).
@ For a univariate Gaussian mixture with mixing proportions

m 'N(X€u1701)

plz=1|x) = m1 - N(x; p1, 01) + 72 - N(x; 2, 02)
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Posterior Inference

Example:

— Component 1

— Component 2

— Mixture

—— Posterior prob z=1
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Posterior Inference

@ Sometimes the observables aren't actually observed — then we say
they're missing
@ One use of probabilistic models is to make predictions about missing
data
e E.g. image completion, which you'll do in Assignment 4
@ Analogously to Bayesian parameter estimation, we use the posterior
predictive distribution:

x2|x1)—sz]x1 (x2 |z, x1).

posterior

@ If the dimensions of x are conditionally independent given z, this is
just a reweighting of the original mixture model, where we use the
posterior rather than the prior.

p(xe | x1) = ZP(Z |x1)  plx|2)

posterior component PDF
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Posterior Inference

Example:
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Fully worked-through example in the lecture notes.
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Parameter Learning

@ Now let's talk about learning. We need to fit two sets of paramters:
o The mixture probabilities 7y = Pr(z = k)
e The mean puy and standard deviation o for each component

@ If someone hands us the values of all the latent variables, it's easy to
fit the parameters using maximum likelihood.

N
L= Iong(z(’)
i=1
N . . .

—Zlogp )) + log p(x ()!Z())

Hka Ok
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Parameter Learning
o Let ") be the indicator variable for z() = k. This is called the

responsibilitiy
@ Solving for the mixing probabilities:

f—zlogp )) + log p(x() | 211)

= const + Z log p(z1)
i=1

@ This is just the maximum likelihood problem for the multinomial
distirbution. The solution is just the empirical proabilities, which we

can write as:
1o~ ()
1
Tk < N Z; rk
=
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Parameter Learning

@ Solving for the mean parameter ) for component k:

E—Zlogp )) +log p(x | 217}

N

= const + Z log p(x\ | z(1)
i=1

N
= const + Z r,E') log N (x7; 11y, o)
i=1
@ This is just maximum likelihood for the parameters of a Gaussian
distribution, where only certain data points count.

@ Solution:

Zl 1I’IE)X()
Mk < N 6)

dim1
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Expectation-Maximization

@ We've seen how to do two things:
o Given the model parameters, compute the posterior over the latent
variables
e Given the latent variables, find the maximum likelihood parameters
@ But we don't know the parameters or latent variables, so we have a
chicken-and-egg problem.

@ Remember k-means? We iterated between an assignment step and a
refitting step.

@ Expectation-Maximization (E-M) is an analogous procedure which
alternates bewteen two steps:

o Expectation step (E-step): Compute the posterior expectations of
the latent variables z

o Maximization step (M-step): Solve for the maximum likelihood
parameters given the full set of x's and z's
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Expectation-Maximization

E-step:
@ This is like the assignment step in k-means, except that we assign
fractional responsibilities.

rlgi) — Pr(z) = k| x()y
OCWk'N(X(i):Mk,Uk)

@ This is just posterior inference, which we've already talked about.
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Expectation-Maximization

M-step:

@ Maximum likelihood with fractional counts:

O%argmaxZZr [IogPr (2 = k) + log p(x() | ) = k)
i=1 k=1

@ The maximum likelihood formulas we already saw don't depend on
the responsibilities being 0 or 1. They also work with fractional
responsibilities. E.g.,

1~ ()
Tk <— N Z_; rk
SN, A0

Mk < N 6)

1
doicilk
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Expectation-Maximization

@ We initialize the model parameters randomly and then repeatedly
apply the E-step and M-step.
@ Each step can be shown to increase the log-likelihood, but this is
beyond the scope of the class.
e Optional mathematical justification in the lecture notes, in case you're
interested.
e Also, there's a full explanation in CSC 411.
o Next lecture, we'll fit a different latent variable model by doing gradient
descent on the parameters. This will turn out to have an EM-like flavor.
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Example

@ Suppose we recorded a bunch of temperatures in March for Toronto
and Miami, but forgot to record which was which, and they're all
jumbled together.

14

@ Let’s try to separate them out using a mixture of Gaussians and E-M.
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Example

Random initialization

14,

10
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Example

Step 1:

E-step M-step

14 14
12 12
10 10

8| 8|
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Example

Step 2:

E-step M-step

14 14
12 12
10 10

8| 8|

6 6

4 4

2 2|

—OZD -10 0 10 20 30 40 —010 -10 0 10 20 30 40
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Example

Step 3:

E-step M-step

14 14
12 12
10 10

8| 8|
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4 4
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—OZD -10 0 10 20 30 40 —010 -10 0 10 20 30 40
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Example

Step 10:

E-step M-step

14 1
1 14
12
10
10
8
8
6
6
4 4
2 2
) 0
220 -10 0 10 20 30 20 220 -10 0 10 20 30 20
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Expectation-Maximization

@ We used univariate Gaussian components for simplicity, but other

@ In Programming Assignment 4, you will fit a mixture of Bernoullis

distributions are possible.
Multivariate Gaussians:

2

model.
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Odds and Ends

@ E-M can get stuck in local optima.

o Initialize from k-means, which can be more robust in practice
e Use multiple random restarts and pick the one with the best objective
function

@ Mixture models are a localist representation: the latent variables take
values in a small discrete set.
o We can use more complex distributions over latent variables to get a
distributed representation.
e The difficulty is posterior inference: while this is easy to do exactly for
mixture models, it's intractable in general, and we'll need to make
approximations.
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