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Overview

Some examples of situations where you’d use unupservised learning

You want to understand how a scientific field has changed over time.
You want to take a large database of papers and model how the
distribution of topics changes from year to year. But what are the
topics?
You’re a biologist studying animal behavior, so you want to infer a
high-level description of their behavior from video. You don’t know the
set of behaviors ahead of time.
You want to reduce your energy consumption, so you take a time series
of your energy consumption over time, and try to break it down into
separate components (refrigerator, washing machine, etc.).

Common theme: you have some data, and you want to infer the
causal structure underlying the data.

This structure is latent, which means it’s never observed.
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Overview

In last lecture, we looked at density modeling where all the random
variables were fully observed.

The more interesting case is when some of the variables are latent, or
never observed. These are called latent variable models.

Today’s lecture: mixture models, where the latent variable comes from
a small discrete set
Next week: latent variable models which have distributed
representations — these are much more powerful
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Clustering

Sometimes the data form clusters, where examples within a cluster are
similar to each other, and examples in different clusters are dissimilar:

Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

Grouping data points into clusters, with no labels, is called clustering

E.g. clustering machine learning papers based on topic (deep learning,
Bayesian models, etc.)

This is an overly simplistic model — more on that later
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K-Means

First, let’s look at a simple clustering algorithm, called k-means.
This is an iterative algorithm. In each iteration, we keep track of:

An assignment of data points to clusters
The center of each cluster

Start with random cluster locations, then alternate between:
Assignment step: assign each data point to the nearest cluster
Refitting step: move each cluster center to the average of its data
points
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K-Means

Each iteration can be shown to decrease a particular cost function: the sum of

squared distances from data points to their corresponding cluster centers.

More on this in CSC411.
Problem: what if the clusters aren’t spherical?

Let’s instead treat clustering as a distribution modeling problem.

Last lecture, we fit Gaussian distributions to data.
To model multimodal distributions, let’s fit a mixture model, where
each data point belongs to a different component.
E.g., in a mixture of Gaussians, each data point comes from one of
several different Gaussian distributions.
We don’t need to use Gaussians — we can pick whatever distribution
best represents our data.
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Mixture of Gaussians

In a mixture model, we define a generative process where we first
sample the latent variable z , and then sample the observations x from
a distribution which depends on z .

p(z , x) = p(z) p(x | z).

E.g. mixture of Gaussians:

z ∼ Multinomial(0.7, 0.3) (1)

x | z = 1 ∼ Gaussian(0, 1) (2)

x | z = 2 ∼ Gaussian(6, 2) (3)

The probabilities used to sample z are called the mixing proportions.
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Mixture of Gaussians

Example:

The probability density function over x is defined by marginalizing, or
summing out, z :

p(x) =
K∑

k=1

Pr(z = k) p(x | z = k)

Roger Grosse CSC321 Lecture 18: Mixture Modeling 8 / 27



Posterior Inference

Suppose we know the model parameters (mixture probabilities and
component means and variances)

In posterior inference, we infer the posterior over z using Bayes’ Rule:

p(z | x) ∝ p(z) p(x | z).

For a univariate Gaussian mixture with mixing proportions π

p(z = 1 | x) =
π1 · N (x ;µ1, σ1)

π1 · N (x ;µ1, σ1) + π2 · N (x ;µ2, σ2)
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Posterior Inference

Example:

Roger Grosse CSC321 Lecture 18: Mixture Modeling 10 / 27



Posterior Inference

Sometimes the observables aren’t actually observed — then we say
they’re missing
One use of probabilistic models is to make predictions about missing
data

E.g. image completion, which you’ll do in Assignment 4

Analogously to Bayesian parameter estimation, we use the posterior
predictive distribution:

p(x2 | x1) =
∑
z

p(z | x1)︸ ︷︷ ︸
posterior

p(x2 | z , x1).

If the dimensions of x are conditionally independent given z , this is
just a reweighting of the original mixture model, where we use the
posterior rather than the prior.

p(x2 | x1) =
∑
z

p(z | x1)︸ ︷︷ ︸
posterior

p(x2 | z)︸ ︷︷ ︸
component PDF

.
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Posterior Inference

Example:

Fully worked-through example in the lecture notes.
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Parameter Learning

Now let’s talk about learning. We need to fit two sets of paramters:

The mixture probabilities πk = Pr(z = k)
The mean µk and standard deviation σk for each component

If someone hands us the values of all the latent variables, it’s easy to
fit the parameters using maximum likelihood.

` = log
N∏
i=1

p(z(i), x (i))

= log
N∏
i=1

p(z(i))p(x (i) | z(i))

=
N∑
i=1

log p(z(i))︸ ︷︷ ︸
π

+ log p(x (i) | z(i))︸ ︷︷ ︸
µk , σk
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Parameter Learning

Let r
(i)
k be the indicator variable for z(i) = k . This is called the

responsibilitiy

Solving for the mixing probabilities:

` =
N∑
i=1

log p(z(i)) + log p(x (i) | z(i))

= const +
N∑
i=1

log p(z(i))

This is just the maximum likelihood problem for the multinomial
distirbution. The solution is just the empirical proabilities, which we
can write as:

πk ←
1

N

N∑
i=1

r
(i)
k
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Parameter Learning

Solving for the mean parameter µk for component k :

` =
N∑
i=1

log p(z (i)) + log p(x (i) | z (i))

= const +
N∑
i=1

log p(x (i) | z (i))

= const +
N∑
i=1

r
(i)
k logN (x (i);µk , σk)

This is just maximum likelihood for the parameters of a Gaussian
distribution, where only certain data points count.

Solution:

µk ←
∑N

i=1 r
(i)
k x (i)∑N

i=1 r
(i)
k

Roger Grosse CSC321 Lecture 18: Mixture Modeling 15 / 27



Expectation-Maximization

We’ve seen how to do two things:

Given the model parameters, compute the posterior over the latent
variables
Given the latent variables, find the maximum likelihood parameters

But we don’t know the parameters or latent variables, so we have a
chicken-and-egg problem.

Remember k-means? We iterated between an assignment step and a
refitting step.

Expectation-Maximization (E-M) is an analogous procedure which
alternates bewteen two steps:

Expectation step (E-step): Compute the posterior expectations of
the latent variables z
Maximization step (M-step): Solve for the maximum likelihood
parameters given the full set of x ’s and z ’s
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Expectation-Maximization

E-step:

This is like the assignment step in k-means, except that we assign
fractional responsibilities.

r
(i)
k ← Pr(z(i) = k | x (i))
∝ πk · N (x (i);µk , σk)

This is just posterior inference, which we’ve already talked about.
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Expectation-Maximization

M-step:

Maximum likelihood with fractional counts:

θ ← arg max
θ

N∑
i=1

K∑
k=1

r
(i)
k

[
logPr(z(i) = k) + log p(x(i) | z(i) = k)

]
The maximum likelihood formulas we already saw don’t depend on
the responsibilities being 0 or 1. They also work with fractional
responsibilities. E.g.,

πk ←
1

N

N∑
i=1

r
(i)
k

µk ←
∑N

i=1 r
(i)
k x (i)∑N

i=1 r
(i)
k
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Expectation-Maximization

We initialize the model parameters randomly and then repeatedly
apply the E-step and M-step.

Each step can be shown to increase the log-likelihood, but this is
beyond the scope of the class.

Optional mathematical justification in the lecture notes, in case you’re
interested.
Also, there’s a full explanation in CSC 411.
Next lecture, we’ll fit a different latent variable model by doing gradient
descent on the parameters. This will turn out to have an EM-like flavor.
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Example

Suppose we recorded a bunch of temperatures in March for Toronto
and Miami, but forgot to record which was which, and they’re all
jumbled together.

Let’s try to separate them out using a mixture of Gaussians and E-M.
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Example

Random initialization

Roger Grosse CSC321 Lecture 18: Mixture Modeling 21 / 27



Example

Step 1:

E-step M-step
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Example

Step 2:

E-step M-step
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Example

Step 3:

E-step M-step
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Example

Step 10:

E-step M-step
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Expectation-Maximization

We used univariate Gaussian components for simplicity, but other
distributions are possible.

Multivariate Gaussians:

In Programming Assignment 4, you will fit a mixture of Bernoullis
model.
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Odds and Ends

E-M can get stuck in local optima.

Initialize from k-means, which can be more robust in practice
Use multiple random restarts and pick the one with the best objective
function

Mixture models are a localist representation: the latent variables take
values in a small discrete set.

We can use more complex distributions over latent variables to get a
distributed representation.
The difficulty is posterior inference: while this is easy to do exactly for
mixture models, it’s intractable in general, and we’ll need to make
approximations.
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