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Overview

So far in this course: mainly supervised learning

Language modeling was our one unsupervised task; we broke it down
into a series of prediction tasks

This was an example of distribution estimation: we’d like to learn a
distribution which looks as much as possible like the input data.

Next two lectures: basic concepts in unsupervised learning and
probabilistic modeling

This will be review if you’ve taken 411.

Two lectures after that: more recent approaches to unsupervised
learning
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Maximum Likelihood

We already used maximum likelihood in this course for training
language models. Let’s cover it in a bit more generality.

Motivating example: estimating the parameter of a biased coin

You flip a coin 100 times. It lands heads NH = 55 times and tails
NT = 45 times.
What is the probability it will come up heads if we flip again?

Model: flips are independent Bernoulli random variables with
parameter θ.

Assume the observations are independent and identically distributed
(i.i.d.)
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Maximum Likelihood

The likelihood function is the probability of the observed data, as a
function of θ.

In our case, it’s the probability of a particular sequence of H’s and T’s.

Under the Bernoulli model with i.i.d. observations,

L(θ) = p(D) = θNH (1− θ)NT

This takes very small values (in this case,
L(0.5) = 0.5100 ≈ 7.9× 10−31)

Therefore, we usually work with log-likelihoods:

`(θ) = log L(θ) = NH log θ + NT log(1− θ)

Here, `(0.5) = log 0.5100 = 100 log 0.5 = −69.31
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Maximum Likelihood

NH = 55, NT = 45
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Maximum Likelihood

Good values of θ should assign high probability to the observed data.
This motivates the maximum likelihood criterion.

Remember how we found the optimal solution to linear regression by
setting derivatives to zero? We can do that again for the coin
example.

d`

dθ
=

d

dθ
(NH log θ + NT log(1− θ))

=
NH

θ
− NT

1− θ

Setting this to zero gives the maximum likelihood estimate:

θ̂ML =
NH

NH + NT
,
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Maximum Likelihood

This is equivalent to minimizing cross-entropy. Let ti = 1 for heads
and ti = 0 for tails.

LCE = −
∑
i

ti log θ − (1− ti ) log(1− θ)

= −NH log θ − NT log(1− θ)

= −`(θ)
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Maximum Likelihood

Recall the Gaussian, or normal,
distribution:

N (x ;µ, σ) =
1√
2πσ

exp

(
− (x − µ)2

σ2

)
The Central Limit Theorem says
that sums of lots of independent
random variables are approximately
Gaussian.

In machine learning, we use
Gaussians a lot because they make
the calculations easy.
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Maximum Likelihood

Suppose we want to model the distribution of temperatures in
Toronto in March, and we’ve recorded the following observations:

-2.5 -9.9 -12.1 -8.9 -6.0 -4.8 2.4

Assume they’re drawn from a Gaussian distribution with known
standard deviation σ = 5, and we want to find the mean µ.
Log-likelihood function:

`(µ) = log
N∏
i=1

[
1√

2π · σ
exp

(
−(x (i) − µ)2

2σ2

)]

=
N∑
i=1

log

[
1√

2π · σ
exp

(
−(x (i) − µ)2

2σ2

)]

=
N∑
i=1

−1

2
log 2π − log σ︸ ︷︷ ︸
constant!

−(x (i) − µ)2

2σ2
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Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

0 =
d`

dµ
= − 1

2σ2

N∑
i=1

d

dµ
(x (i) − µ)2

=
1

σ2

N∑
i=1

x (i) − µ

Solving we get µ = 1
N

∑N
i=1 x

(i)

This is just the mean of the observed values, or the empirical mean.
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Maximum Likelihood

In general, we don’t know the true standard deviation σ, but we can
solve for it as well.

Set the partial derivatives to zero, just like in linear regression.

0 =
∂`

∂µ
= −

1

σ2

N∑
i=1

x(i) − µ

0 =
∂`

∂σ
=

∂

∂σ

[
N∑
i=1

−
1

2
log 2π − log σ −

1

2σ2
(x(i) − µ)2

]

=
N∑
i=1

−
1

2

∂

∂σ
log 2π −

∂

∂σ
log σ −

∂

∂σ

1

2σ
(x(i) − µ)2

=
N∑
i=1

0−
1

σ
+

1

σ3
(x(i) − µ)2

= −
N

σ
+

1

σ3

N∑
i=1

(x(i) − µ)2

µ̂ML =
1

N

N∑
i=1

x(i)

σ̂ML =

√√√√ 1

N

N∑
i=1

(x(i) − µ)2
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Maximum Likelihood

So far, maximum likelihood has told us to use empirical counts or
statistics:

Bernoulli: θ = NH

NH+NT

Gaussian: µ = 1
N

∑
x (i), σ2 = 1

N

∑
(x (i) − µ)2

This doesn’t always happen; e.g. for the neural language model, there
was no closed form, and we needed to use gradient descent.

But these simple examples are still very useful for thinking about
maximum likelihood.
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Data Sparsity

Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

E.g., what if you flip the coin twice and get H both times?

θML =
NH

NH + NT
=

2

2 + 0
= 1

Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.

If you observe a single T in the test set, the likelihood is −∞.
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Bayesian Parameter Estimation

In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

The Bayesian approach treats the parameters as random variables as
well.

To define a Bayesian model, we need to specify two distributions:

The prior distribution p(θ), which encodes our beliefs about the
parameters before we observe the data
The likelihood p(D |θ), same as in maximum likelihood

When we update our beliefs based on the observations, we compute
the posterior distribution using Bayes’ Rule:

p(θ | D) =
p(θ)p(D |θ)∫

p(θ′)p(D |θ′)dθ′
.

We rarely ever compute the denominator explicitly.
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Bayesian Parameter Estimation

Let’s revisit the coin example. We already know the likelihood:

L(θ) = p(D) = θNH (1− θ)NT

It remains to specify the prior p(θ).

We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.
But our experience tells us 0.5 is more likely than 0.99. One
particularly useful prior that lets us specify this is the beta distribution:

p(θ; a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

This notation for proportionality lets us ignore the normalization
constant:

p(θ; a, b) ∝ θa−1(1− θ)b−1.
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Bayesian Parameter Estimation

Beta distribution for various values of a, b:

Some observations:

The expectation E[θ] = a/(a + b).
The distribution gets more peaked when a and b are large.
The uniform distribution is the special case where a = b = 1.

The main thing the beta distribution is used for is as a prior for the Bernoulli
distribution.
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Bayesian Parameter Estimation

Computing the posterior distribution:

p(θ | D) ∝ p(θ)p(D |θ)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
= θa−1+NH (1− θ)b−1+NT .

This is just a beta distribution with parameters NH + a and NT + b.

The posterior expectation of θ is:

E[θ | D] =
NH + a

NH + NT + a + b

The parameters a and b of the prior can be thought of as
pseudo-counts.

The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it’s very
useful.
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting
NH = 2, NT = 0

Large data setting
NH = 55, NT = 45

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation

What do we actually do with the posterior?

The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D′ | D) =

∫
p(θ | D)p(D′ |θ) dθ. (1)

For the coin flip example:

θpred = Pr(x ′ = H | D)

=

∫
p(θ | D)Pr(x ′ = H | θ)dθ

=

∫
Beta(θ;NH + a,NT + b) · θ dθ

= EBeta(θ;NH+a,NT+b)[θ]

=
NH + a

NH + NT + a+ b
, (2)
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Bayesian Parameter Estimation

Bayesian estimation of the mean temperature in Toronto

Assume observations are
i.i.d. Gaussian with known
standard deviation σ and
unknown mean µ

Broad Gaussian prior over µ,
centered at 0

We can compute the posterior
and posterior predictive
distributions analytically (full
derivation in notes)

Why is the posterior predictive
distribution more spread out than
the posterior distribution?
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Bayesian Parameter Estimation

Comparison of maximum likelihood and Bayesian parameter estimation

The Bayesian approach deals better with data sparsity

Maximum likelihood is an optimization problem, while Bayesian
parameter estimation is an integration problem

This means maximum likelihood is much easier in practice, since we
can just do gradient descent
Automatic differentiation packages make it really easy to compute
gradients
There aren’t any comparable black-box tools for Bayesian parameter
estimation (although Stan can do quite a lot)
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Maximum A-Posteriori Estimation

Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

This converts the Bayesian parameter estimation problem into a
maximization problem

θ̂MAP = arg max
θ

p(θ | D)

= arg max
θ

p(θ,D)

= arg max
θ

p(θ) p(D |θ)

= arg max
θ

log p(θ) + log p(D |θ)
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Maximum A-Posteriori Estimation

Joint probability in the coin flip example:

log p(θ,D) = log p(θ) + log p(D | θ)
= const+ (a− 1) log θ + (b − 1) log(1− θ) + NH log θ + NT log(1− θ)
= const+ (NH + a− 1) log θ + (NT + b − 1) log(1− θ)

Maximize by finding a critical point

0 =
d

dθ
log p(θ,D) =

NH + a− 1

θ
− NT + b − 1

1− θ

Solving for θ,

θ̂MAP =
NH + a− 1

NH + NT + a + b − 2
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula NH = 2,NT = 0 NH = 55,NT = 45

θ̂ML
NH

NH+NT
1 55

100 = 0.55

θpred
NH+a

NH+NT+a+b
4
6 ≈ 0.67 57

104 ≈ 0.548

θ̂MAP
NH+a−1

NH+NT+a+b−2
3
4 = 0.75 56

102 ≈ 0.549

θ̂MAP assigns nonzero probabilities as long as a, b > 1.
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Maximum A-Posteriori Estimation

Comparison of predictions in the Toronto temperatures example

1 observation 7 observations
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