
CSC321 Lecture 12: Image Classification

Roger Grosse

Roger Grosse CSC321 Lecture 12: Image Classification 1 / 25



Midterm

Tuesday, Feb. 28, during class

50 minutes

What you’re responsible for:

Lectures, up through L12 (this one)
Tutorials, up through T6 (this week)
Weekly homeworks, up through HW6
Programming assignments, up through PA2

Emphasis on concepts covered in multiple of the above

There will be some conceptual questions and some mathematical
questions (similar to individual steps of the weekly homeworks)

No formal proofs necessary, but you should justify your answers.

Practice exams will be posted.
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Mid-Course Survey

Please take 10 minutes to fill out the mid-course survey.
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Overview

Object recognition is the task of identifying which object category is
present in an image.

It’s challenging because objects can differ widely in position, size,
shape, appearance, etc., and we have to deal with occlusions, lighting
changes, etc.

Why we care about it

Direct applications to image search
Closely related to object detection, the task of locating all instances of
an object in an image

E.g., a self-driving car detecting pedestrians or stop signs

For the past 5 years, all of the best object recognizers have been
various kinds of conv nets.
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Recognition Datasets

In order to train and evaluate a machine learning system, we need to
collect a dataset. The design of the dataset can have major
implications.

Some questions to consider:

Which categories to include?
Where should the images come from?
How many images to collect?
How to normalize (preprocess) the images?
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Image Classification

Conv nets are just one of many possible approaches to image
classification. However, they have been by far the most successful for
the last 5 years.

Biggest image classification “advances” of the last two decades

Datasets have gotten much larger (because of digital cameras and the
Internet)
Computers got much faster

Graphics processing units (GPUs) turned out to be really good at
training big neural nets; they’re generally about 30 times faster than
CPUs.

As a result, we could fit bigger and bigger neural nets.
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MNIST Dataset

MNIST dataset of handwritten digits

Categories: 10 digit classes
Source: Scans of handwritten zip codes from envelopes
Size: 60,000 training images and 10,000 test images, grayscale, of size
28 × 28
Normalization: centered within in the image, scaled to a consistent
size

The assumption is that the digit recognizer would be part of a larger
pipeline that segments and normalizes images.

In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.

It was good enough to be used in a system for automatically reading
numbers on checks.
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Caltech101

Caltech101 was the first major object recognition dataset, collected in
2003.

Design decisions:

Categories: 101 object categories; open the dictionary to random
pages and select from nouns which were associated with images
Source: find candidates with Google Image Search, hand-select the
ones that actually represent the object category
Number of examples: as many as possible per category

most machine learning benchmarking is done using a fixed number of
training examples per category (usually between 1 and 20)

Normalization:

Scale to be 300 pixels wide
Flip so that object is facing the same direction
Rotate certain object categories because their proposed algorithm
couldn’t handle vertical objects
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Caltech101
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Caltech101

Beware of dataset biases. These are idiosyncrasies of a dataset resulting from how
it was collected or normalized.

An algorithm can appear to have good training and test error, but fail to
generalize if the training data doesn’t resemble the real world.

E.g., here are the averages of all the images from some of the categories. The sizes
and locations are a lot more regular than you would expect in the “real world.”
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Caltech101

There was lots of work on Caltech101 for 5 years or so, but it quickly
became clear that dataset biases made it too gameable.

By contrast, MNIST is still a productive source of insights 20 years
after its introduction!
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ImageNet

ImageNet is the modern object recognition benchmark dataset. It was
introduced in 2009, and has led to amazing progress in object recognition
since then.
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ImageNet

Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
an annual benchmark competition for object recognition algorithms

Design decisions

Categories: Taken from a lexical database called WordNet

WordNet consists of “synsets”, or sets of synonymous words
They tried to use as many of these as possible; almost 22,000 as of
2010
Of these, they chose the 1000 most common for the ILSVRC
The categories are really specific, e.g. hundreds of kinds of dogs

Size: 1.2 million full-sized images for the ILSVRC
Source: Results from image search engines, hand-labeled by
Mechanical Turkers

Labeling such specific categories was challenging; annotators had to be
given the WordNet hierarchy, Wikipedia, etc.

Normalization: none, although the contestants are free to do
preprocessing
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ImageNet

Images and object categories vary on
a lot of dimensions

Russakovsky et al.
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ImageNet

Size on disk:

MNIST
60 MB

ImageNet
50 GB
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LeNet

Here’s the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:The!architecture!of!LeNet5!
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Size of a Conv Net

Ways to measure the size of a network:

Number of units. This is important because

the activations need to
be stored in memory during training (i.e. backprop).
Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.
Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

We saw that a fully connected layer with M input units and N output
units has MN connections and MN weights.

The story for conv nets is more complicated.
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Size of a Conv Net

fully connected layer convolution layer
# output units WHI WHI

# weights W 2H2IJ K 2IJ
# connections W 2H2IJ WHK 2IJ
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Size of a Conv Net

Sizes of layers in LeNet:

Layer Type # units # connections # weights

C1 convolution 4704 117,600 150
S2 pooling 1176 4704 0
C3 convolution 1600 240,000 2400
S4 pooling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output fully connected 10 840 840

Conclusions?
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Size of a Conv Net

Rules of thumb:

Most of the units and connections are in the convolution layers.
Most of the weights are in the fully connected layers.

If you try to make layers larger, you’ll run up against various resource
limitations (i.e. computation time, memory)

Conv nets have gotten a LOT larger since 1998!
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Size of a Conv Net

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000
image size 16 × 16 28 × 28 256 × 256 × 3

training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000

parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million

total operations 11 billion 412 billion 200 quadrillion (est.)
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AlexNet

AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to
guess the right category).

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

(Krizhevsky et al., 2012)

They used lots of tricks we’ve covered in this course (ReLU units, weight decay,
data augmentation, SGD with momentum, dropout)

AlexNet’s stunning performance on the ILSVRC is what set off the deep learning
boom of the last 5 years.
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GoogLeNet

GoogLeNet, 2014.

22 weight layers

Fully convolutional (no fully
connected layers)

Convolutions are broken down
into a bunch of smaller
convolutions

6.6% test error on ImageNet

(Szegedy et al., 2014)Roger Grosse CSC321 Lecture 12: Image Classification 23 / 25



GoogLeNet

They were really aggressive about cutting the number of parameters.
Motivation: train the network on a large cluster, run it on a cell phone

Memory at test time is the big constraint.
Having lots of units is OK, since the activations only need to be stored
at training time (for backpropagation).
Parameters need to be stored both at training and test time, so these
are the memory bottleneck.

How they did it

No fully connected layers (remember, these have most of the weights)
Break down convolutions into multiple smaller convolutions (since this
requires fewer parameters total)

GoogLeNet has “only” 2 million parameters, compared with 60 million
for AlexNet
This turned out to improve generalization as well. (Overfitting can still
be a problem, even with over a million images!)
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Classification

ImageNet results over the years. Note that errors are top-5 errors (the network gets to
make 5 guesses).

Year Model Top-5 error
2010 Hand-designed descriptors + SVM 28.2%
2011 Compressed Fisher Vectors + SVM 25.8%
2012 AlexNet 16.4%
2013 a variant of AlexNet 11.7%
2014 GoogLeNet 6.6%
2015 deep residual nets 4.5%

We’ll cover deep residual nets later in the course, since they require an idea we haven’t
covered yet.

Human-performance is around 5.1%.

They stopped running the object recognition competition because the performance is

already so good.

Roger Grosse CSC321 Lecture 12: Image Classification 25 / 25


