
CSC321 Lecture 10: Distributed Representations

Roger Grosse

Roger Grosse CSC321 Lecture 10: Distributed Representations 1 / 28

Overview

So far, the course has focused on the math of training neural nets.

Now let’s switch gears and talk look at particular neural net
architectures and how they can be used to understand various kinds
of data. This will take us the next 4 weeks.

Today’s lecture: learning distributed representations of words

Roger Grosse CSC321 Lecture 10: Distributed Representations 2 / 28

Language Modeling

Motivation: suppose we want to build a speech recognition system.

We’d like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:

An observation model, represented as p(a | s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

A prior, represented as p(s), which tells us how likely a given sentence
s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Given these components, we can use Bayes’ Rule to infer a posterior
distribution over sentences given the speech signal:

p(s | a) =
p(s)p(a | s)∑
s′ p(s′)p(a | s′)

.

Roger Grosse CSC321 Lecture 10: Distributed Representations 3 / 28

Language Modeling

Motivation: suppose we want to build a speech recognition system.

We’d like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:

An observation model, represented as p(a | s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

A prior, represented as p(s), which tells us how likely a given sentence
s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Given these components, we can use Bayes’ Rule to infer a posterior
distribution over sentences given the speech signal:

p(s | a) =
p(s)p(a | s)∑
s′ p(s′)p(a | s′)

.

Roger Grosse CSC321 Lecture 10: Distributed Representations 3 / 28

Language Modeling

In this lecture, we focus on learning a good distribution p(s) of sentences.
This problem is known as language modeling.

Assume we have a corpus of sentences s(1), . . . , s(N). The maximum
likelihood criterion says we want our model to maximize the probability
our model assigns to the observed sentences. We assume the sentences are
independent, so that their probabilities multiply.

max
N∏
i=1

p(s(i)).

Roger Grosse CSC321 Lecture 10: Distributed Representations 4 / 28

Language Modeling

In maximum likelihood training, we want to maximize
∏N

i=1 p(s(i)).

The probability of generating the whole training corpus is vanishingly small
— like monkeys typing all of Shakespeare.

The log probability is something we can work with more easily. It also
conveniently decomposes as a sum:

log
N∏
i=1

p(s(i)) =
N∑
i=1

log p(s(i)).

Let’s use negative log probabilities, so that we’re working with
positive numbers.

Better trained monkeys are slightly more likely to type Hamlet!

Roger Grosse CSC321 Lecture 10: Distributed Representations 5 / 28

Language Modeling

In maximum likelihood training, we want to maximize
∏N

i=1 p(s(i)).

The probability of generating the whole training corpus is vanishingly small
— like monkeys typing all of Shakespeare.

The log probability is something we can work with more easily. It also
conveniently decomposes as a sum:

log
N∏
i=1

p(s(i)) =
N∑
i=1

log p(s(i)).

Let’s use negative log probabilities, so that we’re working with
positive numbers.

Better trained monkeys are slightly more likely to type Hamlet!

Roger Grosse CSC321 Lecture 10: Distributed Representations 5 / 28

Language Modeling

Probability of a sentence? What does that even mean?

A sentence is a sequence of words w1,w2, . . . ,wT . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wT) = p(w1)p(w2 |w1) · · · p(wT |w1, . . . ,wT−1).

Therefore, the language modeling problem is equivalent to being able to
predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a
context of length 3,

p(wt |w1, . . . ,wt−1) = p(wt |wt−3,wt−2,wt−1).

Such a model is called memoryless.
Now it’s basically a supervised prediction problem. We need to predict the
conditional distribution of each word given the previous K .

Roger Grosse CSC321 Lecture 10: Distributed Representations 6 / 28

Language Modeling

Probability of a sentence? What does that even mean?
A sentence is a sequence of words w1,w2, . . . ,wT . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wT) = p(w1)p(w2 |w1) · · · p(wT |w1, . . . ,wT−1).

Therefore, the language modeling problem is equivalent to being able to
predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a
context of length 3,

p(wt |w1, . . . ,wt−1) = p(wt |wt−3,wt−2,wt−1).

Such a model is called memoryless.
Now it’s basically a supervised prediction problem. We need to predict the
conditional distribution of each word given the previous K .

Roger Grosse CSC321 Lecture 10: Distributed Representations 6 / 28

Language Modeling

Probability of a sentence? What does that even mean?
A sentence is a sequence of words w1,w2, . . . ,wT . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wT) = p(w1)p(w2 |w1) · · · p(wT |w1, . . . ,wT−1).

Therefore, the language modeling problem is equivalent to being able to
predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a
context of length 3,

p(wt |w1, . . . ,wt−1) = p(wt |wt−3,wt−2,wt−1).

Such a model is called memoryless.
Now it’s basically a supervised prediction problem. We need to predict the
conditional distribution of each word given the previous K .

Roger Grosse CSC321 Lecture 10: Distributed Representations 6 / 28

N-Gram Language Models

One sort of Markov model we can learn uses a conditional probability table,
i.e.

cat and city · · ·
the fat 0.21 0.003 0.01

four score 0.0001 0.55 0.0001 · · ·
New York 0.002 0.0001 0.48

...
...

Maybe the simplest way to estimate the probabilities is from the empirical
distribution:

p(w3 = cat |w1 = the,w2 = fat) =
count(the fat cat)

count(the fat)

This is the maximum likelihood solution; we’ll see why later in the course.

The phrases we’re counting are called n-grams (where n is the length), so
this is an n-gram language model.

Roger Grosse CSC321 Lecture 10: Distributed Representations 7 / 28

N-Gram Language Models

Samples from language models:
https://lagunita.stanford.edu/c4x/Engineering/CS-224N/

asset/slp4.pdf

Roger Grosse CSC321 Lecture 10: Distributed Representations 8 / 28

https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf
https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf

N-Gram Language Models

Problems with n-gram language models

The number of entries in the conditional probability table is
exponential in the context length.
Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Ways to deal with data sparsity

Use a short context (but this means the model is less powerful)
Smooth the probabilities, e.g. by adding imaginary counts
Make predictions using an ensemble of n-gram models with different n

Roger Grosse CSC321 Lecture 10: Distributed Representations 9 / 28

Distributed Representations

Conditional probability tables are a kind of localist representation: all the
information about a particular word is stored in one place, i.e. a column of the
table.

But different words are related, so we ought to be able to share information
between them. For instance,

Here, the information about a given word is distributed throughout the
representation. We call this a distributed representation.

In general, unlike in this cartoon, we won’t be able to attach labels to the features
in our distributed representation.

Roger Grosse CSC321 Lecture 10: Distributed Representations 10 / 28

Distributed Representations

We would like to be able to share information between related words.
E.g., suppose we’ve seen the sentence

The cat got squashed in the garden on Friday.

This should help us predict the words in the sentence

The dog got flattened in the yard on Monday.

An n-gram model can’t generalize this way, but a distributed
representation might let us do so.

Roger Grosse CSC321 Lecture 10: Distributed Representations 11 / 28

Neural Language Model

Predicting the distribution of the next word given the previous K is
just a multiway classification problem.

Inputs: previous K words

Target: next word
Loss: cross-entropy. Recall that this is equivalent to maximum
likelihood:

− log p(s) = − log
T∏
t=1

p(wt |w1, . . . ,wt−1)

= −
T∑
t=1

log p(wt |w1, . . . ,wt−1)

= −
T∑
t=1

V∑
v=1

ttv log ytv ,

where tiv is the one-of-K encoding for the ith word and yiv is the
predicted probability for the ith word being index v .

Roger Grosse CSC321 Lecture 10: Distributed Representations 12 / 28

Neural Language Model

Here is a classic neural probabilistic language model, or just neural
language model:

Bengio�s neural net for predicting the next word

 “softmax” units (one per possible next word)

index of word at t-2 index of word at t-1

learned distributed
encoding of word t-2

learned distributed
encoding of word t-1

units that learn to predict the output word from features of the input words

table look-up table look-up

skip-layer
connections

Roger Grosse CSC321 Lecture 10: Distributed Representations 13 / 28

Neural Language Model

If we use a 1-of-K encoding for the words, the first layer can be
thought of as a linear layer with tied weights.

The weight matrix basically acts like a lookup table. Each column is
the representation of a word, also called an embedding, feature
vector, or encoding.

“Embedding” emphasizes that it’s a location in a high-dimensonal
space; words that are closer together are more semantically similar
“Feature vector” emphasizes that it’s a vector that can be used for
making predictions, just like other feature mappigns we’ve looked at
(e.g. polynomials)

Roger Grosse CSC321 Lecture 10: Distributed Representations 14 / 28

Neural Language Model

We can measure the similarity or dissimilarity of two words using

the dot product r>1 r2
Euclidean distance ‖r1 − r2‖

If the vectors have unit norm, the two are equivalent:

‖r1 − r2‖2 = (r1 − r2)>(r1 − r2)

= r>1 r1 − 2r>1 r2 + r>2 r2

= 2− 2r>1 r2

Roger Grosse CSC321 Lecture 10: Distributed Representations 15 / 28

Neural Language Model

This model is very compact: the number of parameters is linear in the
context size, compared with exponential for n-gram models.

Bengio�s neural net for predicting the next word

 “softmax” units (one per possible next word)

index of word at t-2 index of word at t-1

learned distributed
encoding of word t-2

learned distributed
encoding of word t-1

units that learn to predict the output word from features of the input words

table look-up table look-up

skip-layer
connections

Roger Grosse CSC321 Lecture 10: Distributed Representations 16 / 28

Neural Language Model

What do these word embeddings look like?

It’s hard to visualize an n-dimensional space, but there are algorithms
for mapping the embeddings to two dimensions.

The following 2-D embeddings are done with an algorithm called
tSNE which tries to make distnaces in the 2-D embedding match the
original 30-D distances as closely as possible.

Note: the visualizations are from a slightly different model.

Roger Grosse CSC321 Lecture 10: Distributed Representations 17 / 28

Neural Language Model

Roger Grosse CSC321 Lecture 10: Distributed Representations 18 / 28

Neural Language Model

Roger Grosse CSC321 Lecture 10: Distributed Representations 19 / 28

Neural Language Model

Roger Grosse CSC321 Lecture 10: Distributed Representations 20 / 28

Neural Language Model

Thinking about high-dimensional embeddings

Most vectors are nearly orthogonal (i.e. dot product is close to 0)
Most points are far away from each other
“In a 30-dimensional grocery store, anchovies can be next to fish and
next to pizza toppings.” – Geoff Hinton

The 2-D embeddings might be fairly misleading, since they can’t
preserve the distance relationships from a higher-dimensional
embedding. (I.e., unrelated words might be close together in 2-D, but
far apart in 30-D.)

Roger Grosse CSC321 Lecture 10: Distributed Representations 21 / 28

Neural language model

When we train a neural language model, is that supervised or unsupervised
learning? Does it have elements of both?

Roger Grosse CSC321 Lecture 10: Distributed Representations 22 / 28

Skip-Grams

Fitting language models is really hard:

It’s really important to make good predictions about relative
probabilities of rare words.
Computing the predictive distribution requires a large softmax.

Maybe this is overkill if all you want is word representations.

Roger Grosse CSC321 Lecture 10: Distributed Representations 23 / 28

Skip-Grams

Skip-gram model (Mikolov et al., 2013)
Task: given one word as input, predict (the distribution of) a word in
its surrounding context.

fish ?

Learn separate embeddings for the input and target word.
Model: softmax where the log odds are computed as the dot product:

p(wt+τ = a |wt = b) =
exp(r̃>a rb)∑
c exp(r̃>c rb)

Loss: cross-entropy, as usual

Predictions are efficient because it’s just a linear model, i.e. no hidden
units.
Problem: this still requires computing a softmax over the entire
vocabulary!

The original paper used a model called “hierarchical softmax” to get
around this, but there’s an easier way.

Roger Grosse CSC321 Lecture 10: Distributed Representations 24 / 28

Skip-Grams

Instead of predicting a distribution over words, switch to a binary prediction
problem.

Negative sampling: the model is given pairs of words, and needs to distinguish

between:

real: the two words actually occur near each other in the training
corpus
fake: the two words are sampled randomly from the training corpus

Cross-entropy loss, with logistic activation function:

p(real |w1 = a,w2 = b) = σ(̃r>a rb) =
1

1 + exp(−r̃>a rb)

This forces the dot product to be large for words which co-occur and small (or
negative) for words which don’t co-occur.

Skip-grams with negative sampling can be trained very efficiently, so we can use
tons of data.

Roger Grosse CSC321 Lecture 10: Distributed Representations 25 / 28

Skip-Grams

Here’s a linear projection of word representations for cities and capitals into
2 dimensions.

The mapping city → capital corresponds roughly to a single direction in the
vector space:

Roger Grosse CSC321 Lecture 10: Distributed Representations 26 / 28

Skip-Grams

In other words,
vector(Paris)− vector(France) ≈ vector(London)− vector(England)

This means we can analogies by doing arithmetic on word vectors:

e.g. “Paris is to France as London is to ”
Find the word whose vector is closest to
vector(France)− vector(Paris) + vector(London)

Example analogies:

Roger Grosse CSC321 Lecture 10: Distributed Representations 27 / 28

