
Lecture 18: Mixture modeling

Roger Grosse

1 Learning goals

• Know what generative process is assumed in a mixture model, and what sort of data
it is intended to model

• Be able to perform posterior inference in a mixture model, in particular

– compute the posterior distribution over the latent variable

– compute the posterior predictive distribution

• Be able to learn the parameters of a mixture model using the Expectation-Maximization
(E-M) algorithm

2 Unsupervised learning

So far in this course, we’ve focused on supervised learning, where we assumed we had a
set of training examples labeled with the correct output of the algorithm. We’re going to
shift focus now to unsupervised learning, where we don’t know the right answer ahead of
time. Instead, we have a collection of data, and we want to find interesting patterns in the
data. Here are some examples:

• The neural probabilistic language model was a good example of unsupervised learning
for two reasons:

– One of the goals was to model the distribution over sentences, so that you could
tell how “good” a sentence is based on its probability. This is unsupervised, since
the goal is to model a distribution rather than to predict a target. This distri-
bution might be used in the context of a speech recognition system, where you
want to combine the evidence (the acoustic signal) with a prior over sentences.

– The model learned word embeddings, which you could later analyze and visu-
alize. The embeddings weren’t given as a supervised signal to the algorithm,
i.e. you didn’t specify by hand which vector each word should correspond to,
or which words should be close together in the embedding. Instead, this was
learned directly from the data.

1

• You have a collection of scientific papers and you want to understand how the field’s
research focus has evolved over time. (For instance, maybe neural nets were a popular
topic among AI researchers in the ’80s and early ’90s, then died out, and then came
back with a vengeance around 2010.) You fit a model to a dataset of scientific papers
which tries to identify different topics in the papers, and for each paper, automatically
list the topics that it covers. The model wouldn’t know what to call each topic, but
you can attach labels manually by inspecting the frequent words in each topic. You
then plot how often each topic is discussed in each year.

• You’re a biologist interested in studying behavior, and you’ve collected lots of videos
of bees. You want to “cluster” their behaviors into meaningful groups, so that you
can look at each cluster and figure out what it means.

• You want to know how to reduce your energy consumption. You have a device which
measures the total energy usage for your house (as a scalar value) for each hour over
the course of a month. You want to decompose this signal into a sum of components
which you can then try to match to various devices in your house (e.g. computer,
refrigerator, washing machine), so that you can figure out which one is wasting the
most electricity.

All of these are situations that call out for unsupervised learning. You don’t know
the right answer ahead of time, but just want to spot interesting patterns. In general,
our strategy for unsupervised learning will be to formulate a probabilistic model which
postulates certain unobserved random variables (called latent variables) which correspond
to things we’re interested in inferring. We then try to infer the values of the latent variables
for all the data points, as well as parameters which relate the latent variables to the
observations. In this lecture, we’ll look at one type of latent variable model, namely
mixture models.

3 Mixture models

In the previous lecture, we looked at some methods for learning probabilistic models which
took the form of simple distributions (e.g. Bernoulli or Gaussian). But often the data
we’re trying to model is much more complex. For instance, it might be multimodal. This
means that there are several different modes, or regions of high probability mass, and
regions of smaller probability mass in between.

For instance, suppose we’ve collected the high temperatures for every day in March 2014
for both Toronto and Miami, Florida, but forgot to write down which city is associated
with each temperature. The values are plotted in Figure 1; we can see the distribution has
two modes.

In this situation, we might model the data in terms of a mixture of several compo-
nents, where each component has a simple parametric form (such as a Gaussian). In other

2

Figure 1: A histogram of daily high temperatures in ◦C for Toronto and Miami in March
2014. The distribution clearly has two modes.

words, we assume each data point belongs to one of the components, and we try to infer
the distribution for each component separately. In this example, we happen to know that
the two mixture components should correspond to the two cities. The model itself doesn’t
“know” anything about cities, though: this is just something we would read into it at the
very end, when we analyze the results. In general, we won’t always know precisely what
meaning should be attached to the latent variables.

In order to represent this mathematically, we formulate the model in terms of latent
variables, usually denoted z. These are variables which are never observed, and where
we don’t know the correct values in advance. They are roughly analogous to hidden units,
in that the learning algorithm needs to figure out what they should represent, without
a human specifying it by hand. Variables which are always observed, or even sometimes
observed, are referred to as observables. In the above example, the city is the latent
variable and the temperature is the observable.

In mixture models, the latent variable corresponds to the mixture component. It takes
values in a discrete set, which we’ll denote {1, . . . ,K}. (For now, assume K is fixed; we’ll
talk later about how to choose it.) In general, a mixture model assumes the data are
generated by the following process: first we sample z, and then we sample the observables
x from a distribution which depends on z, i.e.

p(z,x) = p(z) p(x | z).

In mixture models, p(z) is always a multinomial distribution. p(x | z) can take a variety of
parametric forms, but for this lecture we’ll assume it’s a Gaussian distribution. We refer
to such a model as a mixture of Gaussians.

3

Figure 2: An example of a univariate mixture of Gaussians model.

Figure 2 shows an example of a mixture of Gaussians model with 2 components. It has
the following generative process:

• With probability 0.7, choose component 1, otherwise choose component 2

• If we chose component 1, then sample x from a Gaussian with mean 0 and standard
deviation 1

• If we chose component 2, then sample x from a Gaussian with mean 6 and standard
deviation 2

This can be written in a more compact mathematical notation:

z ∼ Multinomial(0.7, 0.3) (1)

x | z = 1 ∼ Gaussian(0, 1) (2)

x | z = 2 ∼ Gaussian(6, 2) (3)

For the general case,

z ∼ Multinoimal(π) (4)

x | z = k ∼ Gaussian(µk, σk). (5)

Here, π is a vector of probabilities (i.e. nonnegative values which sum to 1) known as the
mixing proportions.

4

In general, we can compute the probability density function (PDF) over x by marginal-
izing out, or summing out, z:

p(x) =
∑
z

p(z) p(x | z) (6)

=
K∑
k=1

Pr(z = k) p(x | z = k) (7)

Note: Equations 6 and 7 are two different ways of writing the PDF; the first is more general
(since it applies to other latent variable models), while the second emphasizes the meaning
of the clustering model itself. In the example above, this gives us:

p(x) = 0.7 ·Gaussian(0, 1) + 0.3 ·Gaussian(6, 2). (8)

This PDF is a convex combination, or weighted average, of the PDFs of the compo-
nent distributions. The PDFs of the component distributions, as well as the mixture, are
shown in Figure 2.

The general problem of grouping data points into clusters, where data points in the
same cluster are more similar than data points in different clusters, is known as clustering.
Learning a mixture model is one approach to clustering, but we should mention that there
are a number of other approaches, most notably an algorithm called K-means1.

4 Posterior inference

Before we talk about learning a mixture model, let’s first talk about posterior inference.
Here, we assume we’ve already chosen the parameters of the model. We want to infer,
given a data point x, which component it is likely to belong to. More precisely, we want
to infer the posterior distribution p(z |x). Just like in Bayesian parameter estimation, we
can infer the posterior distribution using Bayes’ Rule:

p(z |x) ∝ p(z) p(x | z). (9)

Recall that ∝ means “equal up to a constant.” In other words, we can evaluate the right-
hand side for all values of z, and then renormalize so that the values sum to 1.

1http://en.wikipedia.org/wiki/K-means_clustering

5

http://en.wikipedia.org/wiki/K-means_clustering

Example 1. Suppose we observe x = 2 in the model described above. We compute
each of the required terms:

Pr(z = 1) = 0.7

Pr(z = 2) = 0.3

p(x | z = 1) = Gaussian(2; 0, 1)

≈ 0.054

p(x | z = 2) = Gaussian(2; 6, 2)

≈ 0.027

Therefore,

Pr(z = 1 |x) =
Pr(z = 1) p(x | z = 1)

Pr(z = 1) p(x | z = 1) + Pr(z = 2) p(x | z = 2)

=
0.7 · 0.054

0.7 · 0.054 + 0.3 · 0.027

≈ 0.824

What if we repeat this calculation for different values of x? Figure 2 shows the
posterior probability Pr(z = 1 |x) as a function of x.

Sometimes only some of the observables are actually observed. The others are said to
be missing. One of the important uses of probabilistic models is to make predictions about
the missing data given the observed data. You’ll see an example of this in Assignment 4,
namely image completion. There, you observe a subset of the pixels in an image, and
want to make predictions about the rest of the image.

Suppose, for instance, that our observations are two-dimensional, and that we observe
x1 and want to make predictions about x2. We can do this using the posterior predictive
distribution:

p(x2 |x1) =
∑
z

p(z |x1) p(x2 | z, x1). (10)

Sometimes we make the assumption that the xi values are conditionally independent
given z. This means that, if we are told the value of z, then x1 and x2 are independent.
However, if z is unknown, then x1 and x2 are not independent, because x1 gives information
about z, which gives information about x2. (For instance, the pixels in one half of an image
are clearly not independent of the pixels in the other half. But maybe they are roughly
independent, conditioned on a detailed description of everything going on in the image.)

Example 2. Consider the following two-dimensional mixture of Gaussians model,

6

Figure 3: Left: Samples from the mixture of Gaussians model of Example 2. Right: The
PDF of the posterior predictive distribution p(x2 |x1), for various values of x1.

where x1 and x2 are conditionally independent given z:

z ∼ Multinomial(0.4, 0.6)

x1 | z = 1 ∼ Gaussian(0, 1)

x2 | z = 1 ∼ Gaussian(6, 1)

x1 | z = 2 ∼ Gaussian(6, 2)

x2 | z = 2 ∼ Gaussian(3, 2)

The distribution is plotted in Figure 3. Suppose we observe x1 = 3. We can compute
the posterior distribution just like in the previous example:

Pr(z = 1 |x1) =
Pr(z = 1) p(x | z = 1)

Pr(z = 1) p(x | z = 1) + Pr(z = 2) p(x | z = 2)

=
0.4 · 0.0175

0.4 · 0.0175 + 0.6 · 0.0431

= 0.213

Using the posterior, we compute the posterior predictive distribution:

p(x2 |x1) = Pr(z = 1 |x1) p(x2 | z = 1) + Pr(z = 2 |x1) p(x2 | z = 2)

= 0.213 ·Gaussian(x2; 6, 1) + 0.787 ·Gaussian(x2; 3, 2)

Hence, the posterior predictive distribution p(x2 |x1) is a mixture of two Gaussians,
but with different mixing proportions than the original mixture model. Figure 3
shows the posterior predictive distribution for various values of x1.

7

5 Learning

Now let’s see how to learn the parameters of a mixture model. This doesn’t immediately
seem to have much to do with inference, but it’ll turn out we need to do inference repeatedly
in order to learn the parameters.

So far, we’ve been a bit vague about exactly what are the parameters of the Gaussian
mixture model. We need two sets of parameters:

• The mean µk and standard deviation σk associated with each component k. (Other
kinds of mixture models will have other sets of parameters.)

• The mixing proportions πk, defined as Pr(z = k).

In the last lecture, we discussed three methods of parameter learning: maximum likeli-
hood (ML), the maximum a-posteriori approximation (MAP), and the full Bayesian (FB)
approach. For mixture models, we’re going to focus on the first two. (There are fully
Bayesian methods which look very much like the algorithm we’ll discuss, but these are
beyond the scope of the class.)

5.1 Log-likelihood derivatives (optional)

We’ve been computing derivatives all term. Therefore, I thought it might make sense to
give a fairly nontraditional motivation for the E-M algorithm in terms of the derivatives of
the log-likelihood function. If this section helps you, then great. If it doesn’t, feel free to
skip it; you’re not responsible for it.

Now we compute the log-likelihood derivative with respect to a parameter θ; this could
stand for any of the parameters we want to learn, such as the mixing proportions or the

8

mean or standard deviation of one of the components.

d

dθ
log p(x) =

d

dθ
log
∑
z

p(z,x) (11)

=
d
dθ

∑
z p(z,x)∑

z′ p(z
′,x)

(12)

=

∑
z

d
dθp(z,x)∑
z′ p(z

′,x)
(13)

=

∑
z p(z,x) d

dθ log p(z,x)∑
z′ p(z

′,x)
(14)

=
∑
z

(
p(z,x)∑
z′ p(z

′,x)

)
d

dθ
log p(z,x) (15)

=
∑
z

p(z |x)
d

dθ
log p(z,x) (16)

= Ep(z |x)
[

d

dθ
log p(z,x)

]
(17)

This is pretty cool — the derivative of the marginal log-probability p(x) is simply the
expected derivative of the joint log-probability, where the expectation is with respect to
the posterior distribution. This applies to any latent variable model, not just mixture
models, since our derivation didn’t rely on anything specific to mixture models.

That derivation was rather long, but observe that each of the steps was a completely
mechanical substitution, except for the step labeled (14). In that step, we used the formula

d

dθ
log p(z,x) =

1

p(z,x)

d

dθ
p(z,x). (18)

You’re probably used to using this formula to get rid of the log inside the derivative. We
instead used it to introduce the log. We did this because it’s much easier to deal with
derivatives of log probabilities than derivatives of probabilities. This trick comes up quite
a lot in probabilistic modeling, and we’ll see it twice more: once when we talk about
Boltzmann machines, and once when we talk about reinforcement learning.

If we can compute the expectation (17) summed over all training cases, that gives us
the log-likelihood gradient.

Example 3. Let’s return to the mixture model from Example 1, where we’re consid-
ering the training case x = 2. Let’s compute the log-likelihood gradient with respect

9

to µ1, the mean of the first mixture component.

∂

∂µ1
log p(x) = Ep(z |x)

[
∂

∂µ1
log p(z, x)

]
(19)

= Ep(z |x)
[
∂

∂µ1
log p(z) +

∂

∂µ1
log p(x | z)

]
(20)

= Pr(z = 1 |x)

[
∂

∂µ1
log Pr(z = 1) +

∂

∂µ1
log p(x | z = 1)

]
+

+ Pr(z = 2 |x)

[
∂

∂µ1
log Pr(z = 2) +

∂

∂µ1
log p(x | z = 2)

]
(21)

= 0.824 ·
[
0 +

∂

∂µ1
log Gaussian(x;µ1, σ1)

]
+ 0.176 · [0 + 0] (22)

= 0.824 · x− µ1
σ21

(23)

= 0.824 · 2 (24)

= 1.648 (25)

In the step (22), all of the terms except ∂
∂µ1

log p(x | z = 1) are zero because changing
the parameters of the first component doesn’t affect any of the other probabilities
involved.

This only covers a single training case. But if we take the sum of this formula over
all training cases, we find:

∂`

∂µ1
=

N∑
i=1

Pr(z(i) = 1 |x(i)) · x
(i) − µ1
σ21

(26)

So essentially, we’re taking a weighted sum of the conditional probability gradients
for all the training cases, where each training case is weighted by its probability of
belonging to the first component.

Since we can compute the log-likelihood gradient, we can maximize the log-likelihood using
gradient ascent. This is, in fact, one way to learn the parameters of a mixture of Gaussians.
However, we’re not going to pursue this further, since we’ll see an even more elegant and
efficient learning algorithm for mixture models, called Expectation-Maximization.

5.2 Expectation-Maximization

As mentioned above, one way to fit a mixture of Gaussians model is with gradient ascent.
But a mixture of Gaussians is built out of multinomial and Gaussian distributions, and we
have closed-form solutions for maximum likelihood for these distributions. Shouldn’t we
be able to make use of these closed-form solutions when fitting mixture models?

10

Look at the log-likelihood derivative ∂`/∂µ1 from Example 3, Eqn 26. It’s a bit clunky

to write out the conditional probabilities every time, so let’s introduce the variables r
(i)
k =

Pr(z(i) = 1 |x(i)), which are called responsibilities. These say how strongly a data point
“belongs” to each component. Eqn 26 can then be written in the more concise form

∂`

∂µ1
=

N∑
i=1

r
(i)
k ·

x(i) − µ1
σ21

(27)

It would be tempting to set this partial derivative to 0, and then solve for µ1. This
would give us:

µ1 =

∑N
i=1 r

(i)
1 x(i)∑N

i=1 r
(i)
1

. (28)

In other words, it’s a weighted average of the training cases (essentially, the “center of
gravity”), where the weights are given by the responsibilities. The problem is, we can’t

just solve for µ1 in Eqn 27, because the responsibilities r
(i)
k depend on µ1. When we apply

Eqn 28, the derivative in Eqn 26 won’t be 0, because the posterior probabilities will have
changed!

But that’s OK. Even though the update Eqn 28 doesn’t give the optimal parame-
ters, it still turns out to be quite a good update. This is the basis of the Expectation-
Maximization (E-M) algorithm. This algorithm gets its name because the update we
just performed involves two steps: computing the responsibilities, and applying the maxi-
mum likelihood update with those responsibilities. More precisely, we apply the following
algorithm:

Repeat until converged:

E-step.2 Compute the expectations, or responsibilities, of the latent variables:

r
(i)
k ← Pr(z(i) = k |x(i)) (29)

M-step. Compute the maximum likelihood parameters given these responsibil-
ities:

θ ← arg max
θ

N∑
i=1

K∑
k=1

r
(i)
k

[
log Pr(z(i) = k) + log p(x(i) | z(i) = k)

]
(30)

Typically, only one of the two terms within the bracket will depend on any given
parameter, which simplifies the computations.

2This is called the E-step, or Expectation step, for the following reason: it’s common to represent the
mixture component z with a 1-of-K encoding, i.e. a K-dimensional vector where the kth component is 1 if
the data point is assigned to cluster k, and zero otherwise. In this representation, the responsibilities are
simply the expectations of the latent variables.

11

Generally, it takes a modest number of iterations (e.g. 20-50) to get close to a local
optimum. Now let’s derive the E-M algorithm for Gaussian mixture models.

Example 4. Let’s derive the full E-M update for Gaussian mixtures. The E-step
simply consists of computing the posterior probabilities, as we did in Example 1:

r
(i)
k ← Pr(z(i) = k |x(i))

=
Pr(z(i) = k) p(x(i) | z(i) = k)∑
k′ Pr(z(i) = k′) p(x(i) | z(i) = k′)

=
πk ·Gaussian(x(i);µk, σk)∑
k′ πk′ ·Gaussian(x(i);µk′ , σk′)

Now let’s turn to the M-step. Consider the mixing proportions πk first. Before we
go through the derivation, we can probably guess what the solution should be. A
good estimate of the probability of an outcome is the proportion of times it appears,
i.e. πk = Nk/N , where Nk is the count for outcome k, and N is the number of
observations. If we replace Nk with the sum of the responsibilities (which can be
thought of as “fractional counts”), we should wind up with

πk ←
1

N

N∑
i=1

r
(i)
k . (31)

Let’s see if we were right. Observe that the mixing proportions don’t affect the
second term inside the sum in Eqn 30, so we only need to worry about the first term,
log Pr(z(i) = k). We want to maximize

N∑
i=1

K∑
k=1

r
(i)
k log Pr(z(i) = k) =

N∑
i=1

K∑
k=1

r
(i)
k log πk. (32)

subject to the normalization constraint
∑

k πk = 1. We can do this by computing
the Lagrangian and setting its partial derivatives to zero. (If you don’t know what
the Lagrangian is, you can skip this step. We’re not going to need it again.)

L =

N∑
i=1

K∑
k=1

r
(i)
k log πk + λ

(
1−

K∑
k=1

πk

)
(33)

∂L
∂πk

=

∑N
i=1 r

(i)
k

πk
− λ (34)

Setting the partial derivative to zero, we see that

λ =

∑N
i=1 r

(i)
k

πk
(35)

12

for each k. For this to be true, πk must be proportional to
∑N

i=1 r
(i)
k . Therefore,

πk ←
∑N

i=1 r
(i)
k∑K

k′=1

∑N
i=1 r

(i)
k′

=

∑N
i=1 r

(i)
k

N
, (36)

confirming our original guess, Eqn 31.

Finally, let’s turn to the Gaussian parameters µk and σk. Observe that these pa-
rameters don’t affect the first term inside the sum in Eqn 30, so we only need to
worry about the second term, log p(x(i) | z(i) = k). Also, the parameters associated
with mixture component k only affect the data points assigned to component k.
Therefore, we want to maximize

N∑
i=1

r
(i)
k log p(x(i) | z(i) = k) =

N∑
i=1

r
(i)
k log Gaussian(x(i);µk, σk). (37)

But this is exactly the maximum likelihood estimation problem for Gaussians, which
we solved in the previous lecture. (The only difference here is the use of responsibil-
ities.) Therefore, the updates are

µk ←
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k x(i) (38)

σk ←
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k (x(i) − µk)2 (39)

These updates are visualized for the temperature data in Figure 4.

This example demonstrates a general recipe for deriving the M-step: apply the standard
maximum likelihood formulas, except weight each data point according to its responsibility.
This is true in general for mixture models, which is all we’re going to talk about in this
class. However, the E-M algorithm is much more far-ranging than this, and can be applied
to many more latent variable models than just mixtures.

Despite our heuristic justification of the algorithm, it actually has quite strong guaran-
tees. It’s possible to show that each iteration of the algorithm increases the log-likelihood.
(Note that this fact is not at all obvious just from the log-likelihood gradient (Eqn 17),
since the algorithm takes such big steps that the first-order Taylor approximation around
the current parameters certainly won’t be very accurate.) Even though this is the only
week of the class that doesn’t involve neural nets, Professor Hinton left his footprints here
as well: he and Radford Neal showed that each step of the algorithm is maximizing a par-
ticular lower bound on the log-likelihood. This analysis lets you generalize E-M to cases
where you can only approximately compute the posterior over latent variables.

13

...

Initialization

Iteration 1

Iteration 2

Iteration 3

Iteration 10

Figure 4: Visualization of the steps of the E-M algorithm applied to the temperature data.
Left: E-step. The posterior probability Pr(z = 1 |x) is shown, as a function of x. Right:
M-step. See Example 4 for the derivations of the update rules.

14

5.3 Odds and ends

Just a few more points about learning mixture models. First, how do you choose K, the
number of components? If you choose K to small, you’ll underfit the data, whereas if you
choose it too large, you can overfit. One solution is: K is just a hyperparameter, and you
can choose it using a validation set. I.e., you would choose the value of K which maximizes
the average log-likelihood on the validation set. (There is also a very elegant framework
called Bayesian nonparametrics which automatically adjusts the model complexity without
requiring a validation set, but that is beyond the scope of the class.)

Second, how should you initialize the clusters? This is a tricky point, because some
initializations are very bad. If you initialize all the components to the same parameters,
they will never break apart because of symmetries in the model. If you choose a really
bad initialization for one of the components, it may “die out” during E-M because the
component doesn’t assign high likelihood to any data points. There’s no strategy that’s
guaranteed to work, but one good option is to initialize the different clusters to have
random means and very broad standard deviation, just like we did for the temperatures
example. Another option is to initialize the cluster assignments using K-means, another
(non-probabilistic) clustering algorithm which tends to be easier to fit.

Finally, we discussed learning parameters with maximum likelihood. What about the
MAP approximation? It turns out we can apply the E-M algorithm almost without modi-
fication. The only difference is that in the M-step, we apply the MAP updates rather than
the ML ones. We’ll walk you through this in Assignment 4.

6 Summary

• A mixture model is a kind of probabilistic model that assumes the data were generated
by the following process:

– Choose one of the mixture components at random.

– Sample the data point from the distribution associated with that mixture com-
ponent.

• If the mixture components have a nice form, we can do exact inference in the model.
This includes:

– inferring the posterior distribution over mixture components for a given data
point

– making predictions about missing input dimensions given the observed ones

• Mixture models have two sets of parameters:

– the mixing proportions

15

– the parameters associated with each component distribution

• The log-likelihood gradient is the expected gradient of the joint log-probability, where
the expectation is with respect to the posterior over latent variables

• The E-M algorithm is a more efficient way to learn the parameters. This alternates
between two steps:

– E-step: Compute the responsibilities (defined as the posterior probabilities)

– M-step: Compute the maximum likelihood parameters for each component,
where each data point is weighted by the cluster’s responsibility

16

	Learning goals
	Unsupervised learning
	Mixture models
	Posterior inference
	Learning
	Log-likelihood derivatives (optional)
	Expectation-Maximization
	Odds and ends

	Summary

