
Lecture 14: Recurrent Neural Nets

Roger Grosse

1 Introduction

Most of the prediction tasks we’ve looked at have involved pretty simple
kinds of outputs, such as real values or discrete categories. But much of the
time, we’re interested in predicting more complex structures, such as images
or sequences. The next three lectures are about producing sequences; we’ll
get to producing images later in the course. If the inputs and outputs are
both sequences, we refer to this as sequence-to-sequence prediction.
Here are a few examples of sequence prediction tasks:

• As we discussed in Lecture 10, language modeling is the task of mod-
eling the distribution over English text. This isn’t really a prediction
task, since the model receives no input. But the output is a document,
which is a sequence of words or characters.

• In speech-to-text, we’d like take an audio waveform of human speech
and output the text that was spoken. In text-to-speech, we’d like to
do the reverse.

• In caption generation, we get an image as input, and would like to
produce a natural language description of the image.

• Machine translation is an especially important example of sequence-
to-sequence prediction. We receive a sentence in one language (e.g. En-
glish) and would like to produce an equivalent sentence in another
language (e.g. French).

We’ve already seen one architecture which generate sequences: the neu-
ral language model. Recall that we used the chain rule of conditional prob-
ability to decompose the probability of a sentence:

p(w1, . . . , wT) =
T∏
t=1

p(wt |w1, . . . , wt−1), (1)

and then made a Markov assumption so that we could focus on a short time
window:

p(wt |w1, . . . , wt−1) = p(wt |wt−K , . . . , wt−1), (2)

where K is the context length. This means the neural language model is
memoryless: its predictions don’t depend on anything before the context
window. But sometimes long-term dependencies can be important:

Rob Ford told the flabbergasted reporters assembled at the press
conference that .

1

Figure 1: Left: A neural language model with context length of 1. Right:
Turning this into a recurrent neural net by adding connections between the
hidden units. Note that information can pass through the hidden units,
allowing it to model long-distance dependencies.

The fact that the sentence is about Rob Ford gives some clues about what is
coming next. But the neural language model can’t make use of that unless
its context length is at least 13.

Figure 1 shows a neural language model with context length 1 being
used to generate a sentence. For a neural language model, each

set of hidden units would usually
receive connections from the last
K inputs, for K > 1. For RNNs,
usually it only has connections
from the current input. Why?

Let’s say we modify the architecture slightly
by adding connections between the hidden units. This gives it a long-term
memory: information about the first word can flow through the hidden units
to affect the predictions about later words in the sentence. Such an archi-
tecture is called a recurrent neural network (RNN). This seems like a
simple change, but actually it makes the architecture much more powerful.
RNNs are widely used today both in academia and in the technology in-
dustry; the state-of-the-art systems for all of the sequence prediction tasks
listed above use RNNs.

1.1 Learning Goals

• Know what differentiates RNNs from multilayer perceptrons and mem-
oryless models.

• Be able to design RNNs by hand to perform simple computations.

• Know how to compute the loss derivatives for an RNN using backprop
through time.

• Know how RNN architectures can be applied to sequence prediction
problems such as language modeling and machine translation.

2 Recurrent Neural Nets

We’ve already talked about RNNs as a kind of architecture which has a set
of hidden units replicated at each time step, and connections between them.
But we can alternatively look at RNNs as dynamical systems, i.e. systems
which change over time. In this view, there’s just a single set of input units,
hidden units, and output units, and the hidden units feed into themselves.
This means the graph of an RNN may have self-loops; this is in contrast
to the graphs for feed-forward neural nets, which must be directed acyclic
graphs (DAGs). What these self-loops really mean is that the values of the
hidden units at one time step depend on their values at the previous time
step.

We can understand more precisely the computation the RNN is perform-
ing by unrolling the network, i.e. explicitly representing the various units

2

Figure 2: An example of an RNN and its unrolled representation. Note
that each color corresponds to a weight matrix which is replicated at all
time steps.

at all time steps, as well as the connections between them. For a given se-
quence length, the unrolled network is essentially just a feed-forward neural
net, although the weights are shared between all time steps. See Figure 2
for an example.

The trainable parameters for an RNN include the weights and biases for
all of the layers; these are replicated at every time step. In addition, we
need some extra parameters to get the whole thing started, i.e. determine
the values of the hidden units at the first time step. We can do this one of
two ways:

• We can learn a separate set of biases for the hidden units in the first
time step. Really, these two approaches aren’t

very different. The signal from the
t = 0 hiddens to the t = 1 hiddens
is always the same, so we can just
learn a set of biases which do the
same thing.

• We can start with a dummy time step which receives no inputs. We
would then learn the initial values of the hidden units, i.e. their values
during the dummy time step.

Let’s look at some simple examples of RNNs.

Example 1. Figure 3 shows an example of an RNN which sums
its inputs over time. All of the units are linear. Let’s look at
each of the three weights:

• The hidden-to-output weight is 1, which means the output
unit just copies the hidden activation.

• The hidden-to-hidden weight is 1, which means that in the
absence of any input, the hidden unit just remembers its
previous value.

• The input-to-hidden weight is 1, which means the input gets
added to the hidden activation in every time step.

Example 2. Figure 3 shows a slightly different RNN which re-
ceives two inputs at each time step, and which determines which
of the two inputs has a larger sum over time steps. The hidden
unit is linear, and the output unit is logistic. Let’s look at what
it’s doing:

3

2

2

2

w=1

w=1

-0.5

1.5

1.5

w=1

w=1

1

2.5

2.5

w=1

w=1

1

3.5

3.5

w=1

w=1

T=1 T=2 T=3 T=4

w=1 w=1 w=1

input
unit

linear
hidden

unit

linear
output

unit

w=1

w=1

w=1

input
unit
1

linear
hidden

unit

logistic
output

unit

w=5

w=1

w=1

input
unit
2

w= -1

2

4

1.00

-2

T=1

0

0.5

0.92

3.5

T=2

1

-0.7

0.03

2.2

T=3

Figure 3: Top: the RNN for Example 1. Bottom: the RNN for Example 2.

• The output unit is a logistic unit with a weight of 5. Recall
that large weights squash the function, effectively making it
a hard threshold at 0.

• The hidden-to-hidden weight is 1, so by default it remem-
bers its previous value.

• The input-to-hidden weights rae 1 and -1, which means it
adds one of the inputs and subtracts the other.

Example 3. Now let’s consider how to get an RNN to perform a
slightly more complex computation: the parity function. This
function takes in a sequence of binary inputs, and returns 1 if
the number of 1’s is odd, and 0 if it is even. It can be computed
sequentially by computing the parity of the initial subsequences.
In particular, each parity bit is the XOR of the current input
with the previous parity bit:

Input: 0 1 0 1 1 0 1 0 1 1

Parity bits: 0 1 1 0 1 1 −→

This suggests a strategy: the output unit y(t) represents the parity
bit, and it feeds into the computation at the next time step. In
other words, we’d like to achieve the following relationship:

4

Figure 4: RNN which computes the parity function (Example 3).

y(t−1) x(t) y(t)

0 0 0
0 1 1
1 0 1
1 1 0

But remember that a linear model can’t compute XOR, so we’re
going to need hidden units to help us. Just like in Lecture 5, we
can let one hidden unit represent the AND of its inputs and the
other hidden unit represent the OR. This gives us the following
relationship:

y(t−1) x(t) h
(t)
1 h

(t)
2 y(t)

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Based on these computations, the hidden units should receive
connections from the input units and the previous time step’s
output, and the output unit should receive connections from the
hidden units. Such an architecture is shown in Figure 4. This
is a bit unusual, since output units don’t usually feed back into
the hiddens, but it’s perfectly legal.

The activation functions will all be hard thresholds at 0. How would you modify this
solution to use logistics instead of
hard thresholds?

Based
on this table of relationships, we can pick weights and biases
using the same techniques from Lecture 5. This is shown in
Figure 4. For the first time step, the parity

bit should equal the input. This
can be achieved by postulating a
dummy output y(0) = 0.

3 Backprop Through Time

As you can guess, we don’t normally set the weights and biases by hand;
instead, we learn them using backprop. There actually isn’t much new
here. All we need to do is run ordinary backprop on the unrolled graph,
and account for the weight sharing. Despite the conceptual simplicity, the
algorithm gets a special name: backprop through time.

Consider the following RNN:

5

It performs the following computations in the forward pass: All of these equations are basically
like the feed-forward case except
z(t).

z(t) = ux(t) + wh(t−1) (3)

h(t) = φ(z(t)) (4)

r(t) = vh(t) (5)

y(t) = φ(r(t)). (6)

Figure 5 shows the unrolled computation graph. Note the weight shar-
ing. Now we just need to do backprop on this graph, which is hopefully a
completely mechanical procedure by now: Pay attention to the rules for h(t),

u, v, and w.

L = 1 (7)

y(t) = L ∂L
∂y(t)

(8)

r(t) = y(t) φ′(r(t)) (9)

h(t) = r(t) v + z(t+1)w (10)

z(t) = h(t) φ′(z(t)) (11)

u =
T∑
t=1

z(t) x(t) (12)

v =
T∑
t=1

r(t) h(t) (13)

w =
T−1∑
t=1

z(t+1) h(t) (14)

These update rules are basically like the ones for an MLP, except that the
weight updates are summed over all time steps. Why are the bounds different in

the summations over t?

6

Figure 5: The unrolled computation graph.

The vectorized backprop rules are analogous: Remember that for all the
activation matrices, rows
correspond to training examples
and columns corresopnd to units,
and N is the number of data
points (or mini-batch size).

L = 1 (15)

Y(t) = L ∂L
∂Y(t)

(16)

R(t) = Y(t) ◦ φ′(R(t)) (17)

H(t) = R(t)V> + Z(t+1)W> (18)

Z(t) = H(t) ◦ φ′(Z(t)) (19)

U =
1

N

T∑
t=1

Z(t)
>
X(t) (20)

V =
1

N

T∑
t=1

R(t)
>
H(t) (21)

W =
1

N

T−1∑
t=1

Z(t+1)
>
H(t) (22)

When implementing RNNs, we generally do an explicit summation over
time steps, since there’s no easy way to vectorize over time. However, we
still vectorize over training examples and units, just as with MLPs.

That’s all there is to it. Now you know how to compute cost derivatives
for an RNN. The tricky part is how to use these derivatives in optimization.
Unless you design the architecture carefully, the gradient descent updates
will be unstable because the derivatives explode or vanish over time. Dealing
with exploding and vanishing gradients will take us all of next lecture.

7

4 Sequence Modeling

Now let’s look at some ways RNNs can be applied to sequence modeling.

4.1 Language Modeling

We can use RNNs to do language modeling, i.e. model the distribution over
English sentences. Just like with n-gram models and the neural language
model, we’ll use the Chain Rule of Conditional Probability to decompose
the distribution into a sequence of conditional probabilities:

p(w1, . . . , wT) =

T∏
t=1

p(wt |w1, . . . , wt−1), (23)

However, unlike with the other two models, we won’t make a Markov as-
sumption. In other words, the distribution over each word depends on all
the previous words. We’ll make the predictions using an RNN; each of the
conditional distributions will be predicted using the output units at a given
time step. As usual, we’ll use a softmax activation function for the output
units, and cross-entropy loss.

At training time, the words of a training sentence are used as both the
inputs and the targets to the network, as follows:

It may seem funny to use the sentence as both input and output — isn’t it
easy to predict a sentence from itself? But each word appears as a target
before it appears as an input, so there’s no way for information to flow from
the word-as-input to the word-as-target. That means the network can’t
cheat by just copying its input.

To generate from the RNN, we sample each of the words in sequence
from its predictive distribution. This means we compute the output units
for a given time step, sample the word from the corresponding distribution,
and then feed the sampled word back in as an input in the next time step.
We can represent this as follows:

Remember that vocabularies can get very large, especially once you
include proper nouns. As we saw in Lecture 10, it’s computationally dif-
ficult to predict distributions over millions of words. In the context of a

8

neural language model, one has to deal with this by changing the scheme
for predicting the distribution (e.g. using hierarchical softmax or negative
sampling). But RNNs have memory, which gives us another option: we
can model text one character at a time! In addition to the computational
problems of large vocabularies, there are additional advantages to modling
text as sequences of characters:

• Any words that don’t appear in the vocabulary are implicitly assigned
probability 0. But with a character-based language model, there’s only
a finite set of ASCII characters to consider.

• In some languages, it’s hard to define what counts as a word. It’s
not always as simple as “a contiguous sequence of alphabetical sym-
bols.” E.g., in German, words can be built compositionally in terms
of simpler parts, so you can create perfectly meaningful words which
haven’t been said before.

Here’s an example from Geoffrey Hinton’s Coursera course of a para-
graph generated by a character-level RNN which was trained on Wikipedia
back in 2011.1 (Things have improved significantly since then.)

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters‘ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

The first thing to notice is that the text isn’t globally coherent, so it’s
clearly not just memorized in its entirety from Wikipedia. But the model
produces mostly English words and some grammatical sentences, which is
a nontrivial achievement given that it works at the character level. It even
produces a plausible non-word, “ephemerable”, meaning it has picked up
some morphological structure. The text is also locally coherent, in that it
starts by talking about politics, and then transportation.

4.2 Neural Machine Translation

Machine translation is probably the canonical sequence-to-sequence predic-
tion task. Here, the input is a sentence in one language (e.g. English), and
the output is a sentence in another language (e.g. French). One could try
applying an RNN to this task as follows:

1J. Martens. Generating text with recurrent neural networks. ICML, 2011

9

But this has some clear problems: the sentences might not even be the
same length, and even if they were, the words wouldn’t be perfectly aligned
because different languages have different grammar. There might also be
some ambiguous words early on in the sentence which can only be resolved
using information from later in the sentence.

Another approach, which was done successfully in 20142, is to have the
RNN first read the English sentence, remember as much as it can in its
hidden units, and then generate the French sentence. This is represented as
follows:

The special end-of-sentence token <EOS> marks the end of the input. The
part of the network which reads the English sentence is known as the en-
coder, and the part that reads the French sentence is known as the de-
coder, and they don’t share parameters.

Interestingly, remembering the English sentence is a nontrivial subprob-
lem in itself. We can defined a simplified task called memorization, where
the network gets an English sentence as input, and has to output the same
sentence. Memorization can be a useful testbed for experimenting with
RNN algorithms, just as MNIST is a useful testbed for experimenting with
classification algorithms.

Before RNNs took over, most machine translation was done by algo-
rithms which tried to transform one sentence into another. The RNN ap-
proach described above is pretty different, in that it converts the whole
sentence into an abstract semantic representation, and then uses that to
generate the French sentence. This is a powerful approach, because the en-
coders and decoders can be shared between different languages. Inputs of
any language would be mapped to a common semantic space (which ought
to capture the “meaning”), and then any other langage could be generated
from that semantic representation. This has actually been made to work,
and RNNs are able to perform machine translation on pairs of languages
for which there were no aligned pairs in the training set!

2I. Sutskever. Sequence to sequence learning with neural networks. 2014

10

Learning to Execute

(Maddison & Tarlow, 2014) learned a language model on
parse trees, and (Mou et al., 2014) predicted whether two
programs are equivalent or not. Both of these approaches
require parse trees, while we learn from a program charac-
ter level sequence.

Predicting program output requires that the model deals
with long term dependencies that arise from variable as-
signment. Thus we chose to use Recurrent Neural Net-
works with Long Short Term Memory units (Hochreiter &
Schmidhuber, 1997), although there are many other RNN
variants that perform well on tasks with long term depen-
dencies (Cho et al., 2014; Jaeger et al., 2007; Koutnı́k et al.,
2014; Martens, 2010; Bengio et al., 2013).

Initially, we found it difficult to train LSTMs to accurately
evaluate programs. The compositional nature of computer
programs suggests that the LSTM would learn faster if we
first taught it the individual operators separately and then
taught the LSTM how to combine them. This approach can
be implemented with curriculum learning (Bengio et al.,
2009; Kumar et al., 2010; Lee & Grauman, 2011), which
prescribes gradually increasing the “difficulty level” of the
examples presented to the LSTM, and is partially motivated
by fact that humans and animals learn much faster when
their instruction provides them with hard but manageable
exercises. Unfortunately, we found the naive curriculum
learning strategy of Bengio et al. (2009) to be generally
ineffective and occasionally harmful. One of our key con-
tributions is the formulation of a new curriculum learning
strategy that substantially improves the speed and the qual-
ity of training in every experimental setting that we consid-
ered.

3. Subclass of programs
We train RNNs on class of simple programs that can be
evaluated in O (n) time and constant memory. This re-
striction is dictated by the computational structure of the
RNN itself, at it can only do a single pass over the pro-
gram using a very limited memory. Our programs use the
Python syntax and are based on a small number of oper-
ations and their composition (nesting). We consider the
following operations: addition, subtraction, multiplication,
variable assignment, if-statement, and for-loops, although
we forbid double loops. Every program ends with a single
“print” statement that outputs a number. Several example
programs are shown in Figure 1.

We select our programs from a family of distributions pa-
rameterized by length and nesting. The length parameter is
the number of digits in numbers that appear in the programs
(so the numbers are chosen uniformly from [1, 10length]).
For example, the programs are generated with length = 4
(and nesting = 3) in Figure 1.

Input:
j=8584
for x in range(8):

j+=920
b=(1500+j)
print((b+7567))

Target: 25011.

Input:
i=8827
c=(i-5347)
print((c+8704) if 2641<8500 else

5308)

Target: 1218.

Figure 1. Example programs on which we train the LSTM. The
output of each program is a single number. A “dot” symbol indi-
cates the end of a number and has to be predicted as well.

We are more restrictive with multiplication and the ranges
of for-loop, as these are much more difficult to handle.
We constrain one of the operands of multiplication and the
range of for-loops to be chosen uniformly from the much
smaller range [1, 4 · length]. This choice is dictated by the
limitations of our architecture. Our models are able to per-
form linear-time computation while generic integer mul-
tiplication requires superlinear time. Similar restrictions
apply to for-loops, since nested for-loops can implement
integer multiplication.

The nesting parameter is the number of times we are al-
lowed to combine the operations with each other. Higher
value of nesting results in programs with a deeper parse
tree. Nesting makes the task much harder for our LSTMs,
because they do not have a natural way of dealing with
compositionality, in contrast to Tree Neural Networks. It
is surprising that they are able to deal with nested expres-
sions at all.

It is important to emphasize that the LSTM reads the input
one character at a time and produces the output character
by character. The characters are initially meaningless from
the model’s perspective; for instance, the model does not
know that “+” means addition or that 6 is followed by 7.
Indeed, scrambling the input characters (e.g., replacing “a”
with “q”, “b” with “w”, etc.,) would have no effect on the
model’s ability to solve this problem. We demonstrate the
difficulty of the task by presenting an input-output example
with scrambled characters in Figure 2.

Learning to Execute

Input:
vqppkn
sqdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc

Target: hkhpg

Figure 2. An example program with scrambled characters. It
helps illustrate the difficulty faced by our neural network.

3.1. Memorization Task

In addition to program evaluation, we also investigate the
task of memorizing a random sequence of numbers. Given
an example input 123456789, the LSTM reads it one char-
acter at a time, stores it in memory, and then outputs
123456789 one character at a time. We present and ex-
plore two simple performance enhancing techniques: input
reversing (from Sutskever et al. (2014)) and input doubling.

The idea of input reversing is to reverse the order of the
input (987654321) while keeping the desired output un-
changed (123456789). It seems to be a neutral operation as
the average distance between each input and its correspond-
ing target did not become shorter. However, input reversing
introduces many short term dependencies that make it eas-
ier for the LSTM to start making correct predictions. This
strategy was first introduced for LSTMs for machine trans-
lation by Sutskever et al. (2014).

The second performance enhancing technique is input dou-
bling, where we present the input sequence twice (so the
example input becomes 123456789; 123456789), while the
output is unchanged (123456789). This method is mean-
ingless from a probabilistic perspective as RNNs approx-
imate the conditional distribution p(y|x), yet here we at-
tempt to learn p(y|x, x). Still, it gives noticeable per-
formance improvements. By processing the input several
times before producing an output, the LSTM is given the
opportunity to correct the mistakes it made in the earlier
passes.

4. Curriculum Learning
Our program generation scheme is parametrized by length
and nesting. These two parameters allow us control the
complexity of the program. When length and nesting are
large enough, the learning problem nearly intractable. This
indicates that in order to learn to evaluate programs of a
given length = a and nesting = b, it may help to first learn
to evaluate programs with length ⌧ a and nesting ⌧ b.
We compare the following curriculum learning strategies:

No curriculum learning (baseline) The baseline approach
does not use curriculum learning. This means that we

generate all the training samples with length = a and
nesting = b. This strategy is most “sound” from statis-
tical perspective, as it is generally recommended to make
the training distribution identical to test distribution.

Naive curriculum strategy (naive)

We begin with length = 1 and nesting = 1. Once learning
stops making progress, we increase length by 1. We repeat
this process until its length reaches a, in which case we
increase nesting by one and reset length to 1.

We can also choose to first increase nesting and then length.
However, it does not make a noticeable difference in per-
formance. We skip this option in the rest of paper, and
increase length first in all our experiments. This strategy is
has been examined in previous work on curriculum learn-
ing (Bengio et al., 2009). However, we show that often it
gives even worse performance than baseline.

Mixed strategy (mix)

To generate a random sample, we first pick a random length
from [1, a] and a random nesting from [1, b] independently
for every sample. The Mixed strategy uses a balanced mix-
ture of easy and difficult examples, so at any time during
training, a sizable fraction of the training samples will have
the appropriate difficulty for the LSTM.

Combining the mixed strategy with naive curriculum
strategy (combined)

This strategy combines the mix strategy with the naive
strategy. In this approach, every training case is obtained
either by the naive strategy or by the mix strategy. As a
result, the combined strategy always exposes the network
at least to some difficult examples, which is the key way in
which it differs from the naive curriculum strategy. We no-
ticed that it reliably outperformed the other strategies in our
experiments. We explain why our new curriculum learning
strategies outperform the naive curriculum strategy in Sec-
tion 7.

We evaluate these four strategies on the program evaluation
task (Section 6.1) and on the memorization task (Section
6.2).

5. RNN with LSTM cells
In this section we briefly describe the deep LSTM (Sec-
tion 5.1). All vectors are n-dimensional unless explicitly
stated otherwise. Let hl

t 2 Rn be a hidden state in layer
l in timestep t. Let Tn,m : Rn ! Rm be a biased lin-
ear mapping (x ! Wx + b for some W and b). We
let � be element-wise multiplication and let h0

t be the in-
put at timestep k. We use the activations at the top layer
L (namely hL

t) to predict yt where L is the depth of our
LSTM.

Figure 6: Left: Example inputs for the “learning to execute” task. Right:
An input with scrambled characters, to highlight the difficulty of the task.

Under review as a conference paper at ICLR 2015

SUPPLEMENTARY MATERIAL

Input: length, nesting
stack = EmptyStack()
Operations = Addition, Subtraction, Multiplication, If-Statement,
For-Loop, Variable Assignment
for i = 1 to nesting do
Operation = a random operation from Operations
Values = List
Code = List
for params in Operation.params do
if not empty stack and Uniform(1) > 0.5 then
value, code = stack.pop()

else
value = random.int(10length)
code = toString(value)

end if
values.append(value)
code.append(code)

end for
new value= Operation.evaluate(values)
new code = Operation.generate code(codes)
stack.push((new value, new code))

end for
final value, final code = stack.pop()
datasets = training, validation, testing
idx = hash(final code) modulo 3
datasets[idx].add((final value, final code))

Algorithm 1: Pseudocode of the algorithm used to generate the distribution over the python pro-
gram. Programs produced by this algorithm are guaranteed to never have dead code. The type of the
sample (train, test, or validation) is determined by its hash modulo 3.

11 ADDITIONAL RESULTS ON THE MEMORIZATION PROBLEM

We present the algorithm for generating the training cases, and present an extensive qualitative evaluation of
the samples and the kinds of predictions made by the trained LSTMs.

We emphasize that these predictions rely on teacher forcing. That is, even if the LSTM made an incorrect
prediction in the i-th output digit, the LSTM will be provided as input the correct i-th output digit for predicting
the i + 1-th digit. While teacher forcing has no effect whenever the LSTM makes no errors at all, a sample that
makes an early error and gets the remainder of the digits correctly needs to be interpreted with care.

12 QUALITATIVE EVALUATION OF THE CURRICULUM STRATEGIES

12.1 EXAMPLES OF PROGRAM EVALUATION PREDICTION. LENGTH = 4, NESTING = 1

Input:
print(6652).

Target: 6652.
”Baseline” prediction: 6652.
”Naive” prediction: 6652.
”Mix” prediction: 6652.
”Combined” prediction: 6652.

Input:

10

Under review as a conference paper at ICLR 2015

Input:
b=9930
for x in range(11):b-=4369
g=b;
print(((g-8043)+9955)).

Target: -36217.
”Baseline” prediction: -37515.
”Naive” prediction: -38609.
”Mix” prediction: -35893.
”Combined” prediction: -35055.

Input:
d=5446
for x in range(8):d+=(2678 if 4803<2829 else 9848)
print((d if 5935<4845 else 3043)).

Target: 3043.
”Baseline” prediction: 3043.
”Naive” prediction: 3043.
”Mix” prediction: 3043.
”Combined” prediction: 3043.

Input:
print((((2578 if 7750<1768 else 8639)-2590)+342)).

Target: 6391.
”Baseline” prediction: -555.
”Naive” prediction: 6329.
”Mix” prediction: 6461.
”Combined” prediction: 6105.

Input:
print((((841 if 2076<7326 else 1869)*10) if 7827<317 else 7192)).

Target: 7192.
”Baseline” prediction: 7192.
”Naive” prediction: 7192.
”Mix” prediction: 7192.
”Combined” prediction: 7192.

Input:
d=8640;
print((7135 if 6710>((d+7080)*14) else 7200)).

Target: 7200.
”Baseline” prediction: 7200.
”Naive” prediction: 7200.
”Mix” prediction: 7200.
”Combined” prediction: 7200.

Input:
b=6968
for x in range(10):b-=(299 if 3389<9977 else 203)
print((12*b)).

15

Under review as a conference paper at ICLR 2015

Figure 8: Prediction accuracy on the memorization task for the four curriculum strategies. The input
length ranges from 5 to 65 digits. Every strategy is evaluated with the following 4 input modification
schemes: no modification; input inversion; input doubling; and input doubling and inversion. The
training time is limited to 20 epochs.

print((5997-738)).

Target: 5259.
”Baseline” prediction: 5101.
”Naive” prediction: 5101.
”Mix” prediction: 5249.
”Combined” prediction: 5229.

Input:
print((16*3071)).

Target: 49136.
”Baseline” prediction: 49336.
”Naive” prediction: 48676.
”Mix” prediction: 57026.
”Combined” prediction: 49626.

Input:
c=2060;
print((c-4387)).

Target: -2327.
”Baseline” prediction: -2320.
”Naive” prediction: -2201.
”Mix” prediction: -2377.
”Combined” prediction: -2317.

Input:
print((2*5172)).

11

Under review as a conference paper at ICLR 2015

Target: 47736.
”Baseline” prediction: -0666.
”Naive” prediction: 11262.
”Mix” prediction: 48666.
”Combined” prediction: 48766.

Input:
j=(1*5057);
print(((j+1215)+6931)).

Target: 13203.
”Baseline” prediction: 13015.
”Naive” prediction: 12007.
”Mix” prediction: 13379.
”Combined” prediction: 13205.

Input:
print(((1090-3305)+9466)).

Target: 7251.
”Baseline” prediction: 7111.
”Naive” prediction: 7099.
”Mix” prediction: 7595.
”Combined” prediction: 7699.

Input:
a=8331;
print((a-(15*7082))).

Target: -97899.
”Baseline” prediction: -96991.
”Naive” prediction: -19959.
”Mix” prediction: -95551.
”Combined” prediction: -96397.

12.4 EXAMPLES OF PROGRAM EVALUATION PREDICTION. LENGTH = 6, NESTING = 1

Input:
print((71647-548966)).

Target: -477319.
”Baseline” prediction: -472122.
”Naive” prediction: -477591.
”Mix” prediction: -479705.
”Combined” prediction: -475009.

Input:
print(1508).

Target: 1508.
”Baseline” prediction: 1508.
”Naive” prediction: 1508.
”Mix” prediction: 1508.
”Combined” prediction: 1508.

Input:

16

Figure 7: Examples of outputs of the RNNs from the “Learning to execute”
paper.

4.3 Learning to Execute Programs

A particularly impressive example of the capabilities of RNNs is that they
are able to learn to execute simple programs. This was demonstrated by
Wojciech Zaremba and Ilya Sutskever, then at Google.3 Here, the input to
the RNN was a simple Python program consisting of simple arithmetic and
control flow, and the target was the result of executing the program. Both
the inputs and the targets were fed to the RNN one character at a time.
Examples are shown in Figure 6.

Their RNN architecture was able to learn to do this fairly well. Some
examples of outputs of various versions of their system are shown in Figure 7.
It’s interesting to look at the pattern of mistakes and try to guess what the
networks do or don’t understand. For instance, the networks don’t really
seem to understand carrying: they know that something unusual needs to
be done, but it appears they’re probably just making a guess.

3W. Zaremba and I. Sutskever. Learning to Execute. ICLR, 2015.

11

	Introduction
	Learning Goals

	Recurrent Neural Nets
	Backprop Through Time
	Sequence Modeling
	Language Modeling
	Neural Machine Translation
	Learning to Execute Programs

