
Lecture 11: Convolutional Networks

Roger Grosse

1 Introduction

So far, all the neural networks we’ve looked at consisted of layers which
computed a linear function followed by a nonlinearity:

h = φ(Wx). (1)

We never gave these layers a name, since they’re the only thing we used.
Now we will. They’re called fully connected layers, because every one of
the input units is connected to every one of the output units. While fully
connected layers are useful, they’re not always what we want. Here are
some reasons:

• They require a lot of connections: if the input layer has M units and
the output layer has N units, then we need MN connections. This
can be quite a lot; for instance, suppose the input layer is an image
consisting of M = 256× 256 = 65563 grayscale pixels, and the output
layer consists of N = 1000 units (modest by today’s standards). A
fully connected layer would require 65 million connections. This causes
two problems:

– Computing the hidden activations requires one add-multiply op-
eration per connection in the network, so large numbers of con-
nections can be expensive.

– Each connection has a separate weight parameter, so we would
need a huge number of training examples in order to avoid over-
fitting.

• If we’re trying to classify an image or an audio waveform, there’s
certain structure we’d like to make use of. For instance, features
(such as edges) which are useful at one image location are likely to be
useful at other locations as well. We would like to share structure
between different parts of the network. Another property we’d like to
make use of is invariance: if the image or waveform is transformed
slightly (e.g. by shifting it a few pixels), the classification shouldn’t
change. Both of these properties should be encoded into the network’s
architecture if possible.

For the next three lectures, we’ll talk about a particular kind of network ar-
chitecture which deals with all these issues: the convolutional network, or
conv net for short. Like the name suggests, the architecture is inspired by
a mathematical operator called convolution (which we’ll explain shortly).

1



Figure 1: Translate-and-scale interpretation of convolution of one-
dimensional signals.

Conv nets revolutionized the field of computer vision in 2012, and by
now, the vast majority of papers published in top computer vision con-
ferences use conv nets in some way. Fortunately, the ideas aren’t terribly
complicated, and by the end of these three lectures, you’ll understand how
these things work. With a relatively small number of lines of code in a
framework like TensorFlow, you can build a computer vision system more
powerful than the state-of-the-art just a few years ago.

2 Convolution

Before we talk about conv nets, let’s introduce convolution. Suppose we
have two signals x and w, which you can think of as arrays, with elements
denoted as x[t] and so on. As you can guess based on the letters, you can
think of x as an input signal (such as a waveform or an image) and w as
a set of weights, which we’ll refer to as a filter or kernel. Normally the
signals we work with are finite in extent, but it is sometimes convenient to
treat them as infinitely large by treating the values as zero everywhere else;
this is known as zero padding.

Let’s start with the one-dimensional case. The convolution of x and
w, denoted x ∗ w, is a signal with entries given by

(x ∗ w)[t] =
∑
τ

x[t− τ ]w[τ ]. (2)

There are two ways to think about this equation. The first is translate-
and-scale: the signal x ∗w is composed of multiple copies of x, translated
and scaled by various amounts according to the entries of w. An example
of this is shown in Figure 1.

A second way to think about it is flip-and-filter. Here we generate
each of the entries of x ∗ w by flipping w, shifting it, and taking the dot
product with x. An example is shown in Figure 2.

The two-dimensional case is exactly analogous to the one-dimensional
case; we apply the same definition, but with more indices:

(x ∗ w)[s, t] =
∑
σ,τ

x[s− σ, t− τ ]w[σ, τ ]. (3)

2



Figure 2: Flip-and-filter interpretation of convolution of one-dimensional
signals.

This is shown graphically in Figures 3 and 4.

2.1 Examples

Despite the simplicity of the operation, convolution can do some pretty
interesting things. For instance, we can blur an image:

� 0 1 0
1 4 1

0 1 0
=

We can sharpen it:

� 0 -1 0
-1 8 -1

0 -1 0
=

If we change the values slightly, we get a very different effect. (Why?
What is the difference from the previous example?) This is a center-
surround filter, and it responds only to boundaries.

3



Figure 3: Translate-and-scale interpretation of convolution of two-
dimensional signals.

Figure 4: Flip-and-filter interpretation of convolution of two-dimensional
signals.

4



� 0 -1 0
-1 4 -1

0 -1 0
=

We can detect edges. (That is, edges in the image itself, rather than
edges in the world. Detecting edges in the world is a very hard problem.)
This filter is known as a Sobel filter.

� 1 0 -1
2 0 -2

1 0 -1
=

2.2 Properties of convolution

Now that we’ve seen some examples of convolution, let’s note some useful
properties. First of all, it behaves like multiplication, in that it’s commuta-
tive and associative: It’s a good exercise to verify both

properties from the definition.

u ∗ v = v ∗ u (4)

(u ∗ v) ∗ w = u ∗ (v ∗ w). (5)

While both properties follow easily from the definition, they’re a bit surpris-
ing and counterintuitive when you think about flip-and-filter. For instance,
let’s say you blur the image and then run a horizontal edge filter, rep-
resented as (x ∗ wblur) ∗ whorz. By commutativity and associativity, this
is equivalent to first running the edge filter, and then blurring the result,
i.e. (x ∗ whorz) ∗ wblur. It’s also equivalent to convolving the image with a
single kernel which is obtained by blurring the edge kernel: x∗(whorz∗wblur).

Another useful property of convolution is that it is linear:

(ax+ bx′) ∗ w = ax ∗ w + bx′ ∗ w (6)

x ∗ (aw + bw′) = ax ∗ w + bx ∗ w′. (7)

This is convenient, because linear operations are often easier to deal with.
But it also shows an inherent limit to convolution: if you have a neural net
which computes lots of convolutions in sequence, it can still only compute
linear functions. In order to compute more complex operations, we’ll need
to apply some sort of nonlinear activation function in each layer. (More on
this later.)

One last property of convolution is that it’s equivariant to translation.
This means that if we shift, or translate, x by some amount, then the output
x∗w is shifted by the same amount. This is a useful property in the context
of neural nets, because it means the network’s computations behave in a
well-defined way as we transform the inputs.

5



convolution linear
rectification

convolution layer

Figure 5: Detecting horizontal and vertical edge features.

2.3 Convolutional feature detection

As alluded to above, convolutions are even more powerful when they’re
paired with nonlinearities. A sequence of convolutions can only compute a
linear function, but a sequence of convolutions alternated with nonlinearities
can do fancier things. E.g., consider the following sequence of operations:

1. Convolve the image with a horizontal edge filter

2. Apply the linear rectification nonlinearity

φ(z) =

{
z if z > 0
0 if z ≤ 0

(8)

3. Blur the result.

This sequence of steps, shown in Figure 5, gives a map of horizontalness in
various parts of an image; the same can be done for verticalness. You can
hopefully imagine this being a useful feature for further processing. Because
the resulting output can be thought of as a map of the feature strength over
parts of an image, we refer to it as a feature map.

3 Convolution layers

We just saw that a convolution, followed by a nonlinear activation function,
followed by another convolution, could compute something interesting. This
motivates the convolution layer, a neural net layer which computes convo-
lutions followed by a nonlinear activation function. Since convolution layers
can be thought of as doing feature detection, they’re sometimes referred to
as detection layers. First, let’s see how we can think about convolution
in terms of units and connections.

Confusingly, the way they’re standardly defined, convolution layers don’t
actually compute convolutions, but a closely related option called filtering:

(x ? w)[t] =
∑
τ

x[t+ τ ]w[τ ]. (9)

6



y0 y1 y2

x0 x1 x2 x3 x4

w0 w1

w2

Figure 6: A convolution layer, shown in terms of units and connections.

Like the name suggests, filtering is essentially like flip-and-filter, but without
the flipping. (I.e., x ∗ w = x ? flip(w).) The two operations are basically
equivalent — the difference is just a matter of how the filter (or kernel) is
represented.

In the above example, we computed a single feature map, but just as we
normally use more than one hidden unit in fully connected layers, convolu-
tion layers normally compute multiple feature maps z1, . . . , zM . The input
layers also consist of multiple feature maps x1, . . . , xD; these could be differ-
ent color channels of an RGB image, or feature maps computed by another
convolution layer. There is a separate filter wij associated with each pair of
an input and output feature map. The activations are computed as follows:

zi =
∑
j

xj ? wij (10)

hi = φ(zi) (11)

The activation function φ is applied elementwise.
We can think about filtering as a layer of a neural network by think-

ing of the elements of x and x ∗ w as units, and the elements of w as
connection weights. Such an interpretation is visualized in Figure 6 for a
one-dimensional example. Each of the units in this network computes its
activations in the standard way, i.e. by summing up each of the incoming
units multiplied by their connection weights. This shows that a convolution
layer is like a fully connected layer, except with two additional features:

• Sparse connectivity: not every input unit is connected to every
output unit.

• Weight sharing: the network’s weights are each shared between
multiple connections.

Missing connections can be thought of as connections with weight 0. This
highlights an important fact: any function computed by a convolution layer
can be computed by a fully connected layer.

This means convolution layers don’t increase the representational capac-
ity, relative to a fully connected layer with the same number of input and
output units. But they can reduce the numbers of weights and connections.
For instance, suppose we have 32 input feature maps and 16 output feature
maps, all of size 50 × 50, and the filters are of size 5 × 5. (These are all
plausible sizes for a conv net.) The number of connections weights for the
convolution layer would be

5 × 5 × 16 × 32 = 12, 800.

7



Figure 7: An example of how pooling can provide partial invariance to
translations of the input. Observe that the first output does not change,
since the maximum value remains within its pooling group.

The number of connections is approximately

50 × 50 × 5 × 5 × 16 × 32 = 32 million.

By contrast, the number of connections (and hence also the number of
weights) required for a fully connected layer would be

(32 × 50 × 50) × (16 × 50 × 50) = 3.2 billion.

Hence, using the convolutional structure reduces the number of connections
by a factor of 100 and the number of weights by almost a factor of a million!

4 Pooling layers

In the introduction to this lecture, we observed that a neural network’s clas-
sifications ought to be invariant to small transformations of an image, such
as shifting it by a few pixels. In order to achieve invariance, we introduce
another kind of layer: the pooling layer. Pooling layers summarize (or
compress) the feature maps of the previous layer by computing a simple
function over small regions of the image. Most commonly, this function is
taken to be the maximum, so the operation is known as max-pooling.

Suppose we have input feature maps x1, . . . , xN . Each unit of the output
map computes the maximum over some region (called a pooling group) of
the input map. (Typically, the region could be 3×3.) In order to shrink the
representation, we don’t consider all offsets, but instead we space them by
a stride S along each dimension. This results in the representation being
shrunk by a factor of approximately S along each dimension. (A typical
value for the stride is 2.)

Figure 7 shows an example of how pooling can provide partial invariance
to translations of the input.

Pooling also has the effect of increasing the size of units’ receptive
fields, or the regions of the input image which influence their activations.
For instance, consider the network architecture in Figure 8, which alternates
between convolution and pooling layers. Suppose all the filters are 5 ×
5 and the pooling layer uses a stride of 2. Then each unit in the first
convolution layer has a receptive field of size 5 × 5. But each unit in the
second convolution layer has a receptive field of size approximately 10× 10,
since it does 5 × 5 filtering over a representation which was shrunken by
a factor of 2 along each dimension. A third convolution layer would have
20 × 20 receptive fields. Hence, pooling allows small filters to account for
information over large regions of an image.

8



convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer

Figure 8: Schematic of a conv net with convolution and pooling layers.
Pooling layers expand the receptive fields of units in subsequent convolution
layers.

9


	Introduction
	Convolution
	Examples
	Properties of convolution
	Convolutional feature detection

	Convolution layers
	Pooling layers
	Computing the derivatives
	Putting it all together

