Cooperative Browser Download Streams
(CSC2209 Fall '06 Project)

Robert Danek
University of Toronto
rdanek @cs.toronto.edu

ABSTRACT

The Internet is host to many different types of media,
some of which is very large in size and in high
demand. Users would like to be able to download this
content as fast as possible, and servers would like to
serve it as efficiently as possible. However, as the
demand for this type of content increases, it becomes
more difficult to satisfy these goals. This project
examines a potential solution: Cooperative Browser
Download Streams (CBDS). The idea of CBDS is
that users share content that they are currently
downloading with other browsers. This paper shows
through a number of simulations that for long-lived
download streams, which can occur at low transfer
rates or for extremely large files, this tool has the
potential to moderately reduce the load on origin
servers. Furthermore, it discusses the design of a
proof-of-concept implementation of the tool that was
developed.

1. Introduction

1.1 What is the problem?

The Internet is host to many different types of
media. Some media tends to be fairly lightweight and
can be downloaded quickly, such as plain text HTML
pages, while other media, such as videos stored on
YouTube, are much larger in size and consume more
bandwidth on a network. Ideally users would like to
be able to download content as fast as possible.
Similarly, servers would like to be able to serve that
content as quickly and efficiently as possible.
Problems arise, however, if too many users are
downloading large content from a server at the same
time: the server inevitably becomes overloaded and
the data starts being served at a slower rate. This
could be because of resources on the server itself, or
because of network congestion occurring on links
near the server. As a result of this, the user also
suffers by seeing extended download times. To

improve both users' download experiences and
servers' ability to provide content, this project
explores the concept of Cooperative Browser
Download Streams (CBDS).

The idea of CBDS is simply to have users
serve the content that they are currently downloading.
When a user is downloading large static content to
their browser, if the user is willing to share that
content, other users can connect to the first user's
browser and download the content from him instead
of going directly to the origin server. In this manner,
the server will experience reduced load. Furthermore,
any secondary users who are geographically closer to
the first user than they are to the origin server will
also likely experience a faster download.

1.2 Why is the problem interesting?

It is becoming more and more difficult for
servers that provide content that ranks as the most
popular on the Internet to serve that content. Many
servers cannot keep up with the load, and need to use
content distribution networks. Companies who want
to serve this content are forced to invest more and
more money to keep up with the popularity of their
websites.

Companies would be interested in solutions to
this problem if that solution did not require any
capital investment on their part. And this is precisely
one of the main selling features of CBDS: it does not
require companies to buy more servers or pay for
participating in a content distribution network. The
onus is completely on the user for helping share the
content that the server is providing.

1.3 Why is the problem hard?

There are three main reasons that make the
problem hard: incentive to participate, transparency
of the solution, and privacy of user data.

In order for cooperative download streams to

Page 1

mailto:rdanek@cs.toronto.edu

work, a user needs incentive to participate in it.
Without incentive, the user would have no reason for
donating his bandwidth. One possible incentive is to
have a server refuse to provide a client content unless
the client is willing to participate in CBDS. This
unfortunately would require the server be aware that
the client is participating in CBDS. The work done in
this project does not examine making changes to
origin servers to enforce the use of CBDS.

Another incentive to participate is the
potential gains in download speeds that the user can
experience.

Even if there is incentive, there also needs to
be ease of use — participating in CBDS needs to be a
transparent experience. If the user has to install
several different pieces of software, run processes
separate from his browser, or spend time changing his
configuration, he may not want to bother. In that case
he will go elsewhere for the content he was seeking,
or abandon trying to download it all together.

The last issue to be discussed is that of
privacy. If a user chooses to participate in CBDS, he
will be essentially advertising to other users the
content that he is downloading. This could be seen as
an invasion of privacy; he may want to download the
content, which requires him to participate in the
scheme, but at the same time he may not want others
to know that he has downloaded this content. How
can a user's privacy be maintained while at the same
time allowing him to participate in the scheme? This
is a question that is not addressed in this project, and
is left for future work.

1.4 Overview of results

As part of this project, several simulations
were run in order to determine the practicality of the
CBDS solution. The simulation aimed to answer two
specific questions: (1) What fraction of the total bytes
downloaded can be served by peer nodes instead of
the origin server? (2) What is the number of
concurrent uploads that a client has to potentially
serve? The first question's goal is to determine what
the possible bandwidth savings are from the server's
perspective. Even if the savings are large, it may be
the case that the number of peers that a client has to
serve is exorbitantly large, negating the practicality of
the solution; this is what the second question seeks to
determine.

The data obtained from the simulations show
that at low transfer rates, a moderate fraction of the
total bytes transferred can be shared. However, the
data also show that this sharing comes at the cost of
having some clients being required to serve many
concurrent uploads.

The other item that this project delivered was
a proof-of-concept implementation of the CBDS
solution. The implementation is provided as a Firefox
extension. This requires that the extension be able to
intercept HTTP requests and responses, and have the
ability to serve content. After the initial investigation
of the Firefox extension mechanism, it was decided to
use a hybrid approach in the implementation. Rather
than intercept requests and responses, and serve
content, within a Firefox extension, a proxy was
developed using Java. The proxy is bootstrapped from
within the extension whenever the extension is
loaded. The extension also automatically changes the
Firefox HTTP proxy configuration to point to the
appropriate port. From an end-user standpoint, this
solution is virtually indistinguishable from an
implementation done purely in Firefox. It has the
added advantage that the proxy can run in a separate
process for debugging purposes. Also, this makes the
solution portable to other browsers, albeit with
slightly less transparency — users of other browsers
will be required to manually run the Java process and
modify their browser's configuration to point to the
correct proxy port.

The rest of this paper is organized as follows.
In section 2 the main results of this project are
described. This section is split up into several
subsections, including: a description of how the
simulator works, a summary of the data obtained
from the simulator, and a description of the design of
the CBDS Firefox extension. Following that, in
section 3, the related work that has been done is
described. Section 4 describes future work to be done,
and the paper concludes in Section 5.

2 Results
2.1 How the Simulator Works

The simulations were done using a trace
containing a list of 1640179 Kazaa requests made by
over 24K clients during a period of 200 days. Prior to
running the simulation on the trace, the trace was
pruned so that it only contained requests for files

Page 2

larger than 100M bytes. The rationale for this is that
the CBDS solution is intended for sharing large files.

The Simulator works as follows. It maintains
a priority queue containing events of type
START_DOWNLOAD or END_DOWNLOAD that
need to be processed. The priority queue is ordered
based on the time of the event. In order to populate
events into the queue, the simulation has to start by
reading entries from the trace file. The main loop of
the simulation basically reads an entry from the trace
file, notes the time associated with that entry, and
processes all events in the event queue up until the
time of the current entry read from the file. It then
adds the entry read from the file into the event queue,
reads the next entry from the file, and continues
processing events in the queue until the time
associated with the latest entry read.

Besides the event queue, the Simulator also
maintains a mapping of the clients actively
downloading a given file.

Due to space limitations, all the details of the
simulator's operation cannot be included here. A more
complete description of the Simulator, along with its
source code, are available at the CSC 2209 Project
Web site [8].

2.2 Simulation Results

Kazaa Trace: Shared Fraction of Bytes versus Tine

8Kkbps ——
40Kbps ——
80Kbps —#+— |

Shared Fraction of Bytes

18326695792 1848292647

Tine (sec)

]
1822697727

Figure 1
The first
attempted to answer was: What fraction of the total
bytes downloaded can be shared between peers
instead of being downloaded from the origin server?
The results are illustrated in Figure 1. The
figure shows the fraction of bytes that can be shared

question that the simulation

as time progresses in the simulation. For a very low
transfer rate between nodes of 8Kbps, the final
fraction of bytes that can be served by peers is 37.8%.
As the transfer rate is increased, this value naturally
decreases. This is because the size of the files in the
trace we use remain constant, and hence the time it
takes to download a file decreases. In turn, this means
the amount of time a client can share its download
stream is decreased, and so the fraction of bytes that
can be uploaded to peers also decreases. For a transfer
rate of 40Kbps, the fraction of bytes that can be
served by peers is 16.8%; and for 80Kbps the fraction
is 10.6%.

Data was collected for faster transfer rates,
but is not illustrated in the graph, since the fraction of
sharing dips below 4%. For a transfer rate of 400Kbps
the fraction of bytes that can be served by peers is
3.5%; for a transfer rate of 800Kbps, it is 2.0%; and
for a transfer rate of 4Mbps, the fraction is 0.55%.

One thing to note in Figure 1 is the kink in
the graph that occurs midway. This kink is due to the
source of the trace data used in the simulation. The
data was collected over a 200 day period from a
university campus, and part of it spans the summer.
Since most students are not on campus during the
summer, the amount of data being transferred
naturally dips. When the Fall term starts again, there
is an expected spike, as seen in the graph.

Kazaa Trace: Haxinun Nunber of Concurrent Uploads

Fraction of Peers

8.3

(] 18 17 62 188 158 188
Nunber of Concurrent Uploads

Figure 2

The other question that the
attempted to answer was: What is the number of
concurrent uploads that a client has to potentially
serve?

The results to this question are shown in

simulation

Page 3

Figure 2. The figure illustrates the cumulative fraction
of peers having to concurrently upload to at most x
other peers. In particular, at a transfer rate of 8Kbps,
95% of the clients have to serve at most 62 concurrent
uploads. However, there is some client that has to
serve 532 concurrent uploads. (This last data point is
not illustrated on the graph since it would not have
been informative to see the progression from 99
percentile of clients to the 100™ percentile occurring
between x=150 and x=532.) At a transfer rate of
40Kbps, 95% of the clients have to serve at most 17
concurrent uploads, while some client exists that has
to serve 148 concurrent uploads. Finally, at a transfer
rate of 80Kbps, 95% of the clients have to serve at
most 10 concurrent uploads, yet there is at least 1
client that has to serve 95 concurrent uploads.

Data was collected for faster transfer rates,
but is not discussed here since the fraction of sharing
possible at those transfer rates is negligible.

The results from the first question indicate
that the CBDS solution has some promise. However,
the results obtained for the second question are
discouraging. If a client has to be encumbered by
serving too many concurrent uploads, the CBDS
solution becomes impractical. There is hope for this
problem, however, as discussed in the section on
future work.

2.3 Design of the CBDS Implementation

The CBDS implementation consists of two
main parts. The first is the Firefox extension, and the
second is the Java proxy. The whole purpose of the
Firefox extension is to: (1) start the Java proxy in-
process with Firefox; and (2) modify the Firefox
HTTP proxy configuration parameters to point to the
local host and port on which the proxy is listening.
This allows for a clean user experience that does not
require manually configuring the browser or starting
external processes.

The implementation of the Firefox extension
in this project is based on the Java Firefox Extension
[5]. Without the functionality this extension provides,
the code would have to wuse LiveConnect.
LiveConnect is an API that allows users to call Java
methods from within Javascript. The problem is that
Java code that is executed as a result of a call from a
Firefox extension (written in Javascript) runs with
strict security permissions that prevent it from doing

anything interesting, such as starting threads or
opening server sockets. The Java Firefox Extension
sets security permissions in such a way to allow the
Java code to do anything that it would be able to do if
it was running as a standalone process.

The Java proxy that was implemented has two
main purposes. One purpose is to intercept responses
to HTTP requests, and if the response is for static
content, make that response stream available for
sharing with other browsers. OpenDHT [6], which is
a service that provides a distributed hash table, is
used to facilitate this. If the stream can be shared, a
mapping is added to OpenDHT. This mapping
consists of a key and a value, where the key is a
concatenation of the origin server's host name and the
name of the resource being returned (that is, the
absolute path from the associated request header); and
the value is the IP and port of the current browser that
other browser's should connect to when requesting the
resource.

The other purpose of the proxy is to intercept
HTTP requests and decide if the request should be
made directly to the origin server or if it should be
made to another browser. This determination is made
by seeing how many mappings exist in OpenDHT for
the requested content. These mappings would have
been placed there by other browsers who intercepted
the response stream from a server and determined that
the content is shareable, as described above. If the
number of mappings is high enough, then the current
load on the server that hosts the content is fairly
heavy, and the browser will attempt to retrieve the
data from a peer browser. Otherwise, the browser will
request the resource directly from the origin server.

An extended description of the design of the
CBDS implementation is available in the Project
Mid-term Report available at the CSC 2209 Project
Web site [8]. The CBDS Firefox implementation is
also available here.

3 Related Work

Extensive work has been done previously on
cooperative web proxy caching, which involves
caching proxies sharing the contents of their caches
amongst themselves. However, Wolman et al in [1]
demonstrated that cooperative proxy caching has only
a minor benefit within limited population bounds.

In [2] Iyer et al examined Squirrel, a

Page 4

decentralized peer-to-peer web cache. This work is
very similar to the work done in this project. Users
running Squirrel basically agree to serve the contents
of their cache to anyone else using Squirrel. In order
to find where certain content should be downloaded
from - i.e., a peer browser's cache, or the origin
server — Squirrel makes use of Pastry, a peer-to-peer
object location service. A problem that Squirrel does
not address is that of incentive: what incentive does
the user have to open his cache to anyone and allow
people to download from him at any time? With
CBDS, the idea is to only share content only for the
time during which the user is downloading that
content. This goes part way in addressing the question
of incentive, since potentially improved download
times provide at least some incentive. Furthermore, if
servers were to implement policies that somehow
enforced a client's use of CBDS, it is clear that
enforcement would only be effective for the duration
when the user is downloading content from that
server. This is because as soon as a download is
finished, there is nothing that prevents the user from
turning off his Internet connection.

There is also similar work done in CoopNet
[3]. CoopNet examines the benefits that using peer-
to-peer communication can have on improving the
performance of client - server applications in a
network. In particular, [4] examines the problem of
alleviating flash crowds. A flash crowd on a server
occurs when there is a dramatic surge in requests
being made to the server. The proposed solution is for
browsers to share content only for the duration of the
flash crowd, and perhaps even for shorter durations —
i.e., for the duration of time during which the browser
is trying to retrieve the content. CBDS is very similar
in this respect. However, the solution examined in [4]
involves modifications to the origin server to allow
for server redirects to occur during flash crowd
scenarios; redirects are made to other browsers that
have already started downloading content from the
server. CBDS, on the other hand, makes use of
OpenDHT to keep track of what content is currently
being shared, and look ups must be explicitly directed
to an OpenDHT node prior to going to the origin
server or peer browser.

4 Future Work

One of the items not studied in this project
was how geographic locality of peers could be
exploited to increase download speeds. If two peers
are physically close to each other, and one is
downloading a file that the other wants, then the
second client should be able to download the file
faster than would be possible by going to the origin
server (assuming the origin server is not local).

Another issue worth exploring is that of
maintaining the privacy of CBDS participants. When
a user shares his download streams with others, he is
advertising his surfing habits to the world. Is there a
way to share the download stream of a browser while
at the same time hide from the peer downloading that
data who the client is sharing that stream?

Providing stronger incentive for users to
participate in CBDS is another problem that deserves
to be studied. One proposal is to enlist the help of
origin servers to provide that incentive — for example,
by preventing users from downloading certain data
unless they are using the CBDS tool.

The implementation discussed in this paper
has a number of limitations, including its inability to
handle firewalls and Network Address Translators
(NATSs), and its lack of support for HTTP 1.0. When a
client is behind a NAT or a firewall, the IP address
that it registers in OpenDHT when it's willing to share
a download stream may be incorrect. Furthermore,
the port on which the client is listening for peer
connections may be blocked by the firewall. HTTP
1.0 is “tolerated” by the CBDS implementation, but
static content from HTTP 1.0 servers cannot be
shared. This is due to the way the implementation
uses chunked transfer encoding for transmitting data
between peers. (Chunked transfer encoding was
introduced in HTTP 1.1 [7].)

One further thing worth studying is a more
intelligent means for choosing peers from which to
download a file. The simulations done show that
randomly choosing a peer when there is more than
one to choose from can cause a heavy load to be
experienced by a number of 'unlucky' peers. One way
to improve on this would be by ordering the peers in a
chain based on the time they started downloading the
file, and whenever a peer starts downloading, it starts
downloading as much of the file as it can from the
peer that precedes it in the chain. In this manner, a
client should only ever have to serve at most one other
peer.

Page 5

5 Conclusions

This project was able to show through the
execution of a number of simulations that
Cooperative Browser Download Streams has the
potential of saving a moderate amount of bandwidth
on an origin server when extremely large files are
being downloaded and the transfer rates between
nodes is reasonably slow.

In particular, at a transfer rate of 8Kbps,
37.8% of the bytes transferred can be obtained from
peer clients instead of the origin server. This value
decreases as the transfer speed between nodes
increases. At an extremely fast speed of 4Mbps, the
shared fraction of bytes is only 0.55%.

The downside of these results was that the
number of concurrent uploads that a client has to
potentially serve can be extremely large. At a transfer
rate of 8Kbps, 95% of the clients have to serve at
most 62 concurrent uploads, and there is at least one
client that has to serve 148 concurrent uploads. Even
at moderately fast speeds of 400Kbps, 95% of the
clients have to serve at most 3 concurrent uploads, but
there is at least one client that has to serve 25
concurrent uploads.

The other outcome of this project was a
rudimentary proof-of-concept implementation of
CBDS. This implementation was a Firefox extension
wrapping an HTTP proxy written in Java. Being able
to deploy this tool as a Firefox extension goes a long
way to solving the problem of transparency. Firefox
users will only have to install the extension, which is
done using an extremely simple mechanism within

Firefox, and they will be up and running with CBDS.

References

[1] Wolman, A., Voelker, G.M., Sharma, N.,
Cardwell, N., Karlin, A., Levy, H.M.: On the scale
and performance of cooperative Web proxy caching.
Proceedings of the 17th ACM Symposium on
Operating Systems Principles (1999) 16-31

[2] Iyer, S., Rowstron, A., Druschel, P.: Squirrel: A
decentralized peer-to-peer web cache. Principles of
Distributed Computing (2002)

[3] CoopNet: Cooperative Networking.
http://research.microsoft.com/projec
ts/coopnet/

[4] Padmanabhan, V. N., Sripanidkulchai, K.: The
Case for Cooperative Networking. Proceedings of the
First International Workshop on Peer-to-Peer Systems
(March 2002)

[5] Java Firefox Extension.

http://simile.mit.edu/java-firefox-
extension/

[6] OpenDHT. http://opendht.org/

[7] RFC 2616. Hypertext Transfer Protocol -
HTTP/1.1.

http://tools.ietf.org/html/rfc2616

[8] Robert Danek's CSC 2209 Project Page.
http://www.cs.toronto.edu/~rdanek/C
€2209.html

Page 6

http://www.cs.toronto.edu/~rdanek/CSC2209.html
http://www.cs.toronto.edu/~rdanek/CSC2209.html
http://tools.ietf.org/html/rfc2616
http://opendht.org/
http://simile.mit.edu/java-firefox-extension/
http://simile.mit.edu/java-firefox-extension/
http://research.microsoft.com/projects/coopnet/
http://research.microsoft.com/projects/coopnet/

