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Abstract

Several recently-proposed architectures for high-
performance object recognition are composed of two main
stages: a feature extraction stage that extracts locally-
invariant feature vectors from regularly spaced image
patches, and a somewhat generic supervised classifier.
The first stage is often composed of three main modules:
(1) a bank of filters (often oriented edge detectors); (2)
a non-linear transform, such as a point-wise squashing
functions, quantization, or normalization; (3) a spatial
pooling operation which combines the outputs of similar
filters over neighboring regions. We propose a method
that automatically learns such feature extractors in an
unsupervised fashion by simultaneously learning the filters
and the pooling units that combine multiple filter outputs
together. The method automatically generates topographic
maps of similar filters that extract features of orientations,
scales, and positions. These similar filters are pooled
together, producing locally-invariant outputs. The learned
feature descriptors give comparable results as SIFT on
image recognition tasks for which SIFT is well suited, and
better results than SIFT on tasks for which SIFT is less well
suited.

1. Introduction

A crucially important component of every recognition
system is the feature extractor. Much of the recent propos-
als for object recognition systems are based on feature de-
scriptors extracted from local patches placed at regularly-
spaced grid-points on the image [13, 11, 25, 18, 22]. The
most successful and most commonly-used descriptors such
as SIFT and HoG [15, 3] are designed to be invariant (or ro-
bust) to minor transformations of the input, such as transla-
tions, rotations, and other affine transforms and distortions.
The present paper proposes a new method toautomatically
learn locally-invariant feature descriptors from data in an
unsupervised manner. While good descriptors have been
devised for grayscale image recognition, the design of good

descriptors for other types of input data is a complex task.
The ability to learn the features would allow us to auto-
matically construct good descriptors for new image types
(e.g. multispectral images, range images), and for other in-
put modalities (e.g. audio, sonar).

Most existing local descriptors are based on a simple ar-
chitecture: the patch is convolved with a filter bank (often
consisting of oriented edge detectors), the outputs of which
are rectified and often normalized and quantized. Then, the
outputs of each filter are spatially pooled using a simple ad-
dition or a max operator, so as to build local bags of fea-
tures. The pooling operation makes the descriptor robust to
minor changes in the position of individual features. This
architecture is somewhat similar (and inspired by) the most
commonly accepted model of early areas of the mammalian
primary visual cortex: simple cells detect oriented edges at
various locations and scales (playing the same role as the
filter bank). Highly-active simple cells inhibit other cells
at neighboring locations and orientations (similarly to lo-
cal normalization and/or quantization), while complex cells
spatially pool the rectified outputs of complex cells, so as
to create a local invariance to small shifts (like the pooling
operation) [7, 25, 21]. The method proposed here simulta-
neously learns the filters and the pooling function, so that
filters that fire on similar image patches end up in the same
pool. As a result, similar patches will produce similar de-
scriptors.

The problem of learning low-level image features has
become a topic of growing interest in recent years. Sev-
eral authors have proposed unsupervised methods to learn
image descriptors based on sparse/overcomplete decompo-
sition [19, 14, 23], but none had explicit provision for local
invariance. Supervised learning methods have long been
used in conjunction with Convolutional Networks to learn
low-level, locally invariant features that are tuned to thetask
at hand [12, 13], but these methods require large numbers
of labeled samples. A number of different proposals have
appeared for unsupervised learning of locally-invariant de-
scriptors, which also use sparsity criteria [7, 20, 8, 22].

Our aim is to learn the filter bank stage and the pooling
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stage simultaneously, in such a way the filters that belong to
the same pool extract similar features. Rather than learning
descriptors that are merely invariant to small shift (a prop-
erty that can easily be built by hand), our goal is to learn
descriptors that are also invariant to other types of transfor-
mations, such as rotations and certain distortions. Our solu-
tion is to pre-wire (before learning) which filters outputs are
pooled together, and to let the underlying filters learn their
coefficients. The main idea, inspired by [8], is to minimize
a sparsity criterion on the pooling units. As a result, filters
that are pooled together end up extracting similar features.

Several authors have proposed methods to learn pooled
features in the context of computational models of the mam-
malian primary visual cortex. The idea relies on impos-
ing sparsification criteria on small groups of filter out-
puts [10, 6, 8], which can be related to the Group Lasso
method for regularization [27]. When the filters that are
pooled together are organized in a regular array (1D or 2D),
the filters formtopographic mapsin which nearby filters ex-
tract similar features [20, 7], with patterns similar to what
is found in the visual cortex.

To the best of our knowledge, the present work is the
first time a trainable topographically-organized feature map
is used for extracting locally invariant image descriptors
for image recognition. The following sections describe the
training procedure, and compare the descriptors thereby ob-
tained with a number of standard descriptors such as SIFT.
The experiments compare recognition accuracies on Cal-
tech 101, MNIST and Tiny Images datasets using various
recognition architectures fed with various descriptors.

2. Algorithm

It is well established that sparse coding algorithms ap-
plied to natural images learn basis functions that are lo-
calized oriented edges and resemble the receptive fields
of simple cells in area V1 of the mammalian visual cor-
tex [19]. These methods produce feature representation that
are sparse, but not invariant. If the input pattern is slightly
distorted, the representation may change drastically. More-
over, these features represent information about local tex-
ture, and hence, are rather inefficient when used to pre-
process whole images because they do not exploit the re-
dundancy in adjacent image patches. Finally, most sparse
coding algorithms [19, 14, 17, 24, 4] have found limited ap-
plications in vision due to the high computational cost of
the iterative optimization required to compute the feature
descriptor.

In this paper, we introduce an algorithm, namedIn-
variant Predictive Sparse Decomposition(IPSD), that: (1)
learns features that are invariant to small variations inherent
in the data, and (2) produces more efficient representations
because they can be compact and directly computed using
a feed-forward function, without requiring the use of any

iterative optimization procedure.

2.1. Learning an Over-complete Dictionary of Basis
Functions

Sparse coding algorithms represent an input signalx ∈
Rm using a linear combination of basis functions that are
columns of the dictionary matrixD ∈ Rm×n, using co-
efficientsz ∈ Rn, with n > m. Since the linear system is
under-determined, a sparsity constraint is added that prefers
most of the coefficients to be zero for any given input. Many
sparse coding algorithms have been proposed in the liter-
ature and in this work we focus on the following convex
formulation:

L = min
1

2
||x−Dz||2

2
+ λ

∑

i

|zi| (1)

This particular formulation has been extensively stud-
ied [19, 4, 2, 14, 17, 24, 16, 9], and it has also been extended
to the case when the dictionaryD is learned, thus adapting
to the statistics of the input. The basic idea is to minimize
the same objective of Eqn. 1 alternatively over coefficients
z for a given dictionaryD, and then overD for a given set
of z. Note that each column ofD is required to be unitℓ2

norm (or bounded norm) in order to avoid trivial solutions
that are due to the ambiguity of the linear reconstruction
(for instance, the objective can be decreased by respectively
dividing and multiplyingz andD by a constant factor).

2.2. Modeling Invariant Representations

Although the sparse coding algorithm outlined above can
learn representations that are sparse, they are not invariant:
a small change in the input signalx may result in a large
change in the coefficientsz [24]. We now describe how the
sparsity term in Eqn. 1 can be modified to create coefficients
that are invariant to perturbations in the input signal.

The overall idea [8] is to arrange thez’s into a 2D map
(or some other topology) and then pool the squared coeffi-
cients ofz across overlapping windows. Then, the square of
the the filter outputs within each sub-window are summed,
and its square root is computed. More formally, let the
map ofz containK overlapping neighborhoodsPi. Within
each neighborhoodi, we sum the squared coefficientszj

(weighted by a fixed Gaussian weighting function centered
in the neighborhood) and then take the square root. This

gives the activationvi =
√

∑

j∈Pi
wjz

2

j , wherewj are the

Gaussian weights. The overall sparsity penalty is the sum
of each neighborhood’s activation:

∑K
i=1

vi. Figure 1(a) il-
lustrates this scheme. Thus, the overall objective function is
now:

LI =
1

2
||x−Dz||2

2
+ λ

K
∑

i=1

√

∑

j∈Pi

wjz
2

j (2)
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Figure 1.(a): The structure of the block-sparsity term which en-
courages the basis functions inD to form a topographic map. See
text for details. (b): Overall architecture of the loss function, as
defined in Eqn. 4. In the generative model, we seek a feature vec-
tor z that simultaneously approximate the inputx via a dictionary
of basis functionsD and also minimize a sparsity term. Since per-
forming the inference at run-time is slow, we train a prediction
functionF (x; W ) (dashed lines) that directly predicts the optimal
z from the inputx. At run-time we use only the prediction function
to quickly computez from x, from which the invariant featuresvi

can computed.

The modified sparsity term has a number of subtle effects
on the nature ofz that are not immediately obvious:

• The square root in the sum overi encourages sparse
activationsacrossneighborhoods since a few large ac-
tivations will have lower overall cost than many small
ones.

• Withineach neighborhoodi, the coefficientszj are en-
couraged to be similar to one another due to thez2

j term
(which prefers many small coefficients to a few large
ones). This has the effect of encouraging similar basis
functions inD to be spatially close in the 2D map.

• As the neighborhoods overlap, these basis functions
will smoothly vary across the map, so that the coef-
ficientszj in any given neighborhoodi will be similar.

• If the size of the pooling regions is reduced to a single
z element, then the sparsity term is equivalent to that
of Eqn. 1.

The modified sparsity term means that by minimizing
the loss functionLI in Eqn. 2 with respect to both the co-
efficientsz and the dictionaryD, the system learns a set of
basis functions inD that are laid out in atopographic map
on the 2D grid.

Since the nearby basis functions in the topographic map
are similar, the coefficientszj will be similar for a given in-
putx. This also means that if this input is perturbed slightly
then the pooled response within a given neighborhood will
be minimally affected, since a decrease in the response of
one filter will be offset by an increased response in a nearby
one. Hence, we can obtain a locally robust representation

by taking the pooled activationsvi as features, rather thanz
as is traditionally done.

Since invariant representations encode similar patterns
with the same representation, they can be made more com-
pact. Put another way, this means that the dimensionality
of v can be made lower than the dimensionality ofz with-
out loss of useful information. This has the triple benefit of
requiring less computation to extract the features from an
image, requiring less memory to store them, and requiring
less computation to exploit them.

The 2D map overz uses circular boundary conditions to
ensure that the pooling wraps smoothly around at the edges
of the map.

2.3. Code Prediction

The model proposed above is generative, thus at test-
time for each input regionx, we will have to perform infer-
ence by minimizing the energy functionLI of Eqn. 2 with
respect toz. However, this will be impractically slow for
real-time applications where we wish to extract thousands
of descriptors per image. We therefore propose totrain a
non-linear regressor that directly maps input patchesx into
sparse representationsz, from which the invariant features
vi can easily be computed. At test-time we only need to
presentx to the regression function which operates in feed-
forward fashion to producez. No iterative optimization is
needed.

For the regressor, we consider the following
parametrized function:

F (x;W ) = F (x; g,M, b) = g tanh(Mx + b) (3)

whereM ∈ Rm×n is a filter matrix,b ∈ Rm is a vector
of biases,tanh is the hyperbolic tangent non-linearity, and
g ∈ Rm×m is a diagonal matrix ofgain coefficients allow-
ing the outputs ofF to compensate for the scaling of the
input and the limited range of the hyperbolic tangent non-
linearity. For convenience,W is used to collectively denote
the parameters of the predictor,W = {g,M, b}.

During training, the goal is to make the prediction of the
regressor,F (x;W ) as close as possible to the optimal set
of coefficients:z∗ = arg minz LI in Eqn. (2). This opti-
mization can be carried out separatelyafter the problem in
Eqn. (2) has been solved. However, training becomes much
faster byjointly optimizing theW and the set of basis func-
tionsD all together. This is achieved by adding another
term to the loss function in Eqn. (2), which forces the rep-
resentationz to be as close as possible to the feed-forward
predictionF (x;W ):

LIP = ‖x−Dz‖2
2

+ λ

K
∑

i=1

√

∑

j∈Pi

wjz
2

j + α‖z − F (x;W )‖2
2

(4)



The overall structure of this loss function is depicted in
Fig. 1(b).

2.4. Learning

The goal of learning is to find the optimal value of the ba-
sis functionsD, as well as the value of the parameters in the
regressorW , thus minimizingLIP in Eqn. 4. Learning pro-
ceeds by an on-line block coordinate gradient descent algo-
rithm, alternating the following two steps for each training
samplex.

1. Keeping the parametersW andD constant, minimize
LIP of Eqn. (4) with respect toz, starting from the
initial value provided by the regressorF (x;W ).

2. Using the optimal value of the coefficientsz provided
by the previous step, update the parametersW andD
by one step of stochastic gradient descent. The update
is: U ← U − η ∂LIP

∂U
, whereU collectively denotes

{W,D} andη is the step size. The columns ofD are
then re-scaled to unit norm.

We setα = 1 for all experiments. We found that training the
set of basis functionsD first, then subsequently training the
regressor, yields similar performance in terms of recogni-
tion accuracy. However, when the regressor is trained after-
wards, the approximate representation is usually less sparse
and the overall training time is considerably longer.

2.5. Evaluation

Once the parameters are learned, computing the invariant
representationv can be performed by a simple feed-forward
propagation through the regressorF (x;W ), and then prop-

agatingz into v throughvi =
√

∑

j∈Pi
wjz

2

j . Note that

no reconstruction ofx using the set of basis functionsD
is necessary any longer. An example of this feed forward
recognition architecture is given in Fig. 6.

The addition of this feed-forward module for predicting
z, and hence,v is crucial to speeding up the run-time per-
formance, since no optimization needs to be run after train-
ing. Experiments reported in a technical report on the non-
invariant version of Predictive Sparse Decomposition [9]
show that thez produced by this approximate representa-
tion gives a slightly superior recognition accuracy to thez

produced by optimizing ofLI .
Finally, other families of regressor functions were tested

(using different kinds of thresholding non-linearities),but
the one chosen here achieves similar performance while
having the advantage of being very simple. In fact the fil-
tersM learned by the prediction function closely match the
basis functionsD used for reconstruction during training,
having the same topographic layout.

Figure 2. Topographic map of feature detectors learned from nat-
ural image patches of size 12x12 pixels by optimizingLIP a in
Eqn. 4. There are 400 filters that are organized in 6x6 neighbor-
hoods. Adjacent neighborhoods overlap by 4 pixels both horizon-
tally and vertically. Notice the smooth variation within a given
neighborhood and also the circular boundary conditions.
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Figure 3. Analysis of learned filters by fitting Gabor functions,
each dot corresponding to a feature. Left: Center location of fitted
Gabor. Right: Polar map showing the joint distribution of orienta-
tion (azimuthally) and frequency (radially) of Gabor fit.

3. Experiments

In the following section, before exploring the properties
of the invariant features obtained, we first study the topo-
graphic map produced by our training scheme. First, we
make an empirical evaluation of the invariance achieved by
these representations under translations and rotations ofthe
input image. Second, we assess the discriminative power of
these invariant representations on recognition tasks in three
different domains: (i) generic object categories using the
Caltech 101 dataset; (ii) generic object categories from a
dataset of very low resolution images and (iii) classification



Figure 4. Examples from the tiny images. We use grayscale images
in our experiments.

of handwriting digits using the MNIST dataset. In these ex-
periments we compare IPSD ’s learned representations with
the SIFT descriptor [15] that is considered a state-of-the-
art descriptor in computer vision. Finally, we examine the
computational cost of computing IPSD features on an im-
age.

3.1. Learning the Topographic Map

Fig. 2 shows a typical topographic map learned by the
proposed method from natural image patches. Each tile
shows a filter inD corresponding to a particularzi. In the
example shown, the input images are patches of size 12x12
pixels, and there are 400 basis functions, and hence, 400
units zi arranged in a 20x20 lattice. The neighborhoods
over which the squared activities ofzi’s are pooled are 6x6
windows, and they overlap by 4 in both the vertical and the
horizontal direction. The properties of these filters are ana-
lyzed by fitting Gabor functions and are shown in Fig. 3.

By varying the way in which the neighborhoods are
pooled, we can change the properties of the map. Larger
neighborhoods make the filters in each pool increasingly
similar. A larger overlap between windows makes the filters
vary more smoothly across different pools. A large sparsity
valueλ makes the feature detectors learn less localized pat-
terns that look like those produced by k-means clustering
because the input has to be reconstructed using a small num-
ber of basis functions. On the other hand, a small sparsity
value makes the feature detectors look like non-localized
random filters because any random overcomplete basis set
can produce good reconstructions (effectively, the first term
in the loss of Eqn. 4 dominates).

The map in Fig. 2 has been produced with an intermedi-
ate sparsity level ofλ = 3. The chosen parameter setting in-
duces the learning algorithm to produce a smooth map with
mostly localized edge detectors in different positions, ori-
entations, and scales. These feature detectors are nicely or-
ganized in such a way that neighboring units encode similar
patterns. A unitvi, that connects to the sum of the squares of
unitszj in a pool is invariant because these units represent
similar features, and small distortions applied to the input,
while slightly changing thezj ’s within a pool, are likely to
leave the correspondingvi unaffected.

While the sparsity level, the size of the pooling windows
and their overlap should be set by cross-validation, in prac-
tice we found that their exact values do not significantly

0 4 8 12 16
0

0.5

1

1.5
rotation 0 degrees

horizontal shift

N
or

m
al

iz
ed

 M
S

E

0 4 8 12 16
0.2

0.4

0.6

0.8

1

1.2
rotation 25 degrees

horizontal shift

N
or

m
al

iz
ed

 M
S

E

 

 

SIFT non rot. inv.
SIFT
Our alg. non inv.
Our alg. inv.

Figure 5. Mean squared error (MSE) between the representation
of a patch and its transformed version. On the left panel, the trans-
formed patch is horizontally shifted. On the right panel, the trans-
formed patch is first rotated by 25 degrees and then horizontally
shifted. The curves are an average over 100 patches randomly
picked from natural images. Since the patches are 16x16 pixels
in size, a shift of 16 pixels generates a transformed patch that
is quite uncorrelated to the original patch. Hence, the MSE has
been normalized so that the MSE at 16 pixels is the same for all
methods. This allows us to directly compare different feature ex-
traction algorithms: non-orientation invariant SIFT, SIFT, IPSD
trained to produce non-invariant representations (i.e. pools have
size 1x1) [9], and IPSD trained to produce invariant representa-
tions. All algorithms produce a feature vector with 128 dimen-
sions. IPSD produces representations that are more invariant to
transformations than the other approaches.

affect the kind of features learned. In other words, the al-
gorithm is quite robust to the choice of these parameters,
probably because of the many constraints enforced during
learning.

3.2. Analyzing Invariance to Transformations

In this experiment we study the invariance properties
of the learned representation under simple transformations.
We have generated a dataset of 16x16 natural image patches
under different translations and rotations. Each patch is pre-
sented to the predictor function that produces a 128 dimen-
sional descriptor (chosen to be the same size as SIFT) com-
posed ofv’s. A representation can be considered locally in-
variant if it does not change significantly under small trans-
formations of the input. Indeed, this is what we observe
in Fig. 5. We compare the mean squared difference be-
tween the descriptor of the reference patch and the descrip-
tor of the transformed version, averaged over many different
image patches. The figure compares proposed descriptor
against SIFT with a varying horizontal shift for 0 and 25
degrees initial rotation. Very similar results are found for
vertical shifts and other rotation angles.

On the left panel, we can see that the mean squared error
(MSE) between the representation of the original patch and
its transformation increases linearly as we increase the hor-
izontal shift. The MSE of IPSD representation is generally
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Figure 6. Diagram of the recognition system, which is composed
of an invariant feature extractor that has been trained unsuper-
vised, followed by a supervised linear SVM classifier. The fea-
ture extractor process the input image through a set of filter banks,
where the filters are organized in a two dimensional topographic
map. The map defines pools of similar feature detectors whose ac-
tivations are first non-linearly transformed by a hyperbolic tangent
non-linearity, and then, multiplied by a gain. Invariant representa-
tions are found by taking the square root of the sum of the squares
of those units that belong to the same pool. The output of the fea-
ture extractor is a set of feature maps that can be fed as input to
the classifier. The filter banks and the set of gains is learned by the
algorithm. Recognition is very fast, because it consists of a direct
forward propagation through the system.

lower than the MSE produced by features that are computed
using SIFT, a non-rotation invariant version of SIFT, and
a non-invariant representation produced by the proposed
method (that was trained with pools of size 1x1) [9]. A sim-
ilar behavior is found when the patch is not only shifted, but
also rotated. When the shift is small, SIFT has lower MSE,
but as soon as the translation becomes large enough that
the input pattern falls in a different internal sub-window,
the MSE increases considerably. Instead learned represen-
tations using IPSD seem to be quite robust to shifts, with an
overall lower area under the curve. Note also that traditional
sparse coding algorithms are prone to produce unstable rep-
resentations under small distortions of the input. Because
each input has to be encoded with a small number of basis
functions, and because the basis functions are highly tuned
in orientation and location, a small change in the input can
produce drastic changes in the representation. This problem
is partly alleviated by our approximate inference procedure
that uses a smooth predictor function. However, this experi-
ment shows that this representations is fairly unstable under
small distortions, when compared to the invariant represen-
tations produced by IPSD and SIFT.

3.3. Generic Object Recognition

We now use IPSD invariant features for object classifi-
cation on the Caltech 101 dataset [5] of 102 generic object
categories including background class. We use 30 training
images per class and up to 30 test images per class. The
images are randomly picked, and pre-processed in the fol-

lowing way: converted to gray-scale and down-sampled in
such a way that the longest side is 151 pixels and then lo-
cally normalized and zero padded to 143x143 pixels. The
local normalization takes a 3x3 neighborhood around each
pixel, subtracts the local mean, then divides the by the local
standard deviation if it is greater than the standard deviation
of the image. The latter step is a form of divisive normal-
ization, proposed to model the contrast normalization in the
retina [21].

We have trained IPSD on 50,000 16x16 patches ran-
domly extracted from the pre-processed images. The topo-
graphic map used has size 32x16, with the pooling neigh-
borhoods being 6x6 and an overlap of 4 coefficients be-
tween neighborhoods. Hence, there are a total of 512 units
that are used in 128 pools to produce a 128-dimensional
representation that can be compared to SIFT. After training
IPSD in an unsupervised way, we use the predictor function
to infer the representation of one whole image by: (i) run-
ning the predictor function on 16x16 patches spaced by 4
pixels to produce 128 maps of features of size 32x32; (ii)
the feature maps are locally normalized (neighborhood of
5x5) and low-pass filtered with a boxcar filter (5x5) to avoid
aliasing; (iii) the maps are then projected along the leading
3060 principal components (equal to the number of train-
ing samples), and (iv) a supervised linear SVM1 is trained
to recognize the object in each corresponding image. The
overall scheme is shown in Fig. 6.

Table 1 reports the recognition results for this experi-
ment. With a linear classifier similar to [21], IPSD features
outperform SIFT and the model proposed by Serre and Pog-
gio [25]. However, if rotation invariance is removed from
SIFT its performance becomes comparable to IPSD .

We have also experimented with the more sophisticated
Spatial Pyramid Matching (SPM) Kernel SVM classifier of
Lazebnik et al. [11]. In this experiment, we again used
the same IPSD architecture on 16x16 patches spaced by
3 pixels to produce 42x42x128 dimensional feature maps,
followed by local normalization over a 9x9 neighborhood,
yielding 128 dimensional features over a uniform 34x34
grid. Using SPM, IPSD features achieve 59.6% average
accuracy per class. By decreasing the stepping stride to 1
pixel, thereby producing 120x120 feature maps, IPSD fea-
tures achieve 65.5% accuracy as shown in Table 1. This
is comparable to Lazebnik’s 64.6% accuracy on Caltech-
101 (without background class) [11]. For comparison, our
re-implementation of Lazebnik’s SIFT feature extractor,
stepped by 4 pixels to produce 34x34 maps, yielded 65%
average recognition rate.

With 128 invariant features, each descriptor takes around
4ms to compute from a 16x16 patch. Note that the evalua-
tion time of each region is a linear function of the number

1We have used LIBSVM package available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm



Method Av. Accuracy/Class(%)

local norm5×5 + boxcar5×5 + PCA3060 + linear SVM
IPSD (24x24) 50.9
SIFT (24x24) (non rot. inv.) 51.2
SIFT (24x24) (rot. inv.) 45.2
Serre et al. features [25] 47.1
local norm9×9 + Spatial Pyramid Match Kernel SVM
SIFT [11] 64.6
IPSD (34x34) 59.6
IPSD (56x56) 62.6
IPSD (120x120) 65.5

Table 1. Recognition accuracy on Caltech 101 dataset using a va-
riety of different feature representations and two different classi-
fiers. The PCA + linear SVM classifier is similar to [21], while the
Spatial Pyramid Matching Kernel SVM classifier is that of [11].
IPSD is used to extract features with three different sampling step
sizes over an input image to produce 34x34, 56x56 and 120x120
feature maps, where each feature is 128 dimensional to be compa-
rable to SIFT. Local normalization isnot applied on SIFT features
when used with Spatial Pyramid Match Kernel SVM.
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Figure 7. The figure shows the recognition accuracy on Caltech
101 dataset as a function of the number of invariant units. Note
that the performance improvement between 64 and 128 units is
below 2%, suggesting that for certain applications the more com-
pact descriptor might be preferable.

of features, thus this time can be further reduced if the num-
ber of features is reduced. Fig. 7 shows how the recognition
performance varies as the number of features is decreased.

3.4. Tiny Images classification

IPSD was compared to SIFT on another recognition task
using the tiny images dataset [26]. This dataset was chosen
as its extreme low-resolution provides a different settingto
the Caltech 101 images. For simplicity, we selected 5 ani-
mal nouns (abyssinian cat, angel shark, apatura iris (a type
of butterfly), bilby (a type of marsupial), may beetle) and
manually labeled 200 examples of each. 160 images of each
class were used for training, with the remaining 40 held out
for testing. All images are converted to grayscale. Both
IPSD with 128 pooled units and SIFT were used to extract
features over 16x16 regions, spaced every 4 pixels over the
32x32 images. The resulting 5 by 5 by 128 dimensional
feature maps are used with a linear SVM. IPSD features
achieve 54% and SIFT features achieve a comparable 53%.

Performance on Tiny Images Dataset
Method Accuracy (%)
IPSD (5x5) 54
SIFT (5x5) (non rot. inv.) 53

Performance on MNIST Dataset
Method Error Rate (%)
IPSD (5x5) 1.0
SIFT (5x5) (non rot. inv.) 1.5

Table 2. Results of recognition error rate on Tiny Images and
MNIST datasets. In both setups, a 128 dimensional feature vector
is obtained using either IPSD or SIFT over a regularly spaced 5x5
grid and afterwards a linear SVM is used for classification. For
comparison purposes it is worth mentioning that a Gaussian SVM
trained on MNIST images without any preprocessing achieves
1.4% error rate.

3.5. Handwriting Recognition

We use a very similar architecture to that used in the ex-
periments above to train on the handwritten digits of the
MNIST dataset [1]. This is a dataset of quasi-binary hand-
written digits with 60,000 images in the training set, and
10,000 images in the test set. The algorithm was trained us-
ing 16x16 windows extracted from the original 28x28 pixel
images. For recognition, 128-dimensional feature vectors
were extracted at 25 locations regularly spaced over a 5x5
grid. A linear SVM trained on these features yields an er-
ror rate of1.0%. When 25 SIFT feature vectors are used
instead of IPSD features, the error rate increases to1.5%.
This demonstrates that, while SIFT seems well suited to
natural images, IPSD produces features that can adept to
the task at hand. In a similar experiment, asingle 128-
dimensional feature vector was extracted using IPSD and
SIFT, and fed to a linear SVM. The error rate was 5.6% for
IPSD , and 6.4% for SIFT.

4. Summary and Future Work

We presented an architecture and a learning algorithm
that can learn locally-invariant feature descriptors. Thear-
chitecture uses a bank of non-linear filters whose outputs
are organized in a topographic fashion, followed by a pool-
ing layer that imposes a sparsity criterion on blocks of fil-
ter outputs located within small regions of the topographic
map. As a result of learning, filters that are pooled together
extract similar features, which results in spontaneous invari-
ance of the pooled outputs to small distortions of the input.
During training, the output of the non-linear filter bank is
fed to a linear decoder that reconstructs the input patch. The
filters and the linear decoder are simultaneously trained to
minimize the reconstruction error, together with a sparsity
criterion computed as the sum of the pooling units. After
training, the linear decoder is discarded, and the pooling
unit outputs are used as the invariant feature descriptor of
the input patch. Computing the descriptor for a patch is very



fast and simple: it merely involves multiplying the patch by
a filtering matrix, applying a scaledtanh function to the re-
sults, and computing the square root of Gaussian-weighted
sum-of-squares of filter outputs within each pool window.

Image classification experiments show that the descrip-
tors thereby obtained give comparable performance to SIFT
descriptors on tasks for which SIFT was specifically de-
signed (such as Caltech 101), and better performance on
tasks for which SIFT is not particularly well suited (MNIST,
and Tiny Images).

While other models have learned locally invariant de-
scriptors by explicitly building shift invariance using spa-
tial pooling, our proposal is more general: it can learn local
invariances to other transformations than just translations.
Our results also show spontaneous local invariance to rota-
tion. To our knowledge, this is the first time such invariant
feature descriptors have been learned and tested in an image
recognition context with competitive recognition rates.

A long-term goal of this work is to provide a general tool
for learning feature descriptors in an unsupervised manner.
Future work will involve “stacking” multiple stage of such
feature extractors so as to learn multi-level hierarchies of
increasingly global and invariant features.
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