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The methods we are going to talk about today are used by several 
companies for a variety of applications, such as classification, retrieval, 
detection, etc.
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Deep Learning

“car”

 Cascade of non-linear transformations
 End to end learning
 General framework (any hierarchical model is deep)

 

What is Deep Learning

Ranzato
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Ranzato

THE SPACE OF 
MACHINE LEARNING METHODS
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Disclaimer: showing only a 
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BayesNP

Deep Belief Net
GMM

Sparse Coding

Restricted BM

PROBABILISTIC
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 Main types of deep architectures
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Deep Learning is  B I G
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Ranzato

Deep Learning is  B I G
 Main types of learning protocols

Purely supervised
Backprop + SGD
Good when there is lots of labeled data.

Layer-wise unsupervised + superv. linear classifier
Train each layer in sequence using regularized auto-encoders or 
RBMs
Hold fix the feature extractor, train linear classifier on features
Good when labeled data is scarce but there is lots of unlabeled 
data.

Layer-wise unsupervised + supervised backprop
Train each layer in sequence
Backprop through the whole system
Good when learning problem is very difficult.
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Neural Networks 

Ranzato

Assumptions (for the next few slides):
 The input image is vectorized (disregard the spatial layout of pixels)
 The target label is discrete (classification)

Question: what class of functions shall we consider to map the input 
into the output?

Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? What are the 
“simpler” functions? What is the interpretation?
Answer: later...
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Neural Networks: example 

h2h1x
max 0,W 1 x  max 0,W 2 h1

 W 3h2

Ranzato

    input

    1-st layer hidden units

    2-nd layer hidden units

    output

Example of a 2 hidden layer neural network (or 4 layer network, 
counting also input and output).

x
h1

h2

o

o
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Forward Propagation

Ranzato

Def.: Forward propagation is the process of computing the 
output of the network given its input.
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Forward Propagation

Ranzato

h1=max0,W 1 xb1

x∈RD W 1
∈R

N 1×D b1
∈R

N 1 h1
∈R

N 1

x

    1-st layer weight matrix or weightsW 1

    1-st layer biasesb1

o

The non-linearity                         is called ReLU in the DL literature.
Each output hidden unit takes as input all the units at the previous 
layer: each such layer is called “fully connected”.

u=max 0,v 

h2h1

max 0,W 1 x  max 0,W 2 h1
 W 3h2
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Forward Propagation

Ranzato

h2=max 0,W 2h1b2

h1
∈R

N 1 W 2
∈R

N 2×N 1 b2
∈R

N 2 h2
∈R

N 2

x o

    2-nd layer weight matrix or weightsW 2

    2-nd layer biasesb2

h2h1

max 0,W 1 x  max 0,W 2 h1
 W 3h2
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Forward Propagation

Ranzato

o=max 0,W 3h2b3

h2
∈R

N 2 W 3
∈R

N 3×N 2 b3
∈R

N 3 o∈R
N 3

x o

    3-rd layer weight matrix or weightsW 3

    3-rd layer biasesb3

h2h1

max 0,W 1 x  max 0,W 2 h1
 W 3h2
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Alternative Graphical Representation

Ranzato

hk1hk
max 0,W k1hk

hk1hk
W k1

h1
k

h2
k

h3
k

h4
k

h1
k1

h2
k1

h3
k1

w1,1
k1

w3,4
k1

hk hk1

W k1
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Interpretation

Ranzato

Question: Why can't the mapping between layers be linear?
Answer: Because composition of linear functions is a linear function. 
Neural network would reduce to (1 layer) logistic regression.

Question: What do ReLU layers accomplish?
Answer: Piece-wise linear tiling: mapping is locally linear.

Montufar et al.  “On the number of linear regions of DNNs” arXiv 2014 
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[0/1]

[0/1]

[0/1]

[0/1] [0/1]

[0/1]

[0/1]

[0/1]

ReLU layers do local linear approximation. Number of planes grows 
exponentially with number of hidden units. Multiple layers yeild exponential 
savings in number of parameters (parameter sharing).

Montufar et al.  “On the number of linear regions of DNNs” arXiv 2014 
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Interpretation

Ranzato

Question: Why do we need many layers?
Answer: When input has hierarchical structure, the use of a 
hierarchical architecture is potentially more efficient because 
intermediate computations can be re-used. DL architectures are 
efficient also because they use distributed representations which 
are shared across classes.

[0  0  1  0  0  0  0  1  0  0  1  1  0  0  1  0 … ]

Exponentially more efficient than a 
1-of-N representation (a la k-means)

truck feature



28

Interpretation

Ranzato

[0  0  1  0  0  0  0  1  0  0  1  1  0  0  1  0 … ]

[1  1  0  0  0  1  0  1  0  0  0  0  1  1  0  1… ] motorbike

truck
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Interpretation

Ranzato

Input image

low level 
parts

prediction of class

mid-level 
parts

high-level 
parts

 distributed representations
 feature sharing
 compositionality

...

Lee et al. “Convolutional DBN's ...” ICML 2009 
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Interpretation

Ranzato

Question: How many layers? How many hidden units?
Answer: Cross-validation or hyper-parameter search methods are the 
answer. In general, the wider and the deeper the network the more 
complicated the mapping. 

Question: What does a hidden unit do?
Answer: It can be thought of as a classifier or feature detector.

Question: How do I set the weight matrices?
Answer: Weight matrices and biases are learned.
First, we need to define a measure of quality of the current mapping.
Then, we need to define a procedure to adjust the parameters.
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h2h1x o

Loss

max 0,W 1 x  max 0,W 2 h1
 W 3h2

L x , y ; =−∑ j
y j log p c j∣x 

pck=1∣x =
e
o k

∑ j=1

C
eo j

Probability of class k given input (softmax):

(Per-sample) Loss; e.g., negative log-likelihood (good for classification of 
small number of classes):

Ranzato

How Good is a Network?

y=[00 .. 010 .. 0 ]
k1 C
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Training

∗=arg min∑n=1

P
L x n , yn ; 

Learning consists of minimizing the loss (plus some regularization 
term) w.r.t. parameters over the whole training set.

Question: How to minimize a complicated function of the parameters?
Answer: Chain rule, a.k.a. Backpropagation! That is the procedure to 
compute gradients of the loss w.r.t. parameters in a multi-layer neural 
network.

Rumelhart et al. “Learning internal representations by back-propagating..” Nature 1986
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Derivative w.r.t. Input of Softmax

L x , y ; =−∑ j
y j log p c j∣x 

pck=1∣x =
e
ok

∑ j
eo j

By substituting the fist formula in the second, and taking the derivative 
w.r.t.        we get: o

∂L
∂o

= p c∣x− y

HOMEWORK: prove it!

Ranzato

y=[00 ..010 .. 0 ]
k1 C
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Backward Propagation

h2h1x

Loss
y

Given                 and assuming we can easily compute the 
Jacobian of each module, we have:

∂ L/∂ o

∂L
∂ o

max 0,W 1 x  max 0,W 2 h1 W 3h2

∂ L

∂W 3 =
∂ L
∂ o

∂ o

∂W 3
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Backward Propagation

h2h1x

Loss
y

Given                 and assuming we can easily compute the 
Jacobian of each module, we have:

∂ L/∂ o

∂ L

∂W 3 =
∂ L
∂ o

∂ o

∂W 3

∂L
∂ o

max 0,W 1 x  max 0,W 2 h1 W 3h2

∂ L

∂W 3 =  p c∣x − y  h
2 T
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Backward Propagation

h2h1x

Loss
y

Given                 and assuming we can easily compute the 
Jacobian of each module, we have:

∂ L/∂ o

∂ L

∂h2
=

∂ L
∂ o

∂ o

∂h2
∂ L

∂W 3 =
∂ L
∂ o

∂ o

∂W 3

∂L
∂ o

max 0,W 1 x  max 0,W 2 h1 W 3h2

∂ L

∂W 3 =  p c∣x − y  h
2 T
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Backward Propagation

h2h1x

Loss
y

Given                 and assuming we can easily compute the 
Jacobian of each module, we have:

∂ L/∂ o

∂ L

∂h2
=

∂ L
∂ o

∂ o

∂h2
∂ L

∂W 3 =
∂ L
∂ o

∂ o

∂W 3

∂L
∂ o

max 0,W 1 x  max 0,W 2 h1 W 3h2

∂ L

∂W 3 =  p c∣x − y  h
2 T ∂ L

∂h2
= W

3 T
 pc∣x − y 
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Backward Propagation

h1x

Loss
y

Given          we can compute now:
∂ L

∂h2

∂ L

∂h1
=

∂ L

∂h2
∂ h2

∂h1
∂ L

∂W 2 =
∂ L

∂h2
∂ h2

∂W 2

∂L
∂ o

∂ L

∂h2

Ranzato

max 0,W 1 x  max 0,W 2 h1
 W 3h2
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Backward Propagation

x

Loss
y

Given          we can compute now:
∂ L

∂h1

∂ L

∂W 1 =
∂ L

∂h1
∂ h1

∂W 1

∂ L

∂h1

Ranzato

max 0,W 1 x  max 0,W 2 h1


∂L
∂ o

∂ L

∂h2
W 3h2
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Backward Propagation

Ranzato

Question: Does BPROP work with ReLU layers only?
Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?
Answer: About twice FPROP (need to compute gradients w.r.t. input 
and parameters at every layer). 

Note: FPROP and BPROP are dual of each other. E.g.,: 

+

+

FPROP BPROP

S
U

M
C

O
P

Y
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Optimization

Stochastic Gradient Descent (on mini-batches):

 −
∂ L
∂

,∈0,1

Stochastic Gradient Descent with Momentum:

 0.9 
∂ L
∂

 − 

Ranzato

Note: there are many other variants...
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Example:  200x200 image
                  40K hidden units

         ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough          
training samples anyway..

Fully Connected Layer

Ranzato
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Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).
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STATIONARITY? Statistics is similar at 
different locations

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).

Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters
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Convolutional Layer

Share the same parameters across 
different locations (assuming input is 
stationary):
Convolutions with learned kernels

Ranzato
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Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

Ranzato



Convolutional Layer

RanzatoMathieu et al. “Fast training of CNNs through FFTs” ICLR 2014



Convolutional Layer

*    
    

-1 0 1
-1 0 1
-1 0 1

Ranzato

=   
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Learn multiple filters.

E.g.: 200x200 image
        100 Filters
        Filter size: 10x10

   10K parameters

Ranzato

Convolutional Layer
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h j
n
=max 0,∑k=1

K
hk
n−1

∗w kj
n


Ranzato

Conv.
layerh1

n−1

h2
n−1

h3
n−1

h1
n

h2
n

output 
feature map

input 
feature map

kernel

Convolutional Layer
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h j
n
=max 0,∑k=1

K
hk
n−1

∗w kj
n


Ranzato

h1
n−1

h2
n−1

h3
n−1

h1
n

h2
n

output 
feature map

input 
feature map

kernel

Convolutional Layer
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h j
n
=max 0,∑k=1

K
hk
n−1

∗w kj
n


Ranzato

h1
n−1

h2
n−1

h3
n−1

h1
n

h2
n

output 
feature map

input 
feature map

kernel

Convolutional Layer
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Ranzato

Question: What is the size of the output? What's the computational 
cost?
Answer: It is proportional to the number of filters and depends on the 
stride. If kernels have size KxK, input has size DxD, stride is 1, and 
there are M input feature maps and N output feature maps then:
- the input has size M@DxD 
- the output has size N@(D-K+1)x(D-K+1)
- the kernels have MxNxKxK coefficients (which have to be learned)
- cost: M*K*K*N*(D-K+1)*(D-K+1)

Question: How many feature maps? What's the size of the filters?
Answer: Usually, there are more output feature maps than input 
feature maps. Convolutional layers can increase the number of hidden 
units by big factors (and are expensive to compute).
The size of the filters has to match the size/scale of the patterns we 
want to detect (task dependent).

Convolutional Layer
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A standard neural net applied to images:
- scales quadratically with the size of the input
- does not leverage stationarity

Solution:
- connect each hidden unit to a small patch of the input
- share the weight across space
This is called: convolutional layer.
A network with convolutional layers is called convolutional network.

LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998

Key Ideas
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Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to 
the exact location of the eye?

Pooling Layer

Ranzato
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By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer



72

Ranzato

Pooling Layer: Examples

h j
n x , y =max

x∈N x  , y∈N y h j
n−1x ,y

Max-pooling:

h j
n
 x , y =1/K∑

x∈N  x , y∈N  y
h j
n−1

x ,y

Average-pooling:

h j
n x , y =∑x∈N  x , y∈N  y

h j
n−1 x ,y 

2

L2-pooling:

h j
n x , y =∑k∈N  j 

hk
n−1 x , y 2

L2-pooling over features:
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Pooling Layer
Question: What is the size of the output? What's the computational 
cost?
Answer: The size of the output depends on the stride between the 
pools. For instance, if pools do not overlap and have size KxK, and the 
input has size DxD with M input feature maps, then:
- output is M@(D/K)x(D/K)
- the computational cost is proportional to the size of the input 
(negligible compared to a convolutional layer)

Question: How should I set the size of the pools?
Answer: It depends on how much “invariant” or robust to distortions we 
want the representation to be. It is best to pool slowly (via a few stacks 
of conv-pooling layers).
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Ranzato

Pooling Layer: Interpretation
Task: detect orientation L/R

Conv layer: 
linearizes manifold
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Ranzato

Pooling Layer: Interpretation

Conv layer: 
linearizes manifold

Pooling layer: 
collapses manifold

Task: detect orientation L/R



76

Ranzato

Pooling Layer: Receptive Field Size

Conv.
layer

hn−1 hn

Pool.
layer

hn1

If convolutional filters have size KxK and stride 1, and pooling layer 
has pools of size PxP, then each unit in the pooling layer depends 
upon a patch (at the input of the preceding conv. layer) of size: (P+K-
1)x(P+K-1)
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Ranzato

Pooling Layer: Receptive Field Size

Conv.
layer

hn−1 hn

Pool.
layer

hn1

If convolutional filters have size KxK and stride 1, and pooling layer 
has pools of size PxP, then each unit in the pooling layer depends 
upon a patch (at the input of the preceding conv. layer) of size: (P+K-
1)x(P+K-1)
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ConvNets: Typical Stage

Convol. Pooling

One stage (zoom)

courtesy of
 K. Kavukcuoglu Ranzato



79

One stage (zoom)

Conceptually similar to: SIFT, HoG, etc.

Ranzato

ConvNets: Typical Stage

Convol. Pooling
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Note: after one stage the number of feature maps is usually increased 
(conv. layer) and the spatial resolution is usually decreased (stride in 
conv. and pooling layers). Receptive field gets bigger.

Reasons:
- gain invariance to spatial translation (pooling layer)
- increase specificity of features (approaching object specific units)
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One stage (zoom)

Fully Conn. 
Layers

Whole system

1st stage 2nd stage 3rd stage

Input 
Image

Class
Labels

Ranzato

ConvNets: Typical Architecture

Convol. Pooling
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SIFT → K-Means → Pyramid Pooling → SVM

SIFT → Fisher Vect. → Pooling → SVM

Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

Sanchez et al. “Image classifcation with F.V.: Theory and practice” IJCV 2012

Conceptually similar to:

Ranzato

Fully Conn. 
Layers

Whole system

1st stage 2nd stage 3rd stage

Input 
Image

Class
Labels

ConvNets: Typical Architecture
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ConvNets: Training

Algorithm:
Given a small mini-batch
- F-PROP
- B-PROP
- PARAMETER UPDATE

All layers are differentiable (a.e.). 
We can use standard back-propagation.

Ranzato
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Note: After several stages of convolution-pooling, the spatial resolution is 
greatly reduced (usually to about 5x5) and the number of feature maps is 
large (several hundreds depending on the application).

It would not make sense to convolve again (there is no translation 
invariance and support is too small). Everything is vectorized and fed into 
several fully connected layers.

If the input of the fully connected layers is of size Nx5x5, the first fully 
connected layer can be seen as a conv. layer with 5x5 kernels.
The next fully connected layer can be seen as a conv. layer with 1x1 
kernels. 
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NxMxM, M small

H hidden units / 
Hx1x1 feature maps

Fully conn. layer /
Conv. layer (H kernels of size NxMxM)
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NxMxM, M small

H hidden units / 
Hx1x1 feature maps

Fully conn. layer /
Conv. layer (H kernels of size NxMxM)

K hidden units / 
Kx1x1 feature maps

Fully conn. layer /
Conv. layer (K kernels of size Hx1x1)
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Viewing fully connected layers as convolutional layers enables efficient 
use of convnets on bigger images (no need to slide windows but unroll 
network over space as needed to re-use computation).

CNNInput
Image

CNN
Input
Image
Input
Image

TRAINING TIME

TEST TIME

x

y
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Viewing fully connected layers as convolutional layers enables efficient 
use of convnets on bigger images (no need to slide windows but unroll 
network over space as needed to re-use computation).

CNNInput
Image

CNN
Input
Image

TRAINING TIME

TEST TIME

x

y

Unrolling is order of magnitudes more eficient than sliding windows!

CNNs work on any image size!
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ConvNets: Test

At test time, run only is forward mode (FPROP).

Ranzato
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Fancier Architectures: Multi-Scale

Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013
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Fancier Architectures: Multi-Modal

Frome et al. “Devise: a deep visual semantic embedding model” NIPS 2013

CNN
Text

Embedding

tiger

Matching

shared representation
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Fancier Architectures: Multi-Task

Zhang et al. “PANDA..” CVPR 2014

Conv
Norm
Pool

Conv
Norm
Pool

Conv
Norm
Pool

Conv
Norm
Pool

Fully
Conn.

Fully
Conn.

Fully
Conn.

Fully
Conn.

...

Attr. 1

Attr. 2

Attr. N

image
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Fancier Architectures: Multi-Task

Osadchy et al. “Synergistic face detection and pose estimation..” JMLR 2007
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Fancier Architectures: Generic DAG

Any DAG of differentialble 
modules is allowed!
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Fancier Architectures: Generic DAG
If there are cycles (RNN), one needs to un-roll it.

Graves “Offline Arabic handwriting recognition..” Springer 2012
Pinheiro, Collobert “Recurrent CNN for scene labeling” ICML 2014
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CONV NETS: EXAMPLES

- OCR  /  House number  &  Traffic sign  classification
  

Ciresan et al. “MCDNN for image classification” CVPR 2012
Wan et al. “Regularization of neural networks using dropconnect” ICML 2013
Goodfellow et al. “Multi-digit nuber recognition from StreetView...” ICLR 2014
Jaderberg et al. “Synthetic  data and ANN for natural scene text recognition” arXiv 2014



98

CONV NETS: EXAMPLES

- Texture classification
  

Sifre et al. “Rotation, scaling and deformation invariant scattering...” CVPR 2013
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CONV NETS: EXAMPLES

- Pedestrian detection
  

Sermanet et al. “Pedestrian detection with unsupervised multi-stage..” CVPR 2013
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CONV NETS: EXAMPLES

- Scene Parsing   
  

Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013

RanzatoPinheiro et al. “Recurrent CNN for scene parsing” arxiv 2013



101

CONV NETS: EXAMPLES

- Segmentation 3D volumetric images
  

Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012
Turaga et al. “Maximin learning of image segmentation” NIPS 2009 Ranzato
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CONV NETS: EXAMPLES

- Action recognition from videos
  

Taylor et al. “Convolutional learning of spatio-temporal features” ECCV 2010
Karpathy et al. “Large-scale video classification with CNNs” CVPR 2014
Simonyan et al. “Two-stream CNNs for action recognition in videos” arXiv 2014
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CONV NETS: EXAMPLES

- Robotics
  

Sermanet et al. “Mapping and planning ...with long range perception” IROS 2008
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CONV NETS: EXAMPLES

- Denoising
  

Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012

original noised denoised

Ranzato
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CONV NETS: EXAMPLES

- Dimensionality reduction / learning embeddings
  

Hadsell et al. “Dimensionality reduction by learning an invariant mapping” CVPR 2006
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CONV NETS: EXAMPLES

- Object detection
  

Sermanet et al. “OverFeat: Integrated recognition, localization, ...” arxiv 2013

Szegedy et al. “DNN for object detection” NIPS 2013 Ranzato
Girshick et al. “Rich feature hierarchies for accurate object detection...” arxiv 2013



Dataset: ImageNet 2012

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009



ImageNet
Examples of hammer:



109

Architecture for Classification

Simonyan, Zisserman “Very deep CNN for large scale image recognition” ICLR15
Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012
LeCun et al. “Gradient-based learning applied to OCR ” IEEE 1998

input 
image

label

Conv. layer: 3x3 filters

Max pooling layer: 2x2, stride 2

Fully connected layer: 4096 hiddens

64 128 256 512 512

Im
ageNet C

ompetiti
on 2104

Localization: 1
st  place

Classification: 2
nd  place

24 Layers in total!!!
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Architecture for Classification

Simonyan, Zisserman “Very deep CNN for large scale image recognition” ICLR15
Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012
LeCun et al. “Gradient-based learning applied to OCR ” IEEE 1998

input 
image

label

0.1G20G

} }

FLOPS: 20G

TOTAL
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Architecture for Classification

Simonyan, Zisserman “Very deep CNN for large scale image recognition” ICLR15
Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012
LeCun et al. “Gradient-based learning applied to OCR ” IEEE 1998

input 
image

label

123M21M

} }

Nr. of parameters: 144M

TOTAL
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Architecture for Classification

Simonyan, Zisserman “Very deep CNN for large scale image recognition” ICLR15
Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012
LeCun et al. “Gradient-based learning applied to OCR ” IEEE 1998

input 
image

label

123M21M

} }

Nr. of parameters: 144M

TOTAL

Data augmentation is key to improve generalization:
- random translation
- left/right flipping
- scaling
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Optimization

SGD with momentum:
 Learning rate = 0.01
 Momentum = 0.9

Improving generalization by:
 Weight sharing (convolution)
 Input distortions
 Dropout = 0.5
 Weight decay = 0.0005

Ranzato
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Outline

Ranzato

 Supervised Neural Networks

 Convolutional Neural Networks

 Examples

 Tips
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Choosing The Architecture

 Task dependent

 Cross-validation

 [Convolution → pooling]* + fully connected layer 

 The more data: the more layers and the more kernels
Look at the number of parameters at each layer
Look at the number of flops at each layer

 Computational resources

 Be creative :)

Ranzato
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How To Optimize

 SGD (with momentum) usually works very well

 Pick learning rate by running on a subset of the data
Bottou “Stochastic Gradient Tricks” Neural Networks 2012
Start with large learning rate and divide by 2 until loss does not diverge
Decay learning rate by a factor of ~1000 or more by the end of training 

 Use          non-linearity

 Initialize parameters so that each feature across layers has 
similar variance. Avoid units in saturation.

Ranzato
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Improving Generalization

 Weight sharing (greatly reduce the number of parameters)

 Data augmentation (e.g., jittering, noise injection, etc.)

 Dropout 
Hinton et al. “Improving Nns by preventing co-adaptation of feature detectors” arxiv 
2012

 Weight decay (L2, L1)

 Sparsity in the hidden units

 Multi-task (unsupervised learning) 

Ranzato
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Good To Know

 Check gradients numerically by finite differences
 Visualize features (feature maps need to be uncorrelated) 

and have high variance.
sa

m
p

le
s

hidden unit
Good training: hidden units are sparse across samples 
                          and across features. Ranzato
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 Check gradients numerically by finite differences
 Visualize features (feature maps need to be uncorrelated) 

and have high variance.
sa

m
p

le
s

hidden unit
Bad training: many hidden units ignore the input and/or
                       exhibit strong correlations. Ranzato

Good To Know
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 Check gradients numerically by finite differences
 Visualize features (feature maps need to be uncorrelated) 

and have high variance.
 Visualize parameters

Good training: learned filters exhibit structure and are uncorrelated. 

GOOD BADBAD BAD

too noisy too correlated lack structure

Ranzato

Good To Know

Zeiler, Fergus “Visualizing and understanding CNNs” arXiv 2013
Simonyan, Vedaldi, Zisserman “Deep inside CNNs: visualizing image classification models..” ICLR 2014



121

 Check gradients numerically by finite differences
 Visualize features (feature maps need to be uncorrelated) 

and have high variance.
 Visualize parameters
 Measure error on both training and validation set.
 Test on a small subset of the data and check the error → 0.

Ranzato

Good To Know
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What If It Does Not Work?

 Training diverges:
Learning rate may be too large → decrease learning rate
BPROP is buggy → numerical gradient checking

 Parameters collapse / loss is minimized but accuracy is low
 Check loss function:

Is it appropriate for the task you want to solve?
Does it have degenerate solutions? Check “pull-up” term.

 Network is underperforming
Compute flops and nr. params. →  if too small, make net larger
Visualize hidden units/params → fix optmization

 Network is too slow
Compute flops and nr. params. → GPU,distrib. framework, make net 
smaller 

Ranzato
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Summary
 Deep Learning = learning hierarhical models. ConvNets are the 

most successful example. Leverage large labeled datasets.
 Optimization

Plain SGD with momentum works well.

 Scaling
GPUs
Distributed framework (Google)
Better optimization techniques

 Generalization on small datasets (curse of dimensionality):
 data augmentation
 weight decay
 dropout
 unsupervised learning
 multi-task learning

Ranzato
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SOFTWARE
Torch7: learning library that supports neural net training

torch.ch
http://code.cogbits.com/wiki/doku.php  (tutorial with demos by C. Farabet)
https://github.com/jhjin/overfeat-torch
https://github.com/facebook/fbcunn/tree/master/examples/imagenet

Python-based learning library  (U. Montreal) 

- http://deeplearning.net/software/theano/  (does automatic differentiation)

Caffe (Yangqing Jia)

– http://caffe.berkeleyvision.org

Efficient CUDA kernels for ConvNets  (Krizhevsky) 

– code.google.com/p/cuda-convnet

Ranzato

http://code.cogbits.com/wiki/doku.php
https://github.com/jhjin/overfeat-torch
http://deeplearning.net/software/theano/
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Convolutional Nets

– LeCun, Bottou, Bengio and Haffner: Gradient-Based Learning Applied to Document 
Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

- Krizhevsky, Sutskever, Hinton “ImageNet Classification with deep convolutional neural 
networks” NIPS 2012

– Jarrett, Kavukcuoglu, Ranzato, LeCun: What is the Best Multi-Stage Architecture for 
Object Recognition?, Proc. International Conference on Computer Vision (ICCV'09), 
IEEE, 2009

- Kavukcuoglu, Sermanet, Boureau, Gregor, Mathieu, LeCun: Learning Convolutional 
Feature Hierachies for Visual Recognition, Advances in Neural Information Processing 
Systems (NIPS 2010), 23, 2010

– see  yann.lecun.com/exdb/publis  for references on many different kinds of convnets.

– see http://www.cmap.polytechnique.fr/scattering/ for scattering networks (similar to 
convnets but with less learning and stronger mathematical foundations)

– see http://www.idsia.ch/~juergen/ for other references to ConvNets and LSTMs.

Ranzato

http://www.cmap.polytechnique.fr/scattering/
http://www.idsia.ch/~juergen/
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Applications of Convolutional Nets
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- D. Ciresan, A. Giusti, L. Gambardella, J. Schmidhuber. Deep Neural Networks 
Segment Neuronal Membranes in Electron Microscopy Images. NIPS 2012

- Raia Hadsell, Pierre Sermanet, Marco Scoffier, Ayse Erkan, Koray Kavackuoglu, Urs 
Muller and Yann LeCun. Learning Long-Range Vision for Autonomous Off-Road Driving, 
Journal of Field Robotics, 26(2):120-144, 2009

– Burger, Schuler, Harmeling. Image Denoisng: Can Plain Neural Networks Compete 
with BM3D?, CVPR 2012

– Hadsell, Chopra, LeCun. Dimensionality reduction by learning an invariant mapping, 
CVPR 2006

– Bergstra et al. Making a science of model search: hyperparameter optimization in 
hundred of dimensions for vision architectures, ICML 2013
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Latest and Greatest Convolutional Nets

– Girshick, Donahue, Darrell, Malick. “Rich feature hierarchies for accurate object 
detection and semantic segmentation”, arXiv 2014

– Simonyan, Zisserman “Two-stream CNNs for action recognition in videos” arXiv 2014

- Cadieu, Hong, Yamins, Pinto, Ardila, Solomon, Majaj, DiCarlo. “DNN rival in 
representation of primate IT cortex for core visual object recognition”. arXiv 2014

- Erhan, Szegedy, Toshev, Anguelov “Scalable object detection using DNN” CVPR 
2014

- Razavian, Azizpour, Sullivan, Carlsson “CNN features off-the-shelf: and astounding 
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- Krizhevsky “One weird trick for parallelizing CNNs” arXiv 2014
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Deep Learning in general

– deep learning tutorial @ CVPR 2014  https://sites.google.com/site/deeplearningcvpr2014/ 

– deep learning tutorial slides at ICML 2013: icml.cc/2013/?page_id=39

– Yoshua Bengio, Learning Deep Architectures for AI, Foundations and Trends in 
Machine Learning, 2(1), pp.1-127, 2009.

– LeCun, Chopra, Hadsell, Ranzato, Huang: A Tutorial on Energy-Based Learning, in 
Bakir, G. and Hofman, T. and Schölkopf, B. and Smola, A. and Taskar, B. (Eds), 
Predicting Structured Data, MIT Press, 2006

Ranzato

“Theory” of Deep Learning

– Mallat: Group Invariant Scattering, Comm. In Pure and Applied Math. 2012

– Pascanu, Montufar, Bengio: On the number of inference regions of DNNs with piece 
wise linear activations, ICLR 2014

– Pascanu, Dauphin, Ganguli, Bengio: On the saddle-point problem for non-convex 
optimization, arXiv 2014

- Delalleau, Bengio: Shallow vs deep Sum-Product Networks, NIPS 2011
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THANK YOU

Ranzato
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