STA 414/2104
Statistical Methods for Machine Learning and Data Mining

Radford M. Neal, University of Toronto, 2012

Week 8§

Classification

Classification Problems

Many machine learning applications can be seen as classification problems —
given a vector of p “inputs” describing an item, predict which “class” the item

belongs to. Examples:

e Given anatomical measurements of an animal, predict which species the

animal belongs to.

e Given information on the credit history of a customer, predict whether or not

they would pay back a loan.
e Given an image of a hand-written digit, predict which digit (0-9) it is.

e Given the proportions of iron, nickel, carbon, etc. in a type of steel, predict

whether the steel will rust in the presence of moisture.

We assume that the set of possible classes is known, with labels C4,...,Ck.

We have a training set of items in which we know both the inputs and the class,

from which we will somehow learn how to do the classificaton.

Once we’ve learned a classifier, we use it to predict the class of future items, given

only the inputs for those items.

Approaches to Classification
Classification problems can be solved in (at least) three ways:

e Learn how to directly produce a class from the inputs — that is, we learn

some function that maps an input vector, x, to a class, C}..

e Learn a “discriminative” model for the probability distribution over classes for
given inputs — that is, learn P(Cy|z) as a function of x. From P(Cy|x) and a

“loss function”, we can make the best prediction for the class of an item.

e Learn a “generative” model for the probability distribution of the inputs for
each class — that is, learn P(x|C}) for each class k. From this, and the class
probabilities, P(C%), we can find P(Cg|z) using Bayes’ Rule.

Note that the last option above makes sense only if there is some well-defined
distribution of items in a class. This isn’t the case for the previous example of

determining whether or not a type of steel will rust.

Loss functions and Classification

Learning P(Cy|z) allows one to make a prediction for the class in a way that

depends on a “loss function”, which says how costly different kinds of errors are.

We define Lj; to be the loss we incur if we predict that an item is in class C}
when it is actually in class C%. We’ll assume that losses are non-negative and that
Lii = 0 for all k (ie, there’s no loss when the prediction is correct). Only the

relative values of losses will matter.

If all errors are equally bad, we would let Lj; be the same for all £ # j.

Example: Giving a loan to someone who doesn’t pay it back (class C) is much
more costly than not giving a loan to someone who would pay it back (class Cj).

So for this application we might define Lg; = 1 and L9 = 10.

Note that in this example we should define the loss function to account both for
monetary consequences (money not repaid, or interest not earned) and other
effects that don’t have immediate monetary consequences, such as customer

dissatisfaction when their loan isn’t approved.

Predicting to Minimize Expected Loss

A basic principle of decision theory is that we should take the action (here, make
the prediction) that minimizes the expected loss, according to our probabilistic

model.

If we predict that an item with inputs x is in class Cj, the expected loss is

K
Z Ly P(Ck|x)
k=1

We should predict that this item in the class, C;, for which this expected loss is
smallest. (The minimum might not be unique, in which case more than one

prediction would be optimal.)

If all errors are equally bad (say loss of 1), the expected loss when predicting C) is
1 — P(Cj|x), so we should predict the class which highest probability given x.

For binary classification (K = 2, with classes labelled by 0 and 1), minimizing

expected loss is equivalent to predicting that an item is in class 1 if

P(Cllzz:) L10
P(Co’:lj') L01

Generative Models for Classification

Classification from Generative Models Using Bayes’ Rule

In the generative model approach to classification, we learn models from the
training data for the probability or probability density of the inputs, x, for items
in each of the possible classes, Cj — that is, we learn models for P(x|C}) for
Ek=1,..., K.

To do classification, we instead need P(Cy|x). We can get these conditional class

probabilities using Bayes’ Rule:
P(Ck) P(z|C)

P(Cy|z) S5 P(C)) P(z|Cy)

Here, P(C}) is the prior probability of class Ci. We can easily estimate these
probabilities by the frequencies of the classes in the training data. Alternatively,

we may have good information about P(C}) from other sources (eg, census data).

For binary classification, with classes Cy and C, we get
P(Cy) P(x|Ch)
P(Co) P(CC‘C()) + P(Cl) P(x’C&)
1
1 + P(Cyp) P(z|Cy) / P(C1) P(x|Ch)

Naive Bayes Models for Binary Inputs

When the inputs are binary (ie, x is a vectors of 1’s and 0’s) we can use the

following simple generative model:

p
P(|Cr) = [05 (1—0k)' ™
i=1
Here, 0;; is the estimated probability that input ¢ will have the value 1 in items

from class k.

The maximum likelihood estimate for 6y; is simply the fraction of 1’s in training

items that are in class k.

This is called the naive Bayes model — “Bayes” because we use it with Bayes’s
Rule to do classification, an “naive” because this model assumes that inputs are
independent given the class, which is something a naive person might assume,

though it’s usually not true.

It’s easy to generalize naive Bayes models to discrete inputs with more than two
values, and further generalizations (keeping the independence assumption) are

also possible.

Binary Classification using Naive Bayes Models

When there are two classes (Cp and C1) and binary inputs, applying Bayes’ Rule

with naive Bayes gives the following probability for C; given x:
P(Ch) P(x|CY)
P(Cy) P(x|Cy) + P(Cy) P(x|Ch)
1
1 + P(Co) P(x|Co) / P(Ch) P(z|Ch)
1
1 + exp(—a(z))

P(Ci|z)

where

(Gaussian Generative Models

When the inputs are real-valued, a Gaussian model for the distribuiton of inputs
in each class may be appropriate. If we also assume that the covariance matrix
for all classes is the same, the class probabilities for binary classification turn out

to depend on a linear function of the inputs.

For this model,

P(z|Cy) = (2m) P57V exp <— (—) "2 (@ —) /2)

where p; is an estimate of the mean vector for class C), and X is an estimate for

the covariance matrix (same for all classes).
One can show that the maximum likelihood estimate for uy is the sample means of
input vectors for items in class C},, and the maximum likelihood estimate for X is

K

> S

k=1

where n is the total number of training items, n; is the number of training items
in class C}, and Sj is the usual maximum likelihood estimate for the covariance

matrix based on items in class C}.

Classification using Gaussian Models for Each Class

For binary classification, we can now apply Bayes’ Rule to get the probability of

class 1 from a Gaussian model with the same covariance matrix in each class:

As for the naive Bayes model:

P(Chlz) = !

1 + exp(—a(z))

where

B P(Cy) P(z|Cy)
a(x) = log (p(CO)P(x!Co))

Substituting the Gaussian densities, we get

o(w) = t0g (BN 4 1oy (SR e)/

P(Co) exp(—(z — po)"E (z — po) / 2)
= log (igg;;) + %(M%Z_luo - ufz_lm) + 2" (E_l(m - uo)>

The quadratic terms of the form 27X ~!x/2 cancel, producing a linear function of

the inputs, as was also the case for naive Bayes models.

Discriminative Models for Classification

Logistic Regression

We see that binary classification using either naive Bayes or Gaussian generative

models leads to the probability of class C'1 given inputs x having the form

1
1 + exp(—a(x))

P(C1|z) =

where a(z) is a linear function of x, which can be written as a(x) = Gy + 2" 0.

Rather than start with a generative model, however, we could simply start with
this formula, and estimate 8y and (@ from the training data. Maximum likelihood

estimation for By and (3 is not hard, though there is no explicit formula.

This is a discriminative training procedure, that estimates P(Cy|x) without

estimating P(x|C}) for each class.

Which is Better — Generative or Discriminative?

Even though logistic regression uses the same formula for the probability for C4
given x as was derived for the earlier generative models, maximum likelihood
logistic regression does not in general give the same values for 5y and 3 as would

be found with maximum likelihood estimation for the generative model.
So which gives better results? It depends. ..

If the generative model accurately represents the distribution of inputs for each
class, it should give better results than discriminative training — it effectively has

more information to use when estimating parameters.

However, if the generative model is not a good match for the actual distributions,
using it might produce very bad results, even when logistic regression would work
well. The independence assumption for naive Bayes and the equal covariance

assumption for Gaussian models are often rather dubious.

Similarly, logistic regression may be less sensitive to outliers than a Gaussian

generative model.

Non-linear Logistic Models

As we saw earlier for neural networks, the form P(Cilz) = 1/(1 + exp(—a(z)))
for the probability of class C given x can be used with a(x) being a non-linear

function of zx.

If a(x) can equally well be any non-linear function, the choice of this form for
P(C1|z) doesn’t really matter, since any function P(C1|z) could be obtained with

an appropriate a(x).

However, in practice, non-linear models are biased towards some non-linear
functions more than others, so it does matter that a logistic model is being used,

though not as much as when a(z) must be linear.

Probit Models

An alternative to logistic models is the probit model, in which we let
P(Cilz) = ®(a(x))

where ® is the cumulative distribution function of the standard normal

distribution:

a

d(a) = / (27) 2 exp(—22/2) da
This would be the right model if the class depended on the sign of a(x) plus a
standard normal random variable. But this isn’t a reasonable model for most

applications. It might still be useful, though.

Gaussian Process Models for Classification

A Gaussian process logistic regression model for data (z1,¥y1),..., (Tn, yn) with

the y; being binary can be expressed as
0 ~
o~ GP(0)
yi | x;, [~ Bernoulli(1/(1+ exp(—f(x;))))

where 6 represent all the parameters of the Gaussian process’s covariance

function.

Alternatively, we could use a probit model, with

yi|lzi, [~ Bernoulli ((f(x;))

However, with neither of these models can we use simple matrix operations to

evaluate P(y|z,#), or to predict a new y* by P(y*|z*,y,x,0).

The Latent Gaussian Process

To do computations for Gaussian process classification, we need to explicitly

represent the “latent variables” z; = f(x;).

Using matrix operations, we can compute the joint density of the latent variables

and observed responses (for given 6):

P21, ooy Zns YLy o5 Yn | T1y - oy XTp, 0)
= P(z1,.-.--,zn|®1, o520, 0) P(y1, - - Yn | 215+ -+, 2n)

The first factor above (the prior for latent variables) is Gaussian; the second (the
likelihood for these latent variables) is a simple product of Bernoulli probabilities

(from a logit or probit model).

Implementing the model with Latent Variables

Two methods are commonly used for handling the latent variables:

Approximate their posterior distribution by a Gaussian: The prior for
Z1,.-.,2n given 6 is Gaussian. The likelihood, P(y1,...,Yn | 21, ..., 2n), 1S not, but
as n — oo it will approach a Gaussian form. Maybe a Gaussian approximation of

the posterior for zq,..., 2z, will be adequate for finite n.

Sample for the latent variables using Markov chain Monte Carlo: We
use a Markov chain to sample 21, ..., z,, conditional on # and x;,...,x,. We also
sample for 6 (unless it is fixed). We them make a prediction for a test case at z*

by averaging P(y*|z*, z,xz,0) over the sample of values we obtain for z and 6.

[llustration of a Gaussian Process Classification Model

Consider a (Gaussian process classification model with one input, with covariance
function K (x,2') = 0.5% 4+ 3% exp(—5%(x — 2/)?). Below is a random sample from
the latent Gaussian process at x values drawn uniformly from (0, 1), the resulting

probabilities that y = 1, and values for y drawn according to these probabilities:

© - o o0
” .,
< - .®
o~ L4 *
N \.
o €@ @@ g O e Q]
- .. P’ ° o
Y
<|l‘ - %o 1) -~
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
S
o o s X » o
®
L]
n
o2 e e 0 R
3 [] UJ
. ‘ "
°
'S 4
o | Co o P L1 ad *
© T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
Si - [} o 0O 00 9] 9] 00 © 000 @O0 OO GO O O @OO00O0 @O0 O O 0 o
>g —
8— Iooo oo ocmoa?ooo oooocmcnqlz_n ® o : Io oo oo @ml

0.0 0.2 0.4 0.6 0.8 1.0

Non-probabilistic Models for Classification

The Large Margin Hard Classifier

Some classification methods produce only a predicted class for a test case, with

no probability distribution for that class.

Large margin classifiers are in this category. They are the basis for the popular
Support Vector Machine (SVM) classifiers.

In their simplest form, large margin classifiers apply only to perfectly separable
binary classification problems, in which there is a hyperplane that separates the

training cases in one class from the training cases in the other class.

There will usually be many hyperplanes separating the classes. The idea is to pick
the separating hyperplane that has the largest margin — the minimum distance

of a training case from the line.

An Illustration with Two Inputs

Here is a large margin classifier in two dimensions (where a hyperplane is a
straight line). There are four training cases in Class —1 (white) on the left, and
three in Class +1 (black) on the right. The dark line is the separating hyperplane,

used to predict the class of a test case. The lighter lines show the margin.

Finding the Separating Hyperplane with Largest Margin

We can define a hyperplane by the equation w'x + b = 0. We can use w and b to
classify test cases to the class sign(w”x +b). (We'll use —1 and +1 as class labels.)

Note that negating w and b swapw which side of the hyperplane has which class,

and multiplying w and b by any positive constant doesn’t change classifications.

When finding w and b from the training cases, we will impose the constraint that

all training cases are classified correctly — that is,
yi(wai+b) >0, fore=1,...,n

But we want to also maximize the margin, which is

min i(wT:ci + b)
1=1,....,n HUJH

The is equivalent to the following optimization problem:
minimize ||w||?, subject to y;(wTx; +b) > 1fori=1,...,n

(The minimizaton will shrink w to where at least one inequality above is an
equality, at which point the margin will be 1/||w||, so maximizing the margin is

the same as minimizing ||w||?.)

Characteristics of the Maximum Margin Separating Hyperplane

The previous slide characterizes the maximum margin hyperplane as minimizing a

quadratic function, subject to linear inequality constraints.

This is a convex optimization problem. It has a unique solution, which can be
found reasonably efficiently by standard methods (or more efficiently using

specialized methods).

The solution is locally sensitive to a subset of the training cases, called the
support vectors — typically, but not always, less (often much less) than the full

set of training cases.

Of course, all training cases have to be looked at before the support vectors can
be identified. But when there are only a few support vectors, the computations

do go faster.

Why Might a Large Margin Classifier be Good?

The maximum margin separating hyperplane seems intutively like it should be
better than some other separating hyperplanes, such as one that goes very close

to a training point.

It’s also the same as you get from logistic regression with coefficients that

maximize the log likelihood minus an infinitesimal quadratic penalty.

Some theorists have attempted to justify large margin classifiers using
“V(C-dimension” arguments — that relate to how much potential there is for

overfitting — but it’s not clear these arguments actually succeed.

Perhaps one can see the large margin classifier as approximating Bayesian

predictions (based on a vague prior distribution)...

Comparison with a Bayesian Hard Linear Classifier

The data set in the earler slide illustrating a large margin classifier is the same
as the one I used in the introduction to Bayesian inference. Here from that
demonstration is the curve where the classes have equal predictive probability,

together with the maximum margin classifie:

