STA 414/2104, Spring 2012 — Assignment #4

Due at the start of class on April 5. Please hand it in on 8 1/2 by 11 inch paper, stapled in
the upper left, with no other packaging.

This assignment is to be done by each student individually. You may discuss it in general
terms with other students, but the work you hand in should be your own. In particular, you
should not leave any discussion with someone else with any written notes (either on paper or
in electronic form).

In this assignment, you will implement a Gaussian mixture model with diagonal covariance
matrix, estimate its parameters by maximum penalized likelihood using the EM algorithm,
and choose the number of mixture components and the penalty magnitude using a validation
set. You will also try out the model on datasets that I will provide on the course web page,
and discuss the results.

The mixture model is for observed data items z1,...,z,, each of which is a vector of
dimension p. The data items are assumed to be independent, with each having the following
density function:
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where K is the number of mixture components, 71, ..., Tx are the probabilties of these compo-

nents (non-negative, summing to one), p and 3y are the mean vector and covariance matrix
for component k, and N (z|.,.) denotes a multivariate normal density function. We will assume
that ¥ is diagonal, with diagonal elements U,%l, e ,U]%p.

You will estimate the parameters (7, x, and o) by maximizing the log likelihood minus the
following penalty:
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where Z; is the sample mean of variable j over the whole estimation set, s; is the sample

standard deviation of variable j over the whole estimation set, and A is the magnitude of the
penalty, which you will determine using a validation set separate from the estimation set.

For a given value of A, you should find the maximum penalized likelihood estimates using
the EM algorithm. The course web page has a simple demonstration function that does EM
for a one-dimensional mixture model, with no penalty, which you may use as a starting point
if you wish. Your function should take as arguments the matrix of data values, the number of
mixture components to use, the number of iterations of EM to do, the value of A to use, and a
matrix of initial “responsibilities” of components for data items. This function should return a
list with elements pi, mu, sigma, and r containing the parameter estimates and resposibilities
from the last iteration.

The EM algorithm for maximum likelihood estimation can be adapted to maximize the log
likelihood minus a penalty by simply including the penalty when doing the maximization in
the M step. Maximization with respect to each py; parameter can be done separately (see the
week 10 lecture notes), with the relevant terms of the log likelihood minus penalty being
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The pp; maximizing this will either be a value of py; greater than Z; that maximizes this



expression with |py; — Z;| replaced by (ur; — Z;), or a value of pu; less than Z; that maximizes
this expression with |ur; — Z;| replaced by —(ux; — ), or if neither of these maxima are on
the right side of Z;, then the value Z;. You will need to derive the formulas for finding the
maximum of the quadratic expressions for jy; that are found by replacing |ur; — Z;| with
(r; — &) or —(urj — ;) in the expression above.

You may find that you need to run EM with no penalty (ie, A = 0) for some number of
iterations, and then use the responsibilities from the last iteration of that run to start a run of
EM with a positive A. If you start with random responsibilities and A > 0, you may find that
EM ends up in a local maximum in which the penalty is small but the fit to the data is poor.
As discussed in class, you also have to be careful that EM didn’t find a silly global maximum
in which one component fits a single data item with infinite probability density.

You should explicitly set the random number seed, with the set.seed function, before
a run that will set the initial responsibilities randomly. If you don’t set the seed, it will be
impossible to reproduce the same results when you’re trying to debug your program.

After each M step of EM, you should print the log likelihood and the log likelihood minus
the penalty (which should never go down from one iteration to the next). You should compute
the log likelihood in a way that avoids overflow or underflow even if the component densities
overflow or underflow. This means you can’t just compute the density of a data item under
each mixture component, add these densities times the corresponding m; together, and then
take the log. Instead, you need to find the log of the mixture density without ever explicitly
representing the individual component densities, since they might overflow or underflow. This
can be done as illustrated below:

log (Zexp(ah)) = m + log (Z exp(ap, — m))7 where m = max ap
h h

Because of the subtraction of m, the exponentials on the right will never overflow. One of
these exponentials will be exp(0) = 1, so although some other of them may underflow to zero,
those will negligible anyway, so any such underflows won’t produce a large error.

I will provide three data sets on the web page for you to try out your program on. For each
data set, I will provide an estimation set for you to run the EM algorithm on, a validation set
for you to use to choose K and A, and a test set for you to use to evaluate the final performance
of the method. (I've divided the full training set into estimation and validation sets myself
in order to ensure consistency between students — in a real application, you would need to
randomly divide the training set yourself.) You should use these data sets in their original
form, not standardizing the variables to have mean zero and variance one.

You should evaluate values of K and A by the average log probability of the validation
items. You should take the precautions needed to avoid overflow and underflow described
above when computing this. Similarly, you should use the average log probabiity of the test
items to evaluate how well the whole method worked.

You should hand in your function implementing EM for this problem, the R scripts that
you used to select K and A for each data set, and the output of your runs (including the final
estimates and the values of the log likelihood and log likelihood minus penalty from the EM
run that produced the final estimates). Your scripts needn’t be fully automatic — for example,
you can manually select the number of iterations needed based on preliminary runs (you only
need to hand in the output of the final run). Finally, you should discuss the results — for
instance, how fast or slow EM was, how the penalty changed the estimates, and whether use
of the penalty resulted in improved performance on test cases.



