STA 414/2104, Spring 2006 — Assignment #4

Due at start of class on April 18. Note that this assignment is to be done by each student
individually. You may discuss it in general terms with other students, but the work you hand
in should be your own.

In this assignment you will implement and try out Gaussian process regression models,
with hyperparameters found by maximizing the probability of the training data.

You should try two models. In the “additive” model, the covariance function should have
the following form:

p
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in the non-additive model, the form of the covariance function should be as follows:

p
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Here, p is the number of input variables, and x;, and z;, are the values of the inputs for two
cases. g is one if @ = b and zero otherwise.

In both forms of the covariance function, the 10? term is equivalent to an intercept in
a linear model, allowing the function to be shifted up or down (from zero) by an amount
for which we assign a prior distribution with standard deviation 10. The hyperparameter
n controls the overall vertical scale of the function. The p; hyperparameters control the
horizontal scales with respect to the input variables. A large value for p; means that changes
in input variable j do not have much effect; a small value for p; means that the function
changes rapidly as the j’th input changes. The o, hyperparameter represents the standard
deviation for the noise (residuals) in the model.

Given a set of IV training cases, in which you know both the inputs z; for each case 7, you
can compute the covariance matrix, C, of the responses, y;, for these training cases, provided
you know what values of the hyperparameters to use. You can then use this covariance matrix,
and the actual responses in the training cases, to predict the response in a test cases. For
this assignment, your prediction should just be the mean of the distribution for the response
in the test case give the responses in the training cases (ie, you don’t need to compute its
variance).

You should find suitable values for the hyperparameters (o, 77, and the p;) by maximizing
the probability of the training data, as explained in the lecture slides. This has to be done
numerically, using the nlm function in R, or the fminsearch function in Matlab. To avoid
overflow /underflow problems, you should actually minimize minus the log of the probability
of the training data, which is obviously inversely related to the probability itself. Another
potential problem is that the hyperparameters must be positive — negative values would
make no sense — and very small positive values might also produce problems. To ensure this,
rather than minimize with respect to a hyperparameter «, you should minimize with respect
to v = v/a — 0.01. You translate back to o = 42 + 0.01 to actually use the hyperparameter.



You should write the following functions (and perhaps others if you find it useful):
gp.predict (x.train, y.train, x.test, covf, hypers)

This takes as arguments a matrix of training inputs, a vector of training responses,
a matrix of test inputs, a covariance function, and a vector hyperparameter values.
It returns a vector of mean predictions for responses in test cases. The covariance
function passed should take three arguments: two input vectors and a vector of
values for the hyperparameters, in the order o, 7, and the p;. It should ignore
0, returning the covariance between cases with those inputs, excluding the final
term involving o.. (This term needs to be added in to the diagonal of the matrix
C, but it must not be added to the covariance between a training and test case.)

gp.log.prob (x.train, y.train, covf, hypers)

This takes arguments like gp.predict, except that no test cases are involved. It
returns the log of the probability of the training data according to the covariance
function and hyperparameter values passed.

gp.find.hypers (x.train, y.train, covf, initial.hypers)

This takes as arguments the training inputs, the training responses, the covariance
function (as for gp.predict), and a vector of initial values for hyperparameters. It
should use the built-in R function nlm to find the hyperparameters that maximize
the log of the probability of the training data, starting its search with the initial
values passed. It returns the vector of hyperparameters found.

T'll put some hints on how to do these things in R on the web page soon.

You should try out your functions on two artificial datasets, both of which have two input
variables. Both datasets are on the course web page. The first is the same as for Assignment
3, and is available as before under the entry for Assignment 3 on the web page. The second
dataset has the same number of training and test cases, and the same number of inputs, and
is available under the entry for Assignment 4 on the web page.

You should do separate experiments on the two datasets. For each dataset, you should
make predictions for the test cases based on the training data, using both the additive and
the non-additive forms of the covariance function. For both forms of covariance function, you
should set the hyperparameters to maximize the probability of the training data. For both
forms of covariance function, you should report the average squared error of your predictions
for the test cases, and also the log probability of the training data with the hyperparameter
values you found.

The web page also has input values for a 51 x 51 grid of points (the same for the two
datasets). You should make predictions for these points as well, using the two forms of co-
variance function, with the hyperparameters you found using the training cases, and produce
contour plots of these predictions.

You should discuss what your results indicate about the properties of these datasets,
and compare the results you obtained with the Gaussian process models to the results you
obtained with the additive linear spline model in Assignment 3.



