STA 414/2104, Spring 2006 — Assignment #3

Due at start of class on March 30. Note that this assignment is to be done by each student individually.
You may discuss it in general terms with other students, but the work you hand in should be your own.

In this assignment you will implement and try out additive regression models using natural linear
splines. Natural linear splines are like the more common (and more useful) natural cubic splines, except
that they are piecewise linear functions rather than piecewise cubic functions, and they are the solution
of a penalized least squares problem in which the penalty involves the first derivative rather than the
second derivative.

In detail, for a univariate problem, we would like to find the continuous function f(z) that minimizes

2

S v s@] [[r@)] ds

i=1

Here, (x;,y;) are the inputs and responses for N training cases. One can show that the solution to this
is a piecewise linear function with the boundaries of the pieces (the knots) at the distinct values of z;.
We will label these knots, in increasing order, as &;,...,&x, where K < N is the number of distinct
values of x;. The constant A\ controls the amount of “smoothing” done. For this assignment, we will
set A manually, though in practice one would probably set it using cross validation.

Natural linear splines have zero derivatives before &; and after {x (ie, they are constants in those
regions), since in the regions beyond the data we can set the derivative to zero (minimizing the penalty)
without any effect on how closely the data is fit. With this constraint, it’s easy to see that the space
of natural linear splines is spanned by a set of K basis functions. (Start with 2(K + 1) basis functions
for arbitrary piecewise linear functions, impose K continuity constraints at the knots, and then require
the derivatives at the ends to be zero.)

We will use these splines in additive models, however, in which we will include a separate intercept
term (with no penalty). We therefore don’t want the equivalent of an intercept in the natural linear
splines, reducing the number of basis functions to K —1. There are many possible sets of basis functions,
but you should use the basis functions that look like this (for K = 5 knots, shown as dots on the
horizontal axis):

1 1
0 @ *— 0—@ o—
1 1

0 ¢ 0—@ *—@ o—

Linear combinations of these can produce any continuous piecewise linear function, except that the
functions produced always are zero for z < &3, which can be changed using the intercept term.

You should write two functions in R or Matlab to implement additive models using natural linear
splines. The 1spline.fit function should take as arguments a matrix of inputs for training cases (with
N rows and p columns), a vector of responses for training cases, and a value for A. It should return
a vector of coefficients that is the penalized least squares estimate. The first coefficient should be the

intercept for the model. This should be followed by the coefficients of the spline basis functions for
the first variable, of which there will be NV — 1, unless some values of the first variable are duplicates
(in which case there will be fewer). The coefficients of the spline for the second variable follow, etc.
The lspline.pred function should take as arguments the matrix of training inputs (as passed to
lspline.fit), the vector of coefficents (as returned by lspline.fit), and a matrix of inputs for test
cases. (The training inputs are needed to figure out what basis functions are being used.) It should
return a vector of predicted responses for the test cases. Note that the test cases could be the same as
the training cases, which is useful in seeing how well the spline estimate fits the training data.

To write these functions, you will need to write some other functions. The following functions are
suggested (but not required). The lspline.value.matrix function should find the matrix of values
for basis functions for a set of cases, given as arguments the matrix of training inputs and a matrix
of inputs for the set of cases for which values are desired (which could be the same as the matrix of
training inputs). The first column of this value matrix should be all 1s, providing for an intercept. The
lspline.penalty.matrix function should return the matrix P such that 37Pf is the total penalty
for all coefficients. It takes the matrix of training inputs as an argument. These two functions should
in turn call functions 1spline.values and lspline.penalty that do the analogous things for a single
input variable.

To help you debug your program, here is the output for a simple example:

> print (x.train <- matrix (c(4.4, 3.3, 9.0, 3.2, 2.1, 8, 9, 8, 7, 9, 5, 2))

[,11 [,2]
[1,] 4.4 8
[2,] 3.3 9
[3,1 9.0 8
[4,] 3.2 7
[6,1] 2.1 9

> print (y.train <- c(8, 9, 4, 8, 6))

[11 89 486

> print (x.test <- matrix (c(5.2, 4.3, 1.1, 9.9, 8, 6, 7.5, 7.4), 4, 2))
[,11 [,2]

[1,] 5.2 8.0

[2,] 4.3 6.0

[3,1 1.1

(4,1 9.9

> print (beta <- lspline.fit (x.train, y.train, 0.1))

[1] 5.69263450 2.31644666 2.53611388 2.16615271 -1.69941209 0.09081161 0.51795156

> lspline.pred (x.train, beta, x.train)

[1] 7.949599 8.746700 4.084034 8.009081 6.210586

> lspline.pred (x.train, beta, x.test)

[1] 7.277327 7.892420 5.738040 4.029547

As is the case with natural cubic splines, it is possible to perform the computations required for
natural linear splines very efficiently. However, for this assignment, you should just use the standard
formulas for least squares regression with a quadratic penalty (as in the lecture notes).

You should try out your functions on the artificial data with two inputs that I have put on the web
page, fitting to the training data, and then making predictions on the test data. You should do this for
A set to 0.0001, 0.001, 0.003, 0.01, 0.02, 0.03, 0.05, 0.1, and 0.2. For each setting of A, find the average
squared error of the predictions for the test cases by comparing with the actual responses that are also
available from the web page.

The web page also has input values for a 51 x 51 grid of points. You should make predictions for
these points as well, with A set to 0.0001, 0.2, and whatever value produced the smallest average squared
error on the test cases, and produce contour plots of these predictions. (Instructions for how to produce
contour plots will be put on the web page soon.) Briefly discuss the results in terms of what the bias
and variance appear to be with different values of .

