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This thesis develops techniques for adjusting for selection bias using Gaussian process models. Selec-

tion bias is a key issue both in sample surveys and in observational studies for causal inference. Despite

recently emerged techniques for dealing with selection bias in high-dimensional or complex situations,

use of Gaussian process models and Bayesian hierarchical models in general has not been explored.

Three approaches are developed for using Gaussian process models to estimate the population mean

of a response variable with binary selection mechanism. The first approach models only the response

with the selection probability being ignored. The second approach incorporates the selection probability

when modeling the response using dependent Gaussian process priors. The third approach uses the

selection probability as an additional covariate when modeling the response. The third approach

requires knowledge of the selection probability, while the second approach can be used even when the

selection probability is not available. In addition to these Gaussian process approaches, a new version

of the Horvitz-Thompson estimator is also developed, which follows the conditionality principle and

relates to importance sampling for Monte Carlo simulations.

Simulation studies and the analysis of an example due to Kang and Schafer show that the Gaussian

process approaches that consider the selection probability are able to not only correct selection bias

effectively, but also control the sampling errors well, and therefore can often provide more efficient

estimates than the methods tested that are not based on Gaussian process models, in both simple and

complex situations. Even the Gaussian process approach that ignores the selection probability often,
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though not always, performs well when some selection bias is present.

These results demonstrate the strength of Gaussian process models in dealing with selection bias,

especially in high-dimensional or complex situations. These results also demonstrate that Gaussian

process models can be implemented rather effectively so that the benefits of using Gaussian process

models can be realized in practice, contrary to the common belief that highly flexible models are too

complex to use practically for dealing with selection bias.
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Chapter 1

Introduction

Adjusting for selection bias is a key issue in statistical inference whenever selection probabilities are

involved. In high-dimensional or complex situations, dealing with such an issue can be very difficult.

Despite a large number of techniques that have emerged recently for dealing with selection bias, Bayesian

hierarchical models have not been explored in this area to our best knowledge. In this thesis, I will

demonstrate how Gaussian process models, a type of Bayesian hierarchical models, can be effectively

utilised for dealing with selection bias.

1.1 The problem

Selection bias arises in both sample surveys and observational studies for causal inference, when

sampling of survey units or assigning of treatment exposures is not completely at random, but instead

depends on some covariate variables which also affect the outcome of interest.

1.1.1 Selection probability and selection bias in sample survey

Suppose (x1, y1, r1), . . . , (xn, yn, rn) are n independent and identically distributed realizations of a

three element random tuple (X, Y, R). X is a d-dimensional vector of covariates. Y is the outcome

variable of interest. R is a binary variable, indicating if Y is observed or not. The probability that

Y is observed given X = x, denoted by ν(x) = Pr(R = 1|X = x), is called the selection probability

or the selection probability function when considered as a function of x. In this thesis, we assume

strong ignorability (Rosenbaum and Rubin, 1983) that given X, R and Y are independent. Suppose

that the goal is to estimate the population mean of Y , denoted by φ = E[Y ] = E[µ(X)], where

µ(x) = E[Y |X = x] is the mean function of Y . And suppose that X has a d-dimensional probability
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1 Introduction 2

measure FX or a density function fX when continuous, then

φ =
∫
µ(x)dFX(x) =

∫
µ(x)fX(x)dx (1.1)

Since both µ(x) and ν(x) depend on x, any method of estimation for φ that ignores both x and

ν(x) may be biased. For example, the simple average of the observed yi, i.e.
∑n
i=1 yiri/

∑n
i=1 ri, is a

biased estimator for φ, unless µ(x) or ν(x) is a constant function or there is unlikely exact cancellation

of biases over regions of x. This type of bias is called selection bias in the context of sample surveys.

Selection bias may occur in any inference problem that involves selection probabilities. Techniques

developed for estimating the population mean should be readily extensible to other problems such as

estimating regression coefficients.

In most of this thesis, I will assume that the selection probability function ν(x) is bounded away

from zero by some fixed constant ζ > 0. This assumption is essential since otherwise, there are always

some x’s whose selection probabilities are so small that they may almost never be observed with a

practical sample size. For convenience, I will also use x, y and r instead of X, Y and R referring to

both the random variables and their realizations unless confusion is present.

1.1.2 Connection to propensity scores and confounding bias

Consider a four element random tuple (X, Y(1), Y(0), T ). Again, X is a d-dimensional vector of

covariates. T is a binary treatment assignment indicator. Y(1) is the response variable if treatment is

received, i.e. T = 1; Y(0) is the response variable if control is given, i.e. T = 0. Note that of course,

only one of Y(1) and Y(0) can be observed. The probability that treatment is assigned given X = x,

denoted by p(x) = Pr(T = 1|X = x), is called the propensity score or the propensity score function

when considered as a function of x. Again, we assume strong ignorability (Rosenbaum and Rubin, 1983)

that given X, Y(1) and Y(0) are independent of T . The goal is to estimate the population treatment

effect, i.e. E[Y(1)]− E[Y(0)]. When the covariate vector X affects both the responses Y(1) and Y(0) and

the treatment assignment T , any estimation procedure for E[Y(1)] − E[Y(0)] that ignores both x and

p(x) will be biased unless E[Y(1)|X = x] − E[Y(0)|X = x] or p(x) is a constant function or there is

unlikely exact cancellation of biases over regions of x. This type of bias is called confounding bias in

the context of observational studies for causal inference.

A propensity score problem can be considered as two sample survey problems. Specifically, if a

subject receives treatment, the treatment response will be observed with the “selection” probability

equal to p(x). If a subject receives control, the control response will be observed with the “selection”

probability equal to 1−p(x). Therefore, selection bias due to selection probability and confounding bias
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due to propensity score are equivalent statistical issues under different contexts. Although sometimes,

estimating the treatment effect directly can be more efficient than estimating E[Y(1)] and E[Y(0)] sepa-

rately, techniques developed for dealing with selection bias in sample survey should also be applicable

for dealing with confounding bias.

1.2 Existing approaches to addressing selection bias

Conventional techniques for adjusting for selection bias include weighting, matching, stratification

and covariate adjustment (e.g. Cochran, 1965, 1968; LaLonde, 1986; Dehejia and Wahba, 2002; Dehejia,

2005; Austin, 2008). For example, the Horvitz-Thompson (HT) method (Horvitz and Thompson, 1952)

weights the observed responses y’s using the inverse of the selection probability, ν(x), resulting in an

unbiased estimator for the population mean φ.

When the covariate vector x is high-dimensional, weighting, matching, stratification or covariate

adjustment based on the selection probability ν(x) only is easier to implement than on x itself and

can still produce unbiased or consistent results (e.g. Rubin, 2001, 2007). However, when x is high-

dimensional, only adjusting on the selection probability will produce inefficient results due to substantial

information reduction. Even in low-dimensional situations, regression on x combined with adjusting on

selection probabilities has been recommended for achieving better results (e.g. Cochran, 1957; Cochran

and Rubin, 1973). In addition, methods based on adjusting on the selection probability require the

knowledge of the selection probabilities. When they are unknown, estimating the selection probabilities

may be as difficult as estimating the mean function µ(x), especially when x is high-dimensional.

One recently developed class of methods are double-robust (DR) methods (e.g. Robins and Rotnitzky,

1995; Scharfstein et al., 1999; Kang and Schafer, 2007; Rotnitzky et al., 2012). A DR method requires

specifying two models: one for the response population, i.e. the y-model; the other for the selection

mechanism, i.e. the selection probability function or the ν-model. When the two models are combined

properly, a DR estimator remains consistent if one of the two models is correctly specified even if

the other is not. There are various ways of constructing a DR method. For example, one can use a

function of the selection probability as an additional covariate in a regression model; or regress y on x

within classes stratified on selection probabilities; or apply weighted estimating equations or regression

functions with weights equal to the inverse probabilities.

DR methods are more robust than methods based on only a y-model if the ν-model is correctly

specified, and more efficient than methods without a y-model if the y-model is correctly specified.

However, if both the y-model and the ν-model are misspecified, a DR method may not be better, or

may even be worse, than a method using only one of the incorrect models (Kang and Schafer, 2007).
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Additionally, although DR methods are “double guarded” for achieving consistent estimation, they

do not promise that the estimation is efficient, especially for complex problems, if the y-model is not

flexible enough. A DR method with a simple y-model may not perform better than a method without

a ν-model but with a flexible y-model, if the simple y-model does not capture important information

well enough.

As widely agreed, for a method to achieve efficient results, the covariate information must be used to

a maximum extent, yet without overfitting the data. When the problem is complex or high-dimensional,

constructing a proper y-model in a traditional class such as linear polynomial regression models, may

be quite difficult, if not impossible. The regression model may become extremely complicated, with

more parameters than the data can support, and then cause model overfitting. Kang and Schafer (2007,

p525) argued that “with many covariates, it becomes difficult to specify a y-model that is sufficiently

flexible to capture important nonlinear effects and interactions, yet parsimonious enough to keep the

variance of prediction manageably low”.

Such flexible models do exist, however. Many well established Bayesian hierarchical models are highly

flexible and fairly easy to implement including, for example, Gaussian process models and Bayesian

neural networks. Unfortunately, the capacity of these Bayesian hierarchical models in dealing with

selection bias in complex problems has not been widely recognized. Gelman (2007) pointed out the

merits of Bayesian hierarchical models for high-dimensional problems only on the conceptual level by

simple illustration. The strength of Bayesian hierarchical models has yet to be demonstrated through

more sophisticated experiments.

Ideally, a Bayesian hierarchical model should capture all the information contained in the covariate

vector x and therefore produce consistent estimation even without exploiting the selection probability

explicitly. Robins and Ritov (1997) have, however, argued through extremely complex worse-case

examples that any Bayesian method that does not use the selection probability will fail to be uniformly

consistent under the set of semiparametric models that are indexed by the mean function µ only. In

their view, uniform consistency is important since in high-dimensional or complex problems, the sample

size can never be large enough for estimating the mean function µ(x) well. Therefore, they claim that

methods such as the simple inverse probability weighted (IPW) Horvitz-Thompson (HT) estimator

(Horvitz and Thompson, 1952) that is uniformly
√
n-consistent is more desired than any Bayesian

method that ignores the selection probability.

In practice, however, the problem may never be as complex as the worst cases considered by Robins

and Ritov (1997). Therefore, their argument against Bayesian methods without using the selection

probability may not be practically relevant. In addition, from a Bayesian point of view, the worst-case

scenarios in Robins and Ritov (1997) only occur with tiny probabilities a priori. Bickel and Kleijin
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(2012) have shown that over a smaller set of semiparametric models, Bayesian estimators (ignoring

ν(x)) can be uniformly
√
n-consistent. Actually, Ritov et al. (2013, Theorem 7.1) have demonstrated

that uniformly
√
n-consistent Bayesian estimators (ignoring ν(x)) do exist under the set of semipara-

metric models considered by Robins and Ritov (1997) except subsets of zero prior probability measure.

Therefore, those worst-case scenarios both in Robins and Ritov (1997) and in Ritov et al. (2013) should

not present an issue to a Bayesian who trusts that their prior is well matched to realities.

If extremely complex situations do happen, in which the two functions µ(x) and ν(x) are correlated

in a complex manner, Bayesian methods ignoring the selection probability may indeed not do well unless

the sample size is huge. Nevertheless, with Bayesian hierarchical models, the selection probability can

be easily incorporated in multiple ways. In a simplified finite population example from Wasserman

(2004) where x ∈ {x1, . . . ,xN}, y is binary and φ =
∑N
i=1 µ(xi), Ritov et al. (2013) showed that using

the following prior that depends on ν(x)

µ(xi) ∼ Beta (pT (i), 1− pT (i)) with pT (i) =
eT/ν(xi)

1 + eT/ν(xi)
(1.2)

where T is an unknown hyperparameter, the Bayesian estimator is uniformly
√
n-consistent for φ under

the semiparametric models. However, this approach still uses the inverse of the selection probability and

the choice of pT (i) seems arbitrary in our view. The selection probability can actually be incorporated

more flexibly if orthodox Bayesian hierarchical models such as Gaussian process models are adopted.

1.3 Bayesian inference using Gaussian process models

This thesis will demonstrate how Gaussian process models can be implemented effectively for dealing

with selection bias in both simple and complex problems. Gaussian process models are non-parametric

regression models which assign Gaussian process priors to the regression functions of interest. As

flexible models, Gaussian process models are able to capture high-order nonlinear and interaction effects

without restricting the maximum effect order. Gaussian process models can be implemented to employ

the selection probability in several ways. One can assign dependent Gaussian process priors to both

the y-model and the selection probability function ν(x) jointly. With dependent priors, the model will

update the hyperparameters not only according to the observed y’s but also to the selection indicators

r’s, or if known, selection probabilities ν(x), through the prior relationship between the y-model and

the selection probability function, thereby effectively adjusting for selection bias in a flexible manner.

Alternatively, instead of using dependent priors, one can use the ν(x) function as an additional covariate

in the y-model. Due to the flexibility of Gaussian process models, one need not worry much about how

the selection probability should be entered into the y-model. In particular, we do not have to use the
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inverse of the selection probability as the covariate, because the model can automatically decide the

best relationship between y and this additional covariate. Incorporating the selection probability into

the y-model flexibly in either way may help achieve more efficient results in either simple or complex

situations.

Three approaches are developed in this thesis for using Gaussian process models for the problem

of estimating the population mean φ as described earlier. The first approach models the mean func-

tion only and ignores the selection probability. The second approach models the mean function with

the selection probability incorporated using dependent priors. The third approach uses the selection

probability as an additional covariate while modeling the mean function. When using the selection

probability as a covariate, the selection probabilities must be known at least for the observed covariate

vectors. When modeling the mean function with dependent priors, the selection probabilities need not

be available, although exploiting the known selection probabilities simplifies the estimating procedure

and may also help achieve better results. The estimators based on these three approaches for using

Gaussian process models will be compared to other estimators through both simulation experiments

and an example due to Kang and Schafer (2007).

1.4 Outline

This thesis consists of five chapters and one appendix. Chapter 2 describes two groups of methods

for adjusting for selection bias — those using a model or not, and discusses the fundamental difference

between these two groups. Chapter 3 presents in detail how to make inference for φ using Gaussian

process models and describes the Markov chain Monte Carlo (MCMC) algorithms used for sampling

from the posterior distribution of φ based on Gaussian process models. Chapter 4 illustrates how

Gaussian process methods perform compared to other methods through simulation experiments and

an example due to Kang and Schafer. Chapter 5 summarizes the results of this thesis, discusses the

limitation of the present work and identifies a number of research directions for future work. Appendix

A lists all the figures that do not fit into the main body. The associated computing programs using R

language are available at http://www.cs.toronto.edu/~radford/ftp/meng-r-functions.r.

http://www.cs.toronto.edu/~radford/ftp/meng-r-functions.r


Chapter 2

Methodologies

This chapter will present two types of methodologies for adjusting for selection bias: non-model

based frequentist methods and Bayesian methods based on Gaussian process models.

2.1 Methods without a model

This section will review four non-model based frequentist estimators that will be compared with

Gaussian process based estimators in the following experimental studies. The four estimators include

one naive estimator and three types of Horvitz-Thompson (HT) estimators, denoted by φ̂naive, φ̂HT1 ,

φ̂HT2 and φ̂HT3 , respectively.

2.1.1 The naive estimator

The naive estimator is the one which ignores the selection probabilities and takes a simple average

of the observed yi’s with equal weights, as given by

φ̂naive =
∑n
i=1 yiri∑n
i=1 ri

=
1

neff

∑
i:ri=1

yi (2.1)

where neff =
∑n
i=1 ri is the effective sample size. Note that φ̂naive is not defined when neff = 0.

Since the naive estimator does not consider the selection probabilities at all, it is not expected to

perform well when there is substantial correlation between the function of interest and the selection

probability function. Clearly, the naive estimator could be severely biased when strong correlation

between the two functions is present. However, we may wonder if the naive estimator might be nearly

7
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as good as other estimators when the correlation between the two functions is relatively weak. Another

situation where the naive estimator might do comparably well as other methods is when the function

of interest is restricted within a narrow band (i.e. almost a constant) and when the sample size is

small. In this case, even if the correlation between the function of interest and the selection probability

function is strong, due to the limited sample size, the sampling error may dominate the selection bias

so that estimators that do consider the selection probabilities would have little practical advantage.

The naive estimator will be included in all the experimental studies in this thesis, for the behavior

of it may help identify when selection bias is indeed an issue and therefore help decide which scenarios

are meaningful to investigate.

2.1.2 The Horvitz-Thompson estimator: type 1

Unlike the naive estimator, the estimator originally given by Horvitz and Thompson (1952) weights

each observed yi with the inverse of the corresponding selection probability νi = ν(xi), provided that

νi’s are available for all xi’s with ri = 1. This Horvitz-Thompson estimator is defined by

φ̂HT1 =
1
n

n∑
i=1

yiri
νi

=
∑
i:ri=1

yi
nνi

(2.2)

Clearly, φ̂HT1 is unbiased for the population mean φ, since for all i = 1, 2, . . . , n,

E
[
yiri
νi

]
= E

[
yiri
ν(xi)

]
= E

[
E
[
yiri
ν(xi)

∣∣∣xi]] = E
[
µ(xi)ν(xi)
ν(xi)

]
= E[µ(xi)] = φ (2.3)

and by the law of large numbers, it is also consistent for φ.

Although φ̂HT1 has arguably been the standard non-model based frequentist estimator for its sim-

plicity and being unbiased when selection bias is present, it bears two obvious drawbacks. The first

drawback is evident when all the yi’s equal some non-zero constant c 6= 0, in which case φ̂HT1 does

not equal c. Clearly, this drawback makes φ̂HT1 non-equivariant under certain affine transformations

of yi’s. For example, when yi’s are binary, reversing the coding, i.e. y∗i = 1 − yi, will not give the

corresponding estimate 1 − φ̂HT1 . Similarly, when yi’s are numerical, we will not get φ̂HT1 + c, if yi’s

are measured from a different origin, i.e. y∗i = yi + c with c 6= 0. The second flaw of φ̂HT1 is common

to all non-model based estimators which ignore the covariate vector x. Particularly, by averaging each

yiri/νi with an equal weight 1/n, all the units of observation are treated as equally important, which

is often not true in practice. Assuming all the units being equally important is another form of naivety

and could conceivably lead to severely inefficient results, especially when there are a large number of

clustered units due to randomness.
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2.1.3 The Horvitz-Thompson estimator: type 2

A variant of φ̂HT1 that has been often used in practice in replacement of φ̂HT1 is given by

φ̂HT2 =
n∑
i=1

yiri
νi

/ n∑
i=1

ri
νi

=
∑
i:ri=1

yi
νi

/ ∑
i:ri=1

1
νi

(2.4)

Although not unbiased, φ̂HT2 is still consistent for φ, since by the strong law of large numbers, both

n−1
∑n
i=1 yiri/νi → φ and n−1

∑n
i=1 ri/νi → 1 with probability one. Note that like the naive estimator,

φ̂HT2 is not defined when all the ri’s equal zero.

One advantage of φ̂HT2 over φ̂HT1 is its equivariance under all affine transformations. More clearly,

rewrite vas

φ̂HT2 =
n∑
i=1

(
ri
νi

/ n∑
i=1

ri
νi

)
yi (2.5)

Since
∑n
i=1

(
ri
νi
/
∑n
i=1

ri
νi

)
≡ 1, φ̂HT2 simply equals c when all yi’s equal c, therefore is equivariant

under all affine transformations. The equivariance of φ̂HT2 is extensible to the situation when y is not

a constant but has a constant mean value, i.e. µ(x) ≡ c. In such a case,

E[φ̂HT2 |x1, . . . ,xn] = E

[
n∑
i=1

(
ri
νi

/ n∑
i=1

ri
νi

)
yi

∣∣∣∣∣x1, . . . ,xn

]

=
n∑
i=1

E

[(
ri
νi

/ n∑
i=1

ri
νi

)∣∣∣∣∣x1, . . . ,xn

]
× E[yi|xi]

=
n∑
i=1

E

[(
ri
νi

/ n∑
i=1

ri
νi

)∣∣∣∣∣x1, . . . ,xn

]
× µ(xi)

=
n∑
i=1

E

[(
ri
νi

/ n∑
i=1

ri
νi

)∣∣∣∣∣x1, . . . ,xn

]
× c ≡ c, for any x1, . . . ,xn. (2.6)

2.1.4 The Horvitz-Thompson estimator: type 3

The type 3 Horvitz-Thompson estimator replaces νi in φ̂HT1 with νi/ψ, where ψ =
∫
ν(x)dFX(x) is

the marginal selection probability, and then averages yi
νi/ψ

over only the observed units, as given by

φ̂HT3 =
n∑
i=1

yiri
νi/ψ

/ n∑
i=1

ri =
1

neff

∑
i:ri=1

yiψ

νi
(2.7)

Note that like φ̂HT2 , φ̂HT3 is not defined when neff = 0.

By the strong law of large numbers, φ̂HT3 is apparently consistent for φ as the other Horvitz-
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Thompson estimators. In addition, φ̂HT3 is conditionally unbiased given neff > 0, although not

unbiased marginally. Actually, φ̂HT3 is also conditionally unbiased given r1, r2, . . . , rn as long as neff >

0. To show these, we first have

E
[
yi
νi/ψ

∣∣∣ri = 1
]

= E
[

yi
ν(xi)/ψ

∣∣∣ri = 1
]

=
∫

E
[

yi
ν(xi)/ψ

∣∣∣xi] fXi|Ri(xi|1)dxi

=
∫

µ(xi)
ν(xi)/ψ

ν(xi)fX(xi)
ψ

dxi =
∫
µ(xi)fXi

(xi)dxi = φ (2.8)

and then for all r1, r2, . . . , rn with
∑n
i=1 ri > 0,

E[φ̂HT3 |r1, r2, . . . , rn] = E

[
1

neff

∑
i:ri=1

yi
νi/ψ

∣∣∣r1, r2, . . . , rn] =
1

neff

∑
i:ri=1

E
[
yi
νi/ψ

∣∣∣r1, r2, . . . , rn]
=

1
neff

∑
i:ri=1

E
[
yi
νi/ψ

∣∣∣ri = 1
]

=
1

neff

∑
i:ri=1

φ = φ. (2.9)

This proves the conditional unbiasedness of φ̂HT3 given r1, r2, . . . , rn with neff > 0. Then by

E

[
φ̂HT3

∣∣∣∣∣
n∑
i=1

ri > 0

]
= E

[
E
[
φ̂HT3 |r1, r2, . . . , rn

] ∣∣∣∣∣
n∑
i=1

ri > 0

]
= φ, (2.10)

φ̂HT3 is also unbiased given neff > 0.

2.1.5 Connection of Horvitz-Thompson estimators to importance sampling

Aside from being related to the original Horvitz-Thompson estimator φ̂HT1 , φ̂HT2 and φ̂HT3 can also

be viewed as estimators based on importance sampling, a technique used in Monte Carlo simulations.

We start with a brief description of importance sampling; for more details, see Neal (2001). Suppose

we want to estimate the mean of the function h(a) with respect to the distribution f . However,

sampling from f is difficult. Instead, suppose that, sampling from an alternative distribution f∗ is

more convenient and the ratio of f/f∗ can be computed easily. With a1, . . . , añ sampled from f∗, an

estimator for Ef [h(a)] can be constructed as

ĥIM =
1
ñ

ñ∑
i=1

h(ai)f(ai)/f∗(ai). (2.11)
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ĥIM is actually unbiased for Ef [h(a)], since

E[ĥIM ] = Ef∗

[
1
ñ

ñ∑
i=1

h(ai)f(ai)/f∗(ai)

]
=

1
ñ

ñ∑
i=1

∫
h(ai)

f(ai)
f∗(ai)

f∗(ai) dai

=
1
ñ

ñ∑
i=1

∫
h(ai) f(ai) dai = Ef [h(a)] (2.12)

ĥIM is called importance sampling estimator for Ef [h(a)] and the ratio f(ai)/f∗(ai) is called importance

weight.

Equation (2.11) requires complete knowledge of f and f∗. When f and f∗ are only known up to

their normalizing constants, as is common for applications in Bayesian inference, replacing ñ in the

denominator by
∑ñ
i=1 f(ai)/f∗(ai) results in the following alternative estimator for Ef [h(a)]

h̃IM =
∑ñ
i=1 h(ai)f(ai)/f∗(ai)∑ñ

i=1 f(ai)/f∗(ai)
. (2.13)

h̃IM is no longer unbiased but is still consistent for Ef [h(a)] by the strong law of large numbers.

Now, recall that

φ̂HT3 =
1

neff

∑
i:ri=1

yiψ

νi
(2.14)

where ψ =
∫
ν(x)dFX(x) = Pr(ri = 1). By simply noting that

ψ

νi
=

fX(xi)
fX(xi)νi/ψ

=
fX(xi)

fX|Ri(xi|1)
. (2.15)

is the ratio of the marginal density function of xi to its conditional density function given ri = 1, φ̂HT3

is clearly an importance sampling estimator with f = fX and f∗ = fX|R(·|1). In other words, restricted

to those xi’s with yi observed, xi’s are considered as sampled from fX|R(·|1) (with ñ = neff ) instead

of from fX. Being an importance sampling estimator alternatively proves that φ̂HT3 is unbiased for φ

given neff > 0.

Similarly, with f = fX and f∗ = fX|R(·|1),

φ̂HT2 =
∑
i:ri=1

yi
νi

/ ∑
i:ri=1

1
νi

=
∑
i:ri=1

yiψ

νi

/ ∑
i:ri=1

ψ

νi
= h̃IM

Therefore, φ̂HT2 is the type of importance sampling estimator when ψ is unavailable. It should be

noted that although φ̂HT2 can be considered as an alternative to φ̂HT3 when ψ is unavailable, φ̂HT2 has
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its own merit of being equivariant under all affine transformations which φ̂HT3 does not have.

2.1.6 MSE of types 1 and 3 Horvitz-Thompson estimators

In this subsection, I will derive the (asymptotic) mean squared errors (MSE) of φ̂HT1 and φ̂HT3 for

estimating φ and then compare them. We start with two lemmas.

Lemma 2.1 Assume that ν(x) > ζ for all x where ζ > 0 and E[y2] <∞. Then

E
[
yi
νi

∣∣∣ri = 1
]

=
φ

ψ

Var
(
yi
νi

∣∣∣ri = 1
)

=
A

ψ
− φ2

ψ2
(2.16)

where

A =
∫

E[y2|x]fX(x)
ν(x)

dx (2.17)

is a finite constant not depending on i.

Proof As noted earlier, fX|R(xi|ri = 1) = fX(xi)ν(xi)
ψ . Therefore,

E
[
yi
νi

∣∣∣ri = 1
]

= E
[
E
[

yi
ν(xi)

∣∣∣xi] ∣∣∣ri = 1
]

= E
[
µ(xi)
ν(xi)

∣∣∣ri = 1
]

=
∫
µ(x)
ν(x)

fX(x)ν(x)
ψ

dx =
φ

ψ
(2.18)

E
[
y2
i

ν2
i

∣∣∣ri = 1
]

= E
[
E
[

y2
i

ν2(xi)

∣∣∣xi] ∣∣∣ri = 1
]

=
∫

E[y2|x]
ν2(x)

fX(x)ν(x)
ψ

dx =

∫ E[y2|x]fX(x)
ν(x) dx

ψ
=
A

ψ
(2.19)

And then,

Var
(
yi
νi

∣∣∣ri = 1
)

=
A

ψ
− φ2

ψ2
(2.20)

Note that the finiteness of A is guaranteed by ν(x) > ζ > 0 and E[y2] <∞. This completes the proof

of Lemma 2.1.

Lemma 2.2 Assume that ψ > 0. Then

E

[
1

neff

∣∣∣∣∣
n∑
i=1

ri > 0

]
=

1
nψ

+ o

(
1

n3/2

)
. (2.21)



2 Methodologies 13

Proof We first note that when ψ = 1, neff = n with probability one and therefore

E

[
1

neff

∣∣∣∣∣
n∑
i=1

ri > 0

]
= E

[
1

neff

]
=

1
n

(2.22)

When 0 < ψ < 1, 1
neff

is not defined if neff = 0. However, since Pr(neff = 0) = (1− ψ)n goes to zero

exponentially fast, we can assign an arbitrary value to 1
neff

at neff = 0 without causing any practical

concerns. Then, we have by the generalized central limit theorem that

1/neff − 1/nψ√
nψ(1− ψ)/(nψ)4

−→ N(0, 1), as n→∞ (2.23)

That is, for any Borel set A ⊂ R,

Pr

(
1/neff − 1/nψ√
nψ(1− ψ)/(nψ)4

∈ A

)
= Pr (Z ∈ A) + o(1) (2.24)

where Z ∼ N(0, 1). Therefore,

E

[
1/neff − 1/nψ√
nψ(1− ψ)/(nψ)4

]
= E[Z] + o(1) = o(1) (2.25)

And thus,

E
[

1
neff

]
=

1
nψ

+
√
nψ(1− ψ)/(nψ)4 × o(1) =

1
nψ

+ o

(
1

n3/2

)
. (2.26)

And since Pr(
∑n
i=1 ri = 0) = (1− ψ)n which goes to zero faster than O

(
1

n3/2

)
,

E

[
1

neff

∣∣∣∣∣
n∑
i=1

ri > 0

]
=

1
nψ

+ o

(
1

n3/2

)
. (2.27)

This completes the proof of Lemma 2.2.

The MSE of φ̂HT1 and φ̂HT3 are given by Theorem 2.1 and Theorem 2.2, respectively.

Theorem 2.1 Assume that ν(x) > ζ for all x where ζ > 0 and E[y2] < ∞. Then φ̂HT1 has the

following finite mean squared error

MSE(φ̂HT1) =
(1− ψ)φ2

nψ
+
ψA− φ2

nψ
(2.28)

where A is as defined in (2.17).
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Proof Recall that φ̂HT1 is unbiased for φ. Therefore,

MSE(φ̂HT1) = Var(φ̂HT1)

= E
[
Var

(
φ̂HT1 |r1, r2, . . . , rn

)]
+ Var

(
E
[
φ̂HT1 |r1, r2, . . . , rn

])
(2.29)

From Lemma 2.1,

Var
(
φ̂HT1 |r1, r2, . . . , rn

)
= Var

(
1
n

n∑
i=1

yiri/νi

∣∣∣r1, r2, . . . , rn)

=
neff
n2

Var
(
yi/νi

∣∣∣ri = 1
)

=
neff
n2

(
A

ψ
− φ2

ψ2

)
, (2.30)

and then,

E
[
Var

(
φ̂HT1 |r1, r2, . . . , rn

)]
= E

[
neff
n2

(
A

ψ
− φ2

ψ2

)]
=

nψ

n2

(
A

ψ
− φ2

ψ2

)
=
ψA− φ2

nψ
. (2.31)

Also from Lemma 2.1,

E
[
φ̂HT1 |r1, r2, . . . , rn

]
= E

[
1
n

n∑
i=1

yiri/νi

∣∣∣r1, r2, . . . , rn]

=
neff
n

E
[
yi/νi

∣∣∣ri = 1
]

=
neff
n

φ

ψ
(2.32)

and then,

Var
(

E
[
φ̂HT1 |r1, r2, . . . , rn

])
= Var

(
neff
n

φ

ψ

)
=
nψ(1− ψ)

n2

φ2

ψ2
=

(1− ψ)φ2

nψ
(2.33)

Therefore

MSE(φ̂HT1) =
(1− ψ)φ2

nψ
+
ψA− φ2

nψ
. (2.34)

This completes the proof of Theorem 2.1.

Theorem 2.2 Assume that ν(x) > ζ for all x where ζ > 0 and E[y2] < ∞. Then φ̂HT3 has the

following asymptotic mean squared error, regardless its undefined value when neff =
∑n
i=1 ri = 0.

MSE
(
φ̂HT3

)
=

(ψA− φ2)
nψ

+ o

(
1

n3/2

)
(2.35)

where A is as defined in (2.17).
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Proof Recall that φ̂HT3 is unbiased for φ given
∑n
i=1 ri > 0 or given r1, r2, . . . , rn with

∑n
i=1 ri > 0.

Therefore,

MSE

(
φ̂HT3

∣∣∣∣∣
n∑
i=1

ri > 0

)
= Var

(
φ̂HT3

∣∣∣∣∣
n∑
i=1

ri > 0

)

= E

[
Var

(
φ̂HT3 |r1, r2, . . . , rn

) ∣∣∣∣∣
n∑
i=1

ri > 0

]

+ Var

(
E
[
φ̂HT3 |r1, r2, . . . , rn

] ∣∣∣∣∣
n∑
i=1

ri > 0

)

= E

[
Var

(
φ̂HT3 |r1, r2, . . . , rn

) ∣∣∣∣∣
n∑
i=1

ri > 0

]
+ Var

(
φ

∣∣∣∣∣
n∑
i=1

ri > 0

)

= E

[
Var

(
φ̂HT3 |r1, r2, . . . , rn

) ∣∣∣∣∣
n∑
i=1

ri > 0

]

= E

[
Var

(
ψ

neff

n∑
i=1

yiri/νi

∣∣∣r1, r2, . . . , rn)
∣∣∣∣∣
n∑
i=1

ri > 0

]

= E

[
Var

(
ψ

neff

n∑
i:ri=1

yi/νi

∣∣∣r1, r2, . . . , rn)
∣∣∣∣∣
n∑
i=1

ri > 0

]

= E

[
ψ2

neff
Var

(
yi
νi

∣∣∣ri = 1
) ∣∣∣∣∣

n∑
i=1

ri > 0

]
(2.36)

From Lemma 2.1,

MSE

(
φ̂HT3

∣∣∣∣∣
n∑
i=1

ri > 0

)
= E

[
ψ2

neff

(
A

ψ
− φ2

ψ2

) ∣∣∣∣∣
n∑
i=1

ri > 0

]
= (ψA− φ2)E

[
1

neff

∣∣∣∣∣
n∑
i=1

ri > 0

]
.(2.37)

and then,

MSE
(
φ̂HT3

)
= (1− (1− ψ)n)(ψA− φ2)E

[
1

neff

∣∣∣ n∑
i=1

ri > 0

]

+ (1− ψ)nMSE

(
φ̂HT3

∣∣∣ n∑
i=1

ri = 0

)
(2.38)

Since (1−ψ)n goes to zero faster than O
(

1
n3/2

)
, regardless the undefined value of φ̂HT3 when

∑n
i=1 ri =

0, from Lemma 2.2,

MSE
(
φ̂HT3

)
=

(ψA− φ2)
nψ

+ o

(
1

n3/2

)
(2.39)

This completes the proof of Theorem 2.2.
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From Theorem 2.1 and Theorem 2.2, we have that

MSE(φ̂HT1)−MSE(φ̂HT3) =
(1− ψ)φ2

nψ
+ o

(
1
n

)
(2.40)

That is, for sufficiently large n,

MSE(φ̂HT1) > MSE(φ̂HT3), unless ψ = 1 or φ = 0. (2.41)

2.1.7 A short summary

Note that, in the situation where the observations are missing completely at random, i.e., when all

the selection probabilities equal a constant ν, both φ̂HT2 and φ̂HT3 reduce to the naive estimator, which

takes a simple average of the observed yi, i.e. 1
neff

∑
i:ri=1 yi. However, the original Horvitz-Thompson

estimator, which equals 1
nν

∑
i:ri=1 yi in this situation ignores the number of actually observed yi’s,

i.e. neff =
∑n
i=1 ri. Ignoring the ancillary effective sample size neff =

∑n
i=1 ri, conflicts with the

conditionality principle, which has been widely accepted in both theory and practice.

Although the Horvitz-Thompson estimators have the merit of adjusting for the selection probabilities

through weighting, they have ignored all other possible aspects of variation among the covariates xi’s.

A regression model with appropriately chosen predictors could potentially produce estimates of higher

accuracy than the Horvitz-Thompson estimators. However, for a conventional regression model, e.g.

a polynomial regression model fit by least squares, the complexity and flexibility of the model must

be limited to avoid overfitting, especially in high dimensional situations. Instead, Gaussian process

regression, a non-parametric method, can model various aspects of the covariates more flexibly than

the traditional regression methods, without the risk of overfitting. Also, unlike the Horvitz-Thompson

estimators which treat all the units of observation as equally important, a Gaussian process regression

model will weight the importance of each xi by its distance from other covariates, and therefore could

be expected to be a more powerful method of inference. More detailed discussion on Gaussian process

regression will come in the next section.

We may also note that when neff =
∑n
i=1 ri = 0, all the estimators introduced in this section except

φ̂HT1 are not defined. In practice, the situation where
∑n
i=1 ri = 0 is of no interest. In numerical

experiments, when the simulated sample size is relatively small,
∑n
i=1 ri = 0 may happen by chance.

Then, to avoid numerical computer errors, we need to assign some values to these estimators when∑n
i=1 ri = 0. However, which values to assign should not be a critical issue, since with reasonably large

sample size this situation may not happen at all. More about this issue will be discussed in Chapter 4.
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2.2 Bayesian inference using Gaussian process models

This section will give a general introduction to Bayesian inference using Gaussian process models and

briefly discuss how Gaussian process models can be applied to the problem considered in this thesis.

Details on how to derive the posterior estimator for the population mean of the response variable and

how to implement Gaussian process models through Markov chain Monte Carlo (MCMC) algorithms

will be given in Chapter 3.

2.2.1 Gaussian process models

Gaussian process models are Bayesian models with Gaussian process priors. A Gaussian process is

a stochastic process whose values at any finite set of points have a multivariate Gaussian distribution.

All these multivariate Gaussian distributions must be compatible with each other, in the sense that

they produce the same marginal distributions for the same subsets of points. A Gaussian process is

entirely specified through a mean function and a covariance function, as a finite-dimensional multivariate

Gaussian distribution is entirely specified by a mean vector and a covariance matrix.

Gaussian process models have long been used for Bayesian regression analysis where the regression

predictors are assigned Gaussian process priors. Suppose h(x) is a function of interest for some random

variable z. For example, h(x) can be the mean function of the response variable y or the (selection)

probability function of the selection indicator r. h(x) can often be modeled through a latent function

g(x) (i.e. the predictor) as

h(x) = h̃(g(x)) (2.42)

where h̃ is the link function from g(x) to h(x). When z is binary, h̃ can be, for example, the expit

function such that

h(x) =
1

1 + exp(−g(x))
. (2.43)

When z is numerical, h̃ is typically the identity function such that

h(x) = g(x). (2.44)

In either case, the latent function g can be assigned Gaussian process priors. Then inference about

h(x) will be made through modeling g(x).

In practice, it is typical to let the prior mean of g(x) equal zero for all x, unless specific prior
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information is available. When E[g(x)] = 0 a priori for all x, the Gaussian process model is determined

by its covariance function

C(xi,xj) = Cov (g(xi), g(xj)) . (2.45)

Typical covariance functions for Gaussian process models (Rasmussen and William, 2006; Neal, 1998)

include

C(xi,xj ;σ2
0 , λ

2, η2, `, r) = σ2
0 +

d∑
k=1

λ2
kxikxjk + η2 exp

−
(

d∑
k=1

(
xik − xjk

`k

)2
)r/2 (2.46)

and

C(xi,xj ;σ2
0 , λ

2, η2, `, r) = σ2
0 +

d∑
k=1

λ2
kxikxjk + η2 exp

{
−

d∑
k=1

(
|xik − xjk|

`k

)r}
(2.47)

where

σ2
0 , λ2 = (λ2

1, . . . , λ
2
d), η2, ` = (`1, . . . , `d), and r (2.48)

are hyperparameters which can be either fixed or assigned higher level priors. Note that the two types

of covariance functions above are equivalent when r = 2 or d = 1.

With a covariance function given by (2.46) or (2.47), a Gaussian process model can be denoted by

GP(σ2
0 , λ

2, η2, `, r) (2.49)

It has been well-known (Rasmussen and William, 2006; Neal, 1998) that when 0 < r ≤ 2, both of

these types of covariance functions are positive semi-definite. When r = 2, the corresponding (random)

functions produced by these covariance functions are analytic and therefore differentiable to infinite

order.

The covariance function is the crucial ingredient of a Gaussian process model, as it defined the

functions that can be fit by the observed data. The first two terms of the covariance function in

(2.46) or (2.47) are equivalent to a linear regression model and will be explained more in the next

subsection. The exponential term, the key component of the covariance function, determines all the

nonlinear effects and interactions in the function it can model, with the length-scale hyperparameters

`’s controlling the relevance of each covariate and the exponent r controlling the smoothness of the

produced function. The overall scaling hyperparameter η controls the magnitude of the exponential
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component or the marginal variance of the function produced with the exponential component only.

Some example functions produced by a one-dimensional (d = 1) Gaussian process model with the

covariance function (2.46) are illustrated in Figure 2.1. As shown in Figure 2.1 (a) and (b), functions

produced by an exponential covariance function with a length-scale ` equal to 1 look less wiggly than

those with a length-scale ` equal to 0.3, since with a larger length-scale, distant x’s are more correlated.

In Figure 2.1 (c), a constant term σ2
0 = 1.52 is added to the covariance function, resulting a (random)

vertical shift to the functions that would have been produced without it. In addition to the constant

term, a linear term is included as in Figure 2.1 (d) where all the functions exhibit a (random) linear

trend.
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Figure 2.1: Three sample functions from each of the following Gaussian process priors: (a) C(xi, xj) =
exp{−(xi − xj)2}; (b) C(xi, xj) = exp{−(xi−xj0.3 )2}; (c) C(xi, xj) = 1.52 + 0.42 exp{−(xi−xj0.3 )2}; (d)
1.52 + 1.22xixj + 0.42 exp{−(xi−xj0.3 )2}.

In this thesis, a slightly modified version of (2.47) will be considered as

C(xi,xj ;σ2
0 , λ

2, η2, `, r) = σ2
0 +

1
d

d∑
k=1

λ2
kxikxjk + η2 exp

{
−1
d

d∑
k=1

(
|xik − xjk|

`k

)r}
(2.50)

This covariance function has λ2
kxikxjk and

(
|xik−xjk|

`k

)r
averaged over the d dimensions. The merit of
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having the averages instead of the sums of λ2
kxikxjk’s and

(
|xik−xjk|

`k

)r
’s is that the correlation between

g(xi) and g(xj) will be more stable as the dimensionality d changes, assuming that x1, x2, . . . , xd have

the same marginal distributions for each value of d, the linear coefficients λ1, λ2 . . . , λd have the same

marginal priors, and the length-scale hyperparameters l1, l2 . . . , ld have the same marginal priors.

2.2.2 Connection to conventional regression

Gaussian process regression models are more sophisticated and flexible than conventional regression

models in that it can model complex functions without incurring overfitting issues. However, it still

has some connection to the classical regression models. Indeed, the classical models can be considered

as simple cases of the Gaussian process models. To illustrate the connection, consider the following

multiple linear regression model.

yi = β0 + β1xi1 + β2xi2 + · · ·+ βdxid + εi, i = 1, . . . , n (2.51)

= f(xi) + εi, i = 1, . . . , n (2.52)

where

f(xi) = β0 + β1xi1 + β2xi2 + · · ·+ βdxid (2.53)

is the linear predictor at the observation xi and the noises εi’s are i.i.d. with normal distribution

N (0, δ2). Suppose we assign independent Gaussian priors to the parameters βi, i = 0, 1, . . . , d, with

zero means and variances σ2
i , i = 0, 1, . . . , d. That is,

β0 ∼ N (0, σ2
0) ⊥⊥ β1 ∼ N (0, σ2

1) ⊥⊥ · · · ⊥⊥ βd ∼ N (0, σ2
d) (2.54)

Then, given the covariates xi = (xi1, . . . , xid), i = 1, 2, . . . , n, the linear predictors at each xi will have

a multivariate normal prior with a zero mean vector and a covariance matrix equal to

Cov
(

[ f(x1), f(x2), . . . , f(xn) ]T
)

= Cov(Xβ) = XCov(β)XT =

[
σ2

0 +
d∑
k=1

σ2
i xikxjk

]
i,j

, (2.55)
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where

X =


1 x11 · · · x1d

1 x21 · · · x2d

...
...

. . .
...

1 xn1 · · · xnd

 . (2.56)

Clearly, the above covariance matrix corresponds to the first two terms of the Gaussian process

covariance functions given by (2.46), (2.47) and (2.50). This correspondence also explains why the first

two terms of those covariance functions superimpose a constant shift and a linear trend on the functions

produced with only the exponential part of the covariance function as shown in Figure 2.1 (c) and (d).

The exponential component of the covariance function produces more complex functions than a single

linear regression model does, with the overall scaling hyperparameter η controlling the magnitude of

this exponential part of the whole function. Because of its flexibility, Gaussian process models with

covariance functions defined by (2.46), (2.47) or (2.50), are considered non-parametric models.

2.2.3 Modeling two correlated functions

For the problem considered in this thesis, we need to model not only the mean function µ(x) of y,

but also the selection probability function ν(x) and their correlation. Two strategies for incorporating

the selection probability through Gaussian process models will be discussed in this subsection and next

subsection, respectively.

Since ν(x) may be correlated with µ(x), assigning dependent priors may be an effective way for mod-

eling the correlation between these two functions. Let gµ and gν be the latent functions corresponding

to µ(x) and ν(x), respectively. That is,

µ(x) = µ̃(gµ) = µ̃(gµ(x)) (2.57)

ν(x) = ν̃(gν) = ν̃(gν(x)) (2.58)

where µ̃ and ν̃ are the link functions from the latent functions gµ and gν to µ(x) and ν(x), respectively.

As mentioned earlier, when y is numerical, µ̃ is simply the identity function. Next, define gµ and gν by

gµ = g1 + g0 and gν = g2 + g0 (2.59)

where, given hyperparameters, g1, g2 and g0 are functions with independent Gaussian process priors.
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That is,

g1 ∼ GP1 = GP(σ2
0,1, λ

2
1, η

2
1 , `1, r1) ⊥⊥

g2 ∼ GP2 = GP(σ2
0,2, λ

2
2, η

2
2 , `2, r2) ⊥⊥

g0 ∼ GP0 = GP(σ2
0,0, λ

2
0, η

2
0 , `0, r0) (2.60)

given σ2
0,h, λ

2
h = (λ2

h1, . . . , λ
2
hd), η

2
h, `h = (`h1, . . . , `hd), rh, h = 1, 2, 0. In general, g1, g2 and g0 may

not necessarily be marginally independent, since g1, g2 and g0 may have some of the hyperparameters

equal, or their hyperparameters may be dependent a priori with higher level priors. With the above

strategy, gµ and gν are correlated a priori through g0.

For particular covariates x1, · · · ,xn, denote the corresponding values of the latent functions gµ and

gν by

g(n)
µ =


gµ(x1)

gµ(x2)
...

gµ(xn)

 =


gµ,1

gµ,2
...

gµ,n

 and g(n)
ν =


gν(x1)

gν(x2)
...

gν(xn)

 =


gν,1

gν,2
...

gν,n

 . (2.61)

By the strategy (2.59), the latent vectors g(n)
µ and g(n)

ν will have the following joint multivariate

Gaussian distribution  g(n)
µ

g(n)
ν

 ∼ N
0,

 K1 +K0 K0

K0 K2 +K0

 (2.62)

where

Kh =
[
C(xi,xj ;σ2

0,h, λ
2
h, η

2
h, `h, rh)

]
i,j
, h = 1, 2, 0 (2.63)

with the covariance function C(xi,xj ;σ2
0,h, λ

2
h, η

2
h, `h, rh) defined by (2.46), (2.47) or (2.50).

When the response variable y is real-valued, a noise term should be added into the regression model

as

y = µ(x) + ε = gµ(x) + ε (2.64)

where ε typically has a Gaussian distribution N (0, δ2). The noise standard deviation δ can either be a
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fixed constant or be adaptable with a prior distribution that is independent of the latent function gµ.

The strategy described above, however, has its limitation. Particularly, by (2.59), prior correlations

between gµ(x) and gν(x) are always positive for all x’s. If instead, let gν = g2− g0, all the correlations

will be negative. However, in practice, we may not know whether gµ and gν should be positively or

negatively correlated. Nevertheless, this scheme is simple and yet will help reveal the fundamental

issues involved. Some discussion on how to expand this strategy for more general situations are given

in the last chapter of the thesis.

2.2.4 Using selection probability as a covariate

Instead of modeling µ(x) and ν(x) jointly with dependent priors, one can alternatively use the

selection probability ν(x) or a transformation of it as an additional covariate. More specifically, let

xd+1 = h(ν(x)) and x∗ = (x1, x2, . . . , xd, xd+1), where h is some inversible transformation. (Note that

non-inversible h is also useful, but ν(x) would not be fully exploited.) With x∗ being the covariate

vector, µ(x) can be re-written as

µ(x) = µ̃(gµ(x)) = µ̃
(
g∗µ (x, h (ν(x)))

)
= µ∗(x∗) (2.65)

where gµ is a function with d arguments, x1, . . . , xd, while g∗µ has d+1 arguments, x1, . . . , xd, xd+1. Note

that it is g∗µ that will be assigned Gaussian process priors with the (d+ 1)-dimensional covariate vector

x∗. With a Gaussian process model, the selection of h is less crucial compared to some existing methods

that also use h(ν(x)) as an additional covariate, since the Gaussian process model will automatically

figure out the best relationship between µ∗(x∗) and its covariate xd+1 = h (ν(x)). Particularly, h (ν(x))

does not have to be the inverse selection probability that is popularly used in the literature.

Compared to the strategy (2.59) described in the previous subsection, this strategy only has one

Gaussian process model and therefore is conceivably easier to implement and faster to compute. How-

ever, with the selection probability as an additional covariate, this strategy requires knowledge of the

selection probability function ν(x) for at least the observed x’s. It is also often desired that µ∗(x∗)

can be predicted at all x∗ or at a fairly large number of x∗ so that the error due to approximating

an integral by a finite sum can be reduced to a minimum degree by averaging µ∗(x∗) over all these

x∗. The strategy defined by (2.59), however, does not require knowing any ν values by modeling the

selection probability function ν(x) simultaneously, although knowing some ν values may help improve

the efficiency of the estimation. Therefore, the strategy (2.59) has wider applications.

When the selection probability ν is used as an additional covariate, the covariance function (2.50)
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becomes

C(x∗i ,x
∗
j ;σ

2
0 , λ

2, η2, `, r) = σ2
0 +

1
d

d∑
k=1

λ2
kxikxjk + λ2

d+1xi,d+1xj,d+1

+ η2 exp

{
−1
d

d∑
k=1

(
|xik − xjk|

`k

)r
−
(
|xi,d+1 − xj,d+1|

`d+1

)r}
(2.66)

where x∗i = (xi1, . . . , xid, xi,d+1) and x∗j = (xj1, . . . , xjd, xj,d+1) with xi,d+1 = h(ν(xi)) and xj,d+1 =

h(ν(xj)) being the additional covariates and h being some inverse function. Note that xi,d+1 and xj,d+1

are not included in count of covariates for scaling λ2
kxikxjk and

(
|xik−xjk|

`k

)r
. And for k = 1, . . . , d,

λ2
kxikxjk and

(
|xik−xjk|

`k

)r
are still scaled by d instead of d + 1, so that the approach that uses the

selection probability as a covariate is more directly comparable to the approaches that do not, in the

sense that they treat the d-dimensional covariate vector x the same way.



Chapter 3

Implementing Gaussian process

models

In Bayesian analysis, it is typical to estimate an unknown quantity, e.g. the population mean φ,

by its posterior mean value given the observed data. However, with Gaussian process priors, one can

rarely obtain the analytical form for the posterior distribution of the quantity of interest or for the

posterior distribution of the corresponding latent function. Therefore, Monte Carlo methods, typically

Markov chain Monte Carlo (MCMC) sampling, are essential for implementing the Gaussian process

models. This chapter first discusses how inference can be made for the population mean φ, assuming

an MCMC sample are already obtained from the posterior distribution of the latent vectors g(n)
µ and

g(n)
ν , where g(n)

µ and g(n)
ν are defined as in (2.61). Description of the adopted MCMC sampling schemes

and how to implement them follow next.

3.1 Inference from the posterior distribution

This section first derives the formulas for the estimators for the population mean based on the

Gaussian process models discussed in Section 2.2, and then analyzes the different sources of errors

involved in these estimators.

3.1.1 Obtaining the estimators for the population mean

In this subsection, the formula for the estimator for the population mean φ is first derived under

the strategy (2.59) as in Subsection 2.2.3, with both the mean function µ and the selection probability

25
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function ν being modeled. The formulas for the estimator under the same strategy (2.59) but with ν

known, for the estimator that ignores ν, and for the estimator that uses the known ν as a covariate as

in Subsection 2.2.4 are special cases of the first formula as will be illustrated later.

Recall that

φ =
∫
µ(x) dFX =

∫
µ̃(gµ(x)) dFX = φ(gµ) (3.1)

which is a functional of the latent function gµ. Therefore, the estimation of the posterior mean of φ

will be based on the posterior distribution of the latent vectors g(n)
µ and g(n)

ν and the conditional dis-

tribution of the latent function gµ given the latent vectors g(n)
µ and g(n)

ν . Given the observations Dn :

(x1, y1, r1), . . . , (xn, y1, rn), denote the joint posterior distribution of g(n)
µ and g(n)

ν by P (g(n)
µ ,g(n)

ν |Dn).

Given the hyperparameters σ2
0,h, λ

2
h = (λ2

h1, . . . , λ
2
hd), η

2
h, `h = (`h1, . . . , `hd), rh, h = 1, 2, 0, de-

note the conditional distribution of the latent function gµ given the latent vectors g(n)
µ and g(n)

ν by

P (gµ |g(n)
µ ,g(n)

ν ). Note that P (gµ |g(n)
µ ,g(n)

ν ) is a functional of the latent function gµ. For any particular

x = (x1, . . . , xd), P (gµ | g(n)
µ ,g(n)

ν ) reduces to the conditional distribution of the latent variable gµ(x)

given g(n)
µ and g(n)

ν , which is

P (gµ(x) | g(n)
µ ,g(n)

ν ) ∼ N
(
mc

(
x; g(n)

µ ,g(n)
ν

)
, vc(x)

)
(3.2)

where

mc

(
x; g(n)

µ ,g(n)
ν )
)

=

 k(n)
x,µ

k(n)
x,ν

T  K1 +K0 K0

K0 K2 +K0

−1 g(n)
µ

g(n)
ν

 (3.3)

and

vc(x) = kx,µ −

 k(n)
x,µ

k(n)
x,ν

T  K1 +K0 K0

K0 K2 +K0

−1 k(n)
x,µ

k(n)
x,ν

 (3.4)
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with Kh, h = 1, 2, 0, defined as in (2.63) and

kx,µ = Var(gµ(x)) = C(x,x;σ2
0,1, λ

2
1, η

2
1 , `1, r1)

= σ2
0,1 +

d∑
k=1

λ2
1kx

2
k + η2

1 (3.5)

k(n)
x,µ = [Cov(gµ(x), gµ(xi))]i

=
[
C(x,xi;σ2

0,1, λ
2
1, η

2
1 , `1, r1) + C(x,xi;σ2

0,0, λ
2
0, η

2
0 , `0, r0)

]
i

(3.6)

k(n)
x,ν = [Cov(gµ(x), gν(xi))]i

=
[
C(x,xi;σ2

0,0, λ
2
0, η

2
0 , `0, r0)

]
i

(3.7)

Then the posterior mean of φ, denoted by φpost = E[φ|Dn], can be expressed as

φpost =
∫ (∫ (∫

µ̃(gµ(x)) dFX(x)
)
dP (gµ | g(n)

µ ,g(n)
ν )
)
dP (g(n)

µ ,g(n)
ν |Dn)

=
∫ (∫ (∫

µ̃(gµ(x)) dP (gµ | g(n)
µ ,g(n)

ν )
)
dFX(x)

)
dP (g(n)

µ ,g(n)
ν |Dn)

=
∫ (∫

E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
dFX(x)

)
dP (g(n)

µ ,g(n)
ν |Dn) (3.8)

Clearly three steps of computations are involved in obtaining φpost. First, we need to obtain

E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
=
∫
µ̃(gµ(x)) dP (gµ(x) | g(n)

µ ,g(n)
ν ) (3.9)

for each x. According to (3.2), when µ̃ is the identity function, we simply have

E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
= mc

(
x; g(n)

µ ,g(n)
ν

)
(3.10)

where mc

(
x; g(n)

µ ,g(n)
ν

)
is as in (3.3). When µ̃ is the probit function, i.e. µ̃ = Φ, analytic result can

be obtained for E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
as

E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
= Φ

mc

(
x; g(n)

µ ,g(n)
ν

)
1 + vc(x)

 (3.11)

where mc

(
x; g(n)

µ ,g(n)
ν

)
and vc(x) are as in (3.3) and (3.4), respectively.
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Proof of (3.11) Consider

1√
2πσ

∫
Φ(x) exp

{
− 1

2σ2
(x− θ)2

}
dx

=
1

2πσ

∫ ∞
−∞

∫ x

−∞
exp

{
−1

2
y2 − 1

2σ2
(x− θ)2

}
dy dx

=
1

2π

∫ ∞
−∞

∫ σu+θ

−∞
exp

{
−1

2
y2 − 1

2
u2

}
dy du, where u =

x− θ
σ

=
∫ ∞
−∞

∫ θ√
1+σ2

−∞
φ(w)φ(v) dw dv, where w =

y − σu√
1 + σ2

, v =
σy + u√
1 + σ2

= Φ
(

θ√
1 + σ2

)
(3.12)

This completes the proof of 3.11.

In general, (3.9) can not be obtained analytically. Then E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
needs to be esti-

mated by numerical methods. One good scheme for estimating E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
is to average

µ̃(gµ(x)) over equally spaced quantiles of P
(
gµ(x) | g(n)

µ ,g(n)
ν

)
. Note that, since P

(
gµ(x) | g(n)

µ ,g(n)
ν

)
is a one-dimensional normal distribution, its quantiles can be easily obtained. Let g̃1, . . . , g̃ñ be the
0.5
ñ ,

1.5
ñ , . . . ,

ñ−0.5
ñ quantiles of P

(
gµ(x) | g(n)

µ ,g(n)
ν

)
. Then,

E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
≈ 1
ñ

ñ∑
s=1

µ̃(g̃s) (3.13)

The error of estimating E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
by (3.13) converges to zero at a rate proportional to

1
ñ2 .

Second, we need to estimate

φcond

(
g(n)
µ ,g(n)

ν

)
=
∫

E
[
µ̃(gµ(x)) | g(n)

µ ,g(n)
ν

]
dFX(x) (3.14)

where E
[
µ̃(gµ(x)|g(n)

µ ,g(n)
ν

]
is either in its exact form as in (3.10) or (3.11) or in the estimated form

as in (3.13). When FX is available, we may sample x∗1, · · · , x∗N
iid∼ FX with N much larger than the

sample size n and then estimate φcond
(
g(n)
µ ,g(n)

ν

)
by averaging over x∗j as

φcond

(
g(n)
µ ,g(n)

ν

)
≈ 1

N

N∑
j=1

E
[
µ̃(gµ(x∗j )) | g(n)

µ ,g(n)
ν

]
(3.15)

When FX is not available, φcond
(
g(n)
µ ,g(n)

ν

)
will be estimated using the observed x only and (3.15)
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becomes

φcond

(
g(n)
µ ,g(n)

ν

)
≈ 1

n

n∑
j=1

µ̃(gµ(xj)) (3.16)

where (gµ(x1), . . . , gµ(xn))T = g(n)
µ and the step of computing E

[
µ̃(gµ(x)|g(n)

µ ,g(n)
ν

]
has been skipped.

Third, we need to estimate

φpost =
∫
φcond

(
g(n)
µ ,g(n)

ν

)
dP (g(n)

µ ,g(n)
ν |Dn) (3.17)

where φcond
(
g(n)
µ ,g(n)

ν

)
is as in (3.14). Estimating

∫
φcond

(
g(n)
µ ,g(n)

ν

)
dP (g(n)

µ ,g(n)
ν |Dn)] requires an

MCMC sample of g(n)
µ and g(n)

ν given the observations Dn. Suppose we have the following MCMC

sample of size B drawn from P (g(n)
µ ,g(n)

ν |Dn)

 g(n)
µ,1

g(n)
ν,1

 ,

 g(n)
µ,2

g(n)
ν,2

 , . . . ,

 g(n)
µ,B

g(n)
ν,B

 (3.18)

where

g(n)
µ,b =


gµ,1,b

gµ,2,b
...

gµ,n,b

 and g(n)
ν,b =


gν,1,b

gν,2,b
...

gν,n,b

 , b = 1, 2, . . . , B. (3.19)

Then φpost can be estimated by

φpost =
∫
φcond

(
g(n)
µ ,g(n)

ν

)
dP (g(n)

µ ,g(n)
ν |Dn) ≈ 1

B

B∑
b=1

φcond

(
g(n)
µ,b ,g

(n)
ν,b

)
(3.20)

where φcond
(
g(n)
µ,b ,g

(n)
ν,b

)
’s can be estimated by either (3.15) or (3.16).

Now, we have obtained all the three steps of computations for the posterior mean φpost of φ. The

three steps are summarized in the following formulas with φ̂post denoting the estimator for φpost. When

sampling additional x∗1, . . . ,x
∗
N from FX is possible, we have

φ̂post =


1
B

∑B
b=1

1
N

∑N
j=1mc

(
x∗j ; g

(n)
µ,b ,g

(n)
ν,b

)
, µ̃ is identity

1
B

∑B
b=1

1
N

∑N
j=1 Φ

(
mc

“
x∗j ;g

(n)
µ,b ,g

(n)
ν,b

”
1+vc(x∗j )

)
, µ̃ is probit

1
B

∑B
b=1

1
N

∑N
j=1

1
ñ

∑ñ
s=1 µ̃(g̃j,b,s), otherwise

(3.21)
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where mc

(
x∗j ; g

(n)
µ,b ,g

(n)
ν,b

)
and vc(x∗j ) are as in (3.2) and g̃j,b,1, . . . , g̃j,b,ñ are the 0.5

ñ ,
1.5
ñ , . . . ,

ñ−0.5
ñ

quantiles of P
(
gµ(x∗j ) | g

(n)
µ,b ,g

(n)
ν,b

)
. When sampling x∗1, . . . ,x

∗
N from FX is not possible, we have

φ̂post =
1
B

B∑
b=1

1
n

n∑
j=1

µ̃(gµ,j,b) (3.22)

where (gµ,1,b, . . . , gµ,n,b)T = g(n)
µ,b .

As noted, (3.21) and (3.22) are derived when both the mean function and the selection probabil-

ity function ν are modeled by the strategy (2.59). By the same strategy (2.59), when ν is known,

g(n)
ν,b ’s in (3.21) become the fixed g(n)

ν corresponding to the known values of ν at x1, . . . ,xn. When

the selection probability is ignored, P
(
gµ(x∗j ) | g

(n)
µ,b ,g

(n)
ν,b

)
reduces to P

(
gµ(x∗j ) | g

(n)
µ,b

)
. Consequently

mc

(
x; g(n)

µ,b ,g
(n)
ν,b

)
reduces to mc

(
x; g(n)

µ,b

)
as the mean of gµ(x) with respect to P

(
gµ(x∗j ) | g

(n)
µ,b

)
; and

vc(x∗j ) also becomes the variance of gµ(x) with respect to P
(
gµ(x∗j ) | g

(n)
µ,b

)
. When the selection prob-

ability is used as a covariate, the formula (3.21) is in the same form as when the selection probability is

ignored, except that the covariate vector x becomes (d+1)-dimensional with the additional covariate is

an inversible transformation of ν as discussed in Subsection 2.2.4. In all situations, the formula (3.22)

remains in the same form but with g(n)
µ,b ’s sampled from different posterior distributions.

3.1.2 Sources of errors involved in estimating the population mean

The three steps of computing φ̂post involve different degrees of errors. When computing

E
[
µ̃(gµ(x))|g(n)

µ ,g(n)
ν

]
, if µ̃ is the identity or the probit function, exact result can be obtained. When

E
[
µ̃(gµ(x))|g(n)

µ ,g(n)
ν

]
is estimated using (3.13), the error of estimation converges to zero at a rate

proportional to 1
ñ2 . Since the time taken by estimating E

[
µ̃(gµ(x))|g(n)

µ ,g(n)
ν

]
using (3.13) is negligible

compared to the time taken by MCMC sampling, ñ can be chosen arbitrarily large so that the error

involved in this step is negligible compared to the errors involved in the other two steps.

The error of estimation involved in estimating (3.14) using (3.16) can not be controlled or evaluated,

since the xj used for estimation are fixed over MCMC iterations. Instead, when (3.15) is used for

estimating (3.14), ifN is large enough, the error involved in this step of estimation is negligible compared

to the error due to MCMC sampling. However, when x is high-dimensional, sampling a sufficiently

large number N of x∗j ’s can be computationally costing (e.g. taking too much computer memory space).

Alternatively, instead of using fixed x∗1, . . . ,x
∗
N for all MCMC iterations, x∗1, . . . ,x

∗
N can be sampled
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independently for each MCMC iteration. With independently selected x∗j ’s, (3.21) becomes

φ̂post =


1
B

∑B
b=1

1
N

∑N
j=1mc

(
x∗j,b; g

(n)
µ,b ,g

(n)
ν,b

)
, µ̃ is identity

1
B

∑B
b=1

1
N

∑N
j=1 Φ

(
mc

“
x∗j,b;g

(n)
µ,b ,g

(n)
ν,b

”
1+vc(x∗j,b)

)
, µ̃ is probit

1
B

∑B
b=1

1
N

∑N
j=1

1
ñ

∑ñ
s=1 µ̃(g̃∗j,b,s), otherwise

(3.23)

where x∗1,b, . . . ,x
∗
N,b are the random sample of x at each iteration b and g̃∗j,b,1, . . . , g̃

∗
j,b,ñ are the corre-

sponding quantiles of P
(
gµ(x∗j,b) | g

(n)
µ,b ,g

(n)
ν,b

)
. Denote

φ̂cond,b =


1
N

∑N
j=1mc

(
x∗j,b; g

(n)
µ,b ,g

(n)
ν,b

)
, µ̃ is identity

1
N

∑N
j=1 Φ

(
mc

“
x∗j,b;g

(n)
µ,b ,g

(n)
ν,b

”
1+vc(x∗j,b)

)
, µ̃ is probit

1
N

∑N
j=1

1
ñ

∑ñ
s=1 µ̃(g̃∗j,b,s), otherwise

b = 1, . . . , B (3.24)

Then φ̂post is the MCMC sample average of φ̂cond,1, . . . , φ̂cond,B , that is,

φ̂post =
1
B

B∑
b=1

φ̂cond,b. (3.25)

Since x∗j,b’s vary randomly at each iteration b, the error due to estimating (3.14) using (3.15) also varies

randomly over the MCMC iterations. Then this source of error is part of the random uncertainty

of φ̂cond,1, . . . , φ̂cond,B and therefore can be evaluated through evaluating the standard deviation of

φ̂cond,1, . . . , φ̂cond,B . The error due to estimating (3.17) using a finite MCMC sample is the major

contributor to the overall error involved in computing φ̂post by either (3.23) or (3.22). But the error

due to MCMC sampling can also be evaluated through evaluating the standard deviation of φ̂cond,b’s.

The standard deviation of φ̂cond,b’s can be estimated as follows.

s.d.(φ̂cond,b) ≈

√√√√ 1
B − τB

B∑
b=1

(
φ̂cond,b − φ̂post

)2

=

√√√√ 1
B/τB − 1

B∑
b=1

1
τB

(
φ̂cond,b − φ̂post

)2

(3.26)

where τB is the autocorrelation time of {φ̂cond,1, · · · , φ̂cond,B} and B/τB is the corresponding effective

sample size of {φ̂cond,1, · · · , φ̂cond,B}. Then the standard error of φ̂post, i.e. the estimated standard
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deviation of φ̂post, can be obtained by

s.e.(φ̂post) = s.e.

(
1
B

B∑
b=1

φ̂cond,b

)

=

√
1

B/τB
×
(
s.d.(φ̂cond,b)

)2

≈

√√√√ 1
B/τB

(
1

B − τB

B∑
b=1

(
φ̂cond,b − φ̂post

)2
)
. (3.27)

Various methods of estimating τB are available in the literature and will be discussed in the next

section. It is noted that the error of estimation for τB has nothing to do with the standard deviation

of φ̂post, but only affects the accuracy of the estimated standard deviation of φ̂post, s.e.(φ̂post).

3.2 MCMC algorithms for implementing Gaussian process

models

In practice, we normally do not have enough information to fix the hyperparameters in a Gaussian

process model. Instead, we need to assign priors to the hyperparameters at a higher level so that the

hyperparameters can also be updated according to the observed data. Therefore, we need to alternate

between two steps of Markov chain Monte Carlo (MCMC) updating: 1) updating the hyperparameters

given the current latent vector(s) and the observed data; 2) updating the latent vector(s) given the

current hyperparameters and the observed data. This section will first describe the respective MCMC

algorithms for the two steps of updating and then explain how to combine these two steps. The

initializing policy and the stopping rule for MCMC updating will also be discussed in the end of this

section.

3.2.1 Univariate slice sampling

Univariate slice sampling (Neal, 2003) is a good choice for sampling one hyperparameter at a time,

given the latent vector(s) and the other hyperparameters. Compared to Metropolis-Hastings sampling,

univariate slice sampling does not depend crucially on the choice of a scaling parameter and is therefore

easier to tune, especially when the spread of the target distribution varies over the MCMC iterations.

Suppose we need to sample from a univariate distribution f(y) where f(y) is known only up to the

normalizing constant. The one-step univariate slice sampling for sampling from f(y) is illustrated in

Figure 3.1.
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Algorithm 1

Input: current state y
output: new state y∗

1. Choose a step width w (not dramatically crucial)

2. Determine the slice

u ∼ Unif [0, 1]

log z ← log f(y) + log u

(i.e. z ∼ Unif [0, f(y)])

3. Determine the interval to sample from

u ∼ Unif(0, w)

L← y − u; R← y + w − u

4. Propose y∗ from Unif(L,R)

5. If log(f(y∗)) ≥ log(z): accept and return y∗

6. Else: if y∗ > y, R← y∗ else L← y∗

7. Go back to step 4

Figure 3.1: Univariate slice sampling

3.2.2 Metropolis-Hastings sampling with proposal from the prior

The well known multivariate Metropolis-Hastings (MH) algorithm (Hastings, 1970) may be suitable

for sampling the latent vectors given the hyperparameters and the observed data. However, it requires

a careful choice of the proposal distribution. A possible good choice for the proposal distribution is

based on the (joint) prior of the latent vector(s) which is a multivariate Gaussian distribution as given

in (2.62). For simplicity, denote the (joint) prior distribution of the latent vector(s) by π(g) ∼ N (0,Σ)

. We can then select v ∼ π(g) and propose

g∗ = (1− ε2)1/2g + εv (3.28)

where 0 < ε < 1 is a scaling constant (Neal, 1998). The transition from g to the proposed g∗ follows a

normal distribution with a mean vector (1− ε2)1/2g and a covariance matrix ε2Σ.

Let T (g∗; g) be the transition probability from g to g∗. Then T (g∗; g) satisfies the detailed balance
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with respect to π(g) ∼ N (0,Σ) as shown by the following.

π(g) T (g∗; g)

=
1

(2π)n|Σ| 12
exp

{
−1

2
gTΣ−1g

}
×

1
(2πε)n|Σ| 12

exp
{
−1

2
(g∗ − (1− ε2)1/2g)T (ε2Σ)−1(g∗ − (1− ε2)1/2g)

}
=

1
(2π)n|Σ| 12 (2πε)n|Σ| 12

×

exp
{
−1

2
gTΣ−1g − 1

2
ε−2g∗TΣ−1g∗ + ε−2(1− ε2)1/2gTΣ−1g∗ − 1

2
(ε−2 − 1)gTΣ−1g

}
=

1
(2π)n|Σ| 12 (2πε)n|Σ| 12

×

exp
{
−1

2
ε−2gTΣ−1g − 1

2
ε−2g∗TΣ−1g∗ + ε−2(1− ε2)1/2gTΣ−1g∗

}
= π(g∗) T (g; g∗), (3.29)

where the last equation is obvious since the preceding expression is symmetric in g and g∗. The detailed

balance of T (g∗; g) with respect to π(g) results in an acceptance probability α that only depends on

the likelihood function L as shown by

α = min
(
π(g∗)L(g∗)T (g; g∗)
π(g)L(g)T (g∗; g)

, 1
)

= min
(
L(g∗)
L(g)

, 1
)

(3.30)

However, the scaling parameter ε needs to be carefully selected for obtaining good performance. An

alternative method that automatically selects the scaling parameter is given in the next subsection.

3.2.3 Elliptical slice sampling

The elliptical slice sampling (ESS) scheme by Murray, Adams and MacKay (2010) automatizes the

selection of ε in the previous Metropolis-Hastings sampling, by applying the slice sampling on an ellipse

so that ε can be chosen by uniformly sampling θ from the ellipse with ε = cos θ. The algorithm of the

ESS is described in Figure 3.2.

The elliptical slice sampling algorithm illustrated in Figure 3.2 is only suitable for Gaussian priors

with a zero mean vector. When the latent vector g has a non-zero prior mean a, this algorithm needs

to be slightly modified as shown in Figure 3.3.
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Algorithm 2

Input: current state g
output: new state g∗.

1. Choose ellipse: v ∼ N (0,Σ)

2. Determine Log-likelihood threshold:

u ∼ Unif [0, 1]

log z ← logL(g) + log u

(i.e. z ∼ Unif [0, L(g)])

3. Draw an initial proposal, also defining a bracket:

θ ∼ Unif [0, 2π]

[θmin, θmax] ← [θ − 2π, θ]

4. Let g∗ ← g cos θ + v sin θ

5. If logL(g∗) ≥ log z: Accept and return g∗

6. else: Shrink the bracket and try a new point: if θ < 0 then θmin ← θ else θmax ← θ

7. Go to step 4

Figure 3.2: Elliptical slice sampling.

Algorithm 2.1

Input: current state g, with prior N (a,Σ).
output: update state g∗.

1. Let g̃ = g − a

2. Update g̃→ g̃∗ using Algorithm 2.

3. Return g∗ = g̃∗ + a

Figure 3.3: Elliptical slice sampling with non-zero prior mean.

3.2.4 Combining univariate slice sampling and elliptical slice sampling

As discussed earlier, the hyperparameters and the latent vector(s) need to be updated alternately.

More specifically, each hyperparameter will be updated using Algorithm 1; after updating each hyper-

parameter, the latent vector(s) will be updated for a fixed number (e.g. 5) of times using Algorithm

2 or 2.1; then the next hyperparameter will be updated using Algorithm 1 until all the hyperparam-

eters have been updated once. The latest values of the hyperparameters and the latent vector(s) form

one MCMC iteration. Figure 3.4 illustrates the combined algorithm of univariate slice sampling and

elliptical slice sampling for alternately updating the hyperparameters and the latent vector(s).
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Algorithm 3

Input: current states: latent vector g and hyperparameter ζ1, ζ2, . . . , ζk

Output: new states: latent vector g∗ and hyperparameter ζ∗1 , ζ
∗
2 , . . . , ζ

∗
k

1. Update hyperparameter ζ1 → ζ∗1 using Algorithm 1

2. Update latent vector g→ g∗1 using Algorithm 2 or 2.1 for s iterations (e.g. s = 5).

3. Repeat steps 1-2 alternately for ζ2, . . . , ζk:

ζ2 → ζ∗2 , g∗1 → g∗2, . . . , ζk → ζk, g∗(k−1) → g∗k

4. Return ζ1∗, ζ∗2 , . . . , ζ
∗
k and g∗ = g∗k

Figure 3.4: Combining univariate slice sampling and elliptical slice sampling.

3.2.5 Initializing and stopping MCMC updating

There are multiple ways of initializing a MCMC updating. For the experiments and the example

considered in this thesis, all the hyperparameters that need to be updated will be initialized with the

mean values of their corresponding prior distributions; the latent vector(s) will be initialized with the

vector of zeros. Given these initial values, the latent vector(s) will first be updated for 100 times using

Algorithm 2 or 2.1 so that the latent vector(s) can be well catered to the observed data. The latest

latent vector(s) will be considered as the new initial values. Then the hyperparameters and the latent

vector(s) will be updated using Algorithm 3. The updating will be stopped when enough iterations

have been obtained. With all the iterations obtained, an initial portion (e.g. 1/5) should be discarded

since at these initial iterations the MCMC sampling may not have converged well.

The desired number of iterations is determined by the desired effective sample sizes of the MCMC

sample of the population mean φ and of the MCMC samples of various other functions of the hyperpa-

rameters and the latent vector(s). The effective sample size of a MCMC sample equals the number of

MCMC iterations (after discarding the non-convergent initial portion) divided by its autocorrelation

time. To estimate the autocorrelation time, the autoregression method by Thompson (2010) will be

adopted for its demonstrated advantage over other available methods. For the experiments and the

example considered in this thesis, 100 will be chosen as the desired effective MCMC sample size for φ

and 20 is chosen for all the other functions of state considered. If time allows, one can, of course, obtain

larger effective sizes by running MCMC updating for longer time to achieve more accurate estimation.



Chapter 4

Experimental studies

This chapter investigates, through computer simulated experiments, the behaviors of the Gaussian

process estimators as described in Section 2.2 with comparison to the Horvitz-Thompson estimators

and the naive estimator. In Section 4.1, only the non-model based Horvitz-Thompson estimators

and naive estimator are studied in a very simple scenario. High-dimensional experiments with both

the Gaussian process estimators and the non-model based estimators are carried out under various

scenarios in Section 4.2. An example from the literature is also studied in Section 4.3.

Recall that with n iid observations (xi, yi, ri), i = 1, . . . , n, the non-model based estimators are

defined as

φ̂naive =
n∑
i=1

yiri

/ n∑
i=1

ri.

φ̂HT1 =
1
n

n∑
i=1

yiri
νi

φ̂HT2 =
n∑
i=1

yiri
νi

/ n∑
i=1

ri
νi

φ̂HT3 = ψ

n∑
i=1

yiri
νi

/ n∑
i=1

ri.

where νi is the selection probability at xi and ψ =
∫
ν(x)dFX(x) is the marginal selection probability.

As mentioned earlier that these estimators (except φ̂HT1) are not defined when
∑n
i=1 ri = 0. Although

the case where all the observations are missing is of no practical interest, to avoid numerical errors in

computer simulations, let

φ̂naive = φ̂HT2 = φ̂HT3 = 0, when
n∑
i=1

ri = 0

37
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through all the experiments and the example considered in this thesis.

4.1 Non-model based estimators in a special scenario

This section studies the Horvitz-Thompson estimators as well as the naive estimator in a simple

special scenario described next. Consider a partition of the covariate vector space X into two subspaces,

X = X0

·
∪ X1, as shown in Figure 4.1. Let µ = 0 and ν = ν0, when x ∈ X0 and µ = 1 and ν = ν1,

X0 : µ = 0, ν = ν0

X1 : µ = 1, ν = ν1

Figure 4.1: The special scenario: X = X0

·
∪ X1.

when x ∈ X1. Then µ and ν are perfectly correlated (unless ν0 = ν1). Let p0 = Pr(x ∈ X0) and

p1 = Pr(x ∈ X1). Then

φ =
∫
µ(x)dFX = p1

ψ =
∫
ν(x)dFX = p0ν0 + p1ν1 (4.1)

Note that since µ = 0 for all x ∈ X0 and µ = 1 for all x ∈ X1, y is fully determined by x as

Pr(y = 0|x ∈ X0) = 1 and Pr(y = 1|x ∈ X1) = 1 (4.2)

Because of this, φ̂HT1 does not depend on ν0 as shown by

φ̂HT1 =
1
n

n∑
i=1

yiri
νi

=
1
n

∑
i:xi∈X0

0× ri
ν0

+
1
n

∑
i:xi∈X1

yiri
ν1

=
1
n

∑
i:xi∈X1

yiri
ν1

(4.3)

However, if we flip y around, i.e. let y∗ = 1− y, then it is ν1 rather than ν0 that φ̂HT1 does not depend

on. This is not surprising, due to the non-equivariance of φ̂HT1 under certain affine transformations.
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To compare the Horvitz-Thompson estimators under this special scenario, we first look at their

(asymptotic) mean square errors (MSE). Numerical studies through computer simulations follow next.

4.1.1 MSE of the Horvitz-Thompson estimators

First consider two trivial cases, where p1 = 0 or 1. When p1 = 0, all estimators equal zero and

estimate φ perfectly.

When p1 = 1, we have

φ̂naive = φ̂HT2 = φ̂HT3 =

 0, if
∑n
i=1 ri = 0

1, if
∑n
i=1 ri 6= 0

(4.4)

That is, φ̂naive, φ̂HT2 and φ̂HT3 estimate φ = p1 = 1 almost perfectly except when all the observations

are missing, which happens with a probability (1 − ν1)n → 0 as n → ∞. Therefore, the above three

estimators have their mean square error equal to the probability that
∑n
i=1 ri = 0, that is,

MSE(φ̂naive) = MSE(φ̂HT2) = MSE(φ̂HT3) = (1− ν1)n (4.5)

When p1 = 1, we also have

φ̂HT1 =
∑n
i=1 ri
nν1

, (4.6)

with an MSE equal to

MSE(φ̂HT1) = Var(φ̂HT1) = Var
(∑n

i=1 ri
nν1

)
=
nν1(1− ν1)

n2ν2
1

=
1− ν1
nν1

(4.7)

where the first equation is due to φ̂HT1 being unbiased. φ̂HT1 in (4.6) can be viewed as the ratio of the

number of observed y’s to the expected number of observed y’s.

For general p1 values, following directly from (2.28) and (2.35), we have

MSE(φ̂HT1) =
1
nψ

ν0p0p1

ν1
+

(1− ψ)p2
1

nψ
=

1
nψ

ν0p0p1 + (1− ψ)ν1p2
1

ν1

=
1
nψ

ν0p0p1 + ν1p
2
1 − ψν1p2

1

ν1
=

1
nψ

ψp1 − ψν1p2
1

ν1
=
p1(1− ν1p1)

nν1
(4.8)

and

MSE(φ̂HT3) =
1
nψ

ν0p0p1

ν1
+ o

(
1

n3/2

)
(4.9)
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Comparing (4.8) and (4.9), we expect that for reasonably large n, φ̂HT3 would dominate φ̂HT1 in terms

of MSE, unless ψ = 1 or p1 = 0.

Rewrite (4.9) as

MSE(φ̂HT3) ≈ 1
nψ

ν0p0p1

ν1
=

ν0p0p1

n(p0ν0 + p1ν1)ν1
=

p0p1

n(p0 + p1ν1/ν0)ν1
(4.10)

From (4.10), we expect that when n is reasonably large, the MSE of φ̂HT3 would decrease when ν1

increases and increase when ν0 increases. As also noted, the MSE of φ̂HT1 , however, does not change

when ν0 changes.

4.1.2 Simulation studies

For numerical studies with computer simulations, the following values of p1, ν0, ν1 and n are consid-

ered

p1: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95

ν0: 0.1, 0.2, 0.5, 0.6, 0.9, 1

ν1: 0.1, 0.2, 0.5, 0.6, 0.9, 1

n: 30, 100, 500, 1000

For each combination of ν0 and ν1, the root mean squared error (RMSE) of each estimator is plotted

versus p1. The plots for n=30, 100 and 500 are given in Figures 4.2 - 4.4, respectively. For n=1000,

the results are similar to those of n=500 and are not present here in order to save space.

As observed from Figures 4.2 - 4.4, the naive estimator has relatively bigger RMSE when ν0 6= ν1

than when ν0 = ν1 due to selection bias. The selection bias is more an issue than the sampling error

for the naive estimator when n is large. For example, when n = 1000 (not shown here), the RMSE of

the naive estimator is the smallest when ν0 = ν1 for all p1’s. This is also true for n = 500, except when

p1 = 0.05 or 0.95 where the selection bias is a less important contributor to the MSE than the sampling

error. The φ̂HT1 estimator has its RMSE decrease when ν1 increases. As pointed out earlier, the MSE

or RMSE of φ̂HT1 remains the same as ν0 changes. For φ̂HT2 , the RMSE decreases when either ν0 or ν1

increases with a more obvious trend when ν0 changes. The RMSE of φ̂HT3 , however, increases when ν0

increases and decreases when ν1 increases, as expected from (4.10). When ν0 = ν1 = 1, all the methods

converge to the naive method and therefore have the same RMSE.

As expected from (4.8) and (4.9), φ̂HT1 always has bigger RMSE than φ̂HT3 , except for a few cases

when n = 30 or 100 where the asymptotic result in (4.9) may not apply. Although φ̂HT1 is always

unbiased and the naive estimator is not when ν0 6= ν1, for certain values of ν0, ν1 and p1, φ̂HT1 even

has larger RMSE than the naive estimator due to selection bias being dominated by sampling error.
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Figure 4.2: Root mean squared error (RMSE) (in log scale) v.s. p1: bφnaive (solid black), bφHT1 (dashed

red), bφHT2 (dotted blue), bφHT3 (dash-dotted purple). ν0 = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from top to bottom;
ν1 = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from left to right; n = 30.

φ̂HT2 and φ̂HT3 both reduce to the naive estimator when ν0 = ν1 and therefore have the same RMSE

when ν0 = ν1. Since as noted earlier, when ν0 increases, the RMSE of φ̂HT2 deceases while the RMSE

of φ̂HT3 increases, it is not surprising that φ̂HT2 outperforms φ̂HT3 for ν0 > ν1 and is outperformed by

φ̂HT2 for ν0 < ν1.
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Figure 4.3: Root mean squared error (RMSE) (in log scale) v.s. p1: bφnaive (solid black), bφHT1 (dashed

red), bφHT2 (dotted blue), bφHT3 (dash-dotted purple). ν0 = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from top to bottom;
ν1 = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from left to right; n = 100.

Note that under this special scenario, the correlation between µ(x) and ν(x) with respect to x equals

p0p1ν1 − p0p1ν0. Therefore, when ν0 < ν1 where φ̂HT3 outperforms φ̂HT2 , µ(x) and ν(x) are positively

correlated; when ν0 > ν1 where φ̂HT3 is outperformed by φ̂HT3 , µ(x) and ν(x) are negatively correlated.

Since φ̂HT3 is not equivariant if y is flipped to y∗ = 1 − y, it will perform differently when µ(x) and



4 Experimental studies 43

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8
0.

00
5

0.
05

0
0.

50
0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

0.0 0.4 0.8

0.
00

5
0.

05
0

0.
50

0

n = 500

ν0=0.1

ν0=0.2

ν0=0.5

ν0=0.6

ν0=0.9

ν0=1

ν1 = 0.1 ν1 = 0.2 ν1 = 0.5 ν1 = 0.6 ν1 = 0.9 ν1 = 1

Figure 4.4: Root mean squared error (RMSE) (in log scale) v.s. p1: bφnaive (solid black), bφHT1 (dashed

red), bφHT2 (dotted blue), bφHT3 (dash-dotted purple). ν0 = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from top to bottom;
ν1 = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from left to right; n = 500.

ν(x) are correlated in different directions. φ̂HT2 , however, will not be affected by the sign of the

correlation between µ(x) and ν(x) due to its equivariance under all affine transformation as discussed

earlier. Whether φ̂HT3 will always be better than φ̂HT2 when µ(x) and ν(x) are positively correlated

and worse when µ(x) and ν(x) are negatively correlated remains unclear and will be discussed more in
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later sections.

As when
∑n
i=1 ri = 0, the values of φ̂naive, φ̂HT2 and φ̂HT3 are arbitrary, we may also consider, for

example, φ̂naive = φ̂HT2 = φ̂HT3 = 1/2 at
∑n
i=1 ri = 0. For φ ∈ (0, 1), 1/2 seems a more reasonable

guess than zero when nothing is observed. By such definition, the MSE of φ̂naive, φ̂HT2 and φ̂HT3 when

p1 = 0 or p1 = 1 becomes

MSE(φ̂naive) = MSE(φ̂HT2) = MSE(φ̂HT3) =

 1
4 (1− ν0)n, if p1 = 0
1
4 (1− ν1)n, if p1 = 1

(4.11)

which will lead to symmetry with respect to p1 when ν0 = ν1. When n is large, Pr(
∑n
i=1 ri = 0) is

negligible and therefore, regardless of the value of φ̂naive, φ̂HT2 and φ̂HT3 when
∑n
i=1 ri = 0, the RMSE

of these three estimators will exhibit symmetry about p1 when ν0 = ν1, as shown by those plots on the

diagonal positions in each of Figures 4.2 - 4.4. For φ̂HT1 which favors zero when none or few of y′s are

observed will not have such a property, even when n is large (unless ν0 = ν1=1).

In summary, when potential selection bias exists, an estimator that ignores the selection bias is

not desired. However, a good estimator should not only be unbiased, but also be able to control the

overall MSE under various situations. According to the results of this simple experiment, φ̂HT3 is more

desirable than φ̂HT1 whenever ψ is known or easy to obtain, however, neither φ̂HT2 nor φ̂HT3 dominates

the other in all situations considered.

4.2 High-dimensional experiments

This section studies both the Gaussian process estimators and the non-model based frequentist

estimators through computer simulated experiments under various scenarios with different dimension-

alities, d. In all the experiments considered, the response variable y is binary with µ(x) = Pr(y =

1|x) = 1 − Pr(y = 0|x). An example due to Kang and Schafer with y being real-valued is studied in

the next section.

4.2.1 Methods of estimation

In total, there are nine estimators to be studied in this section. They are grouped into two categories:

non-model based estimators and Gaussian process model based estimators.
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Non-model based estimators

The non-model based estimators include the naive estimator defined in (2.1) and the three Horvitz-

Thompson estimators defined in (2.2), (2.4) and (2.14). The reason to have the naive estimator is to

help identify when selection bias is indeed an issue and how severe an issue it is. These four estimators

assume no models for the response variable y and completely ignore the covariate vector x.

Gaussian process model based estimators

Gaussian process model based estimators (or Gaussian process estimators) are built on latent func-

tions that have priors based on Gaussian process models. Latent functions are connected to the func-

tions of interest by link functions. For its computational convenience, the probit link function is used

throughout this section. That is,

µ(x) = µ̃(gµ(x)) = Φ(gµ(x))

ν(x) = ν̃(gν(x)) = (1− ζ)Φ(gν(x)) + ζ, 0 < ζ < 1 (4.12)

where gµ(x) and gν(x) are latent functions, Φ is the probit link function, i.e. the cumulative distribution

function of the standard normal, and ζ is a constant that keeps ν(x) away from zero.

A Gaussian process model is characterized by its covariance function. When the selection probability

is not used as a covariate, the following covariance function as in (2.50) is used.

C(xi,xj ;σ2
0 , λ

2, η2, `, r) = σ2
0 +

1
d

d∑
k=1

λ2
kxikxjk + η2 exp

{
−1
d

d∑
k=1

(
|xik − xjk|

`k

)r}
(4.13)

When the selection probability is used as a covariate, the following covariance function as in (2.66) is

used instead,

C(x∗i ,x
∗
j ;σ

2
0 , λ

2, η2, `, r) = σ2
0 +

1
d

d∑
k=1

λ2
kxikxjk + λ2

d+1xi,d+1xj,d+1

+ η2 exp

{
−1
d

d∑
k=1

(
|xik − xjk|

`k

)r
−
(
|xi,d+1 − xj,d+1|

`d+1

)r}
(4.14)

As before, given the hyperparameters σ2
0 , λ

2, η2, `, r, a corresponding Gaussian process model is

denoted by

GP(σ2
0 , λ

2, η2, `, r) (4.15)
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Given the observed data, a posterior sample of the latent function gµ(x) based on its Gaussian

process prior can be obtained by MCMC algorithms described in Section 3.2. From the posterior

sample of gµ(x), the population mean φ = E[µ(x)] can be estimated according to formula (3.21), (3.22)

or (3.23).

As discussed in earlier chapters, there are three ways of constructing Gaussian process estimators

for estimating φ: ignoring the selection probability ν, using a joint dependent prior of gµ and gν , and

using the selection probability ν as a covariate.

1. Ignoring the selection probability (GPI)

First, consider ignoring the selection probability ν(x) and modeling µ(x) only. As discussed ear-

lier, a model based method without incorporating the selection probability may do a good job if the

relationship between y and x is modeled nearly correct.

Let

gµ = g1 (4.16)

where g1 has a Gaussian process prior as follows

g1 ∼ GP1 = GP(σ2
0,1, λ

2
1, η

2
1 , `1, r1). (4.17)

This approach is denoted by GPI and the estimator for φ obtained by this approach is denoted by

φ̂GPI .

2. Using a joint dependent prior (GPT and GPE)

Second, consider assigning a joint dependent prior for gµ(x) and gν(x), so that µ(x) and ν(x) are

jointly modeled. By incorporating the selection probability ν, we expect that the efficiency of estimating

φ should be improved, if µ and ν are indeed related.

To assign a joint dependent prior to gµ(x) and gν(x), the strategy described by (2.59)-(2.60) is

adopted. That is,

gµ = g1 + g0 and gν = g2 + g0 (4.18)
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where g1, g2 and g0 have the following Gaussian process priors

g1 ∼ GP1 = GP(σ2
0,1, λ

2
1, η

2
1 , `1, r1) ⊥⊥

g2 ∼ GP2 = GP(σ2
0,2, λ

2
2, η

2
2 , `2, r2) ⊥⊥

g0 ∼ GP0 = GP(σ2
0,0, λ

2
0, η

2
0 , `0, r0). (4.19)

where “⊥⊥” denotes independent given the hyperparameters.

To apply this strategy, two situations need to be considered.

• When the selection probabilities ν1 = ν(x1), ν2 = ν(x2), . . . , νn = ν(xn) are known,
the prior for gµ becomes the prior probability measure conditional on the latent vector
g(n)
ν = (gν,1, gν,2, . . . , gν,n)T , where gν,1, gν,2, . . . , gν,n are the latent variables corresponding to
ν1, ν2, . . . , νn.

The GP method applied under this situation is denoted by GPT and the corresponding estimator
for φ is denoted by φ̂GPT .

• When the selection probabilities are unknown, we assign the same joint dependent prior to gµ
and gν , but estimate both µ and ν.

The GP method applied under this situation is denoted by GPE and the corresponding estimator
for φ is denoted by φ̂GPE .

If the Gaussian process model is appropriate and the selection probabilities are known correctly, we

expect φ̂GPT to perform better than φ̂GPE . Since φ̂GPE does not require knowledge of the selection

probability, it has wider applications, and would be more robust against incorrect information for the

selection probability, compared to φ̂GPT .

3. Using the selection probability as a covariate (GPR and GPS)

Third, consider using the selection probability ν(x) as an additional covariate xd+1. By doing so,

we utilise ν(x) while only needing to model µ(x). Since all the xi, i = 1, . . . , d, simulated by our

experiments will range from −∞ to ∞, we let xd+1 = logit(ν(x)) so that xd+1 has about the same

range as the other xj ’s, where logit(a) = log
(

a
1−a

)
. Then

µ(x) = µ̃(gµ(x)) = µ̃
(
g∗µ (x, logit (ν(x)))

)
(4.20)

Note that gµ is a function with d arguments, x1, . . . , xd, while g∗µ has d+1 arguments, x1, . . . , xd, xd+1.

Let

g∗µ = g∗1 (4.21)
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where g∗1 has a Gaussian process prior as follows

g∗1 ∼ GP1 = GP(σ2
0,1, λ

2
1, η

2
1 , `1, r1). (4.22)

The difference between g∗1 and g1 is that for g∗1 , the hyperparameters λ1 and `1 are d+ 1 dimensional

instead of d dimensional.

As discussed in Subsection 2.2.4, the strategy of using the selection probability as a covariate requires

knowledge of ν(x).

• When ν(x) is only known at the observed x1, . . . ,xn, formulae (3.22) should be used for estimating
φ.

In this case, the GP method is denoted by GPR and the corresponding estimator is denoted by
φ̂GPR .

• When ν(x) is known for all x, formula (3.21) can be used instead.

In this case, the GP method is denoted by GPS and the corresponding estimator is denoted by
φ̂GPS .

The above five Gaussian process model based estimators are summarized as follow.

φ̂GPI : ignoring ν(x)

φ̂GPT : with a joint dependent prior and true ν1, ν2, . . . , νn

φ̂GPE : with a joint dependent prior and estimated ν1, ν2, . . . , νn

φ̂GPR : with ν(x) as a covariate known only at x1,x2, . . . ,xn

φ̂GPS : with ν(x) as a covariate known at all x. (4.23)

One difference worth noting between φ̂GPI , φ̂GPR and φ̂GPS from φ̂GPT and φ̂GPE is that for φ̂GPI ,

φ̂GPR and φ̂GPS , µ(x) is based on a single latent function, g1 or g∗1 , while for φ̂GPT and φ̂GPE , µ(x)

is based on the sum of two independent latent functions, g1 and g0. Although this difference may

complicate the comparison of these estimators, as long as the hyperparameters are adjustable over a

wide range of values, it will have little effect on the issues this thesis addresses.

Choosing hyperparameters and their priors

For the Gaussian process model based estimators, we need to decide how to select the hyperparam-

eters σ2
0,h, λ

2
h, η

2
h, `h, rh, h = 1, 2, 0, or their corresponding priors when they need to be adjustable

at higher levels. For the estimators φ̂GPI , φ̂GPR and φ̂GPS , only the hyperparameters for g1 or g∗1 , i.e.

σ2
0,1, λ

2
1, η

2
1 , `1, r1, are involved and the other hyperparameters do not apply.
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Constant components (σ2
0,h)

The hyperparameters for the constant components determine how much the latent functions g1 (or

g∗1), g2 and g0 can shift vertically from zero. These hyperparameters do not need to have a prior at a

higher level and are fixed as follow.

σ2
0,1 = 0.52, σ2

0,2 = 0.52, σ2
0,0 = 0 (4.24)

Letting σ2
0,0 = 0 allows the procedure on which φ̂GPT and φ̂GPE are based to be able to model indepen-

dent µ(x) and ν(x) when they are indeed independent. Letting σ2
0,1 = 0.52 allows a chance of about

5% for the average level of µ(x) to be as large as 0.84 = Φ−1(2 ·0.5) or as small as 0.16 = Φ−1(−2 ·0.5).

Similarly, letting σ2
0,2 = 0.52 allows a chance of about 5% for the average level of ν(x) to be as large as

(1−ζ) ·0.84+ζ or as small as (1−ζ) ·0.16+ζ. Note that over a restricted range of x, these probabilities

would be higher than 5%.

Linear components (λh)

The hyperparameters in the linear component determine the slope of the latent function along each

dimension. For different covariates xj ’s, their corresponding linear component hyperparameters do not

need to be the same. Instead, a joint prior can be given to these hyperparameters for different covariates.

Using a joint prior allows each linear component hyperparameter to be adjusted individually according

to the real situation without ignoring their dependency. A common choice for such joint priors is the

multivariate log-normal distributions as follow.

log(λ1) ∼ Nd




log(0.2)

log(0.2)
...

log(0.2)

 ,


0.6 0.12 · · · 0.12

0.12 0.6 · · · 0.12
...

...
. . .

...

0.12 0.12 · · · 0.6



 ,

log(λ2) ∼ Nd




log(0.3)

log(0.3)
...

log(0.3)

 ,


0.6 0.18 · · · 0.18

0.18 0.6 · · · 0.18
...

...
. . .

...

0.18 0.18 · · · 0.6



 ,

log(λ0) ∼ Nd




log(0.2)

log(0.2)
...

log(0.2)

 ,


0.6 0.15 · · · 0.15

0.15 0.6 · · · 0.15
...

...
. . .

...

0.15 0.15 · · · 0.6



 (4.25)
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These priors for λh’s are chosen so that the linear trends of the corresponding latent functions will not

be too flat or too steep with high probabilities.

For the case of φ̂GPR and φ̂GPS , λ1 is d+ 1 dimensional instead of d dimensional.

Overall scaling hyperparameters (ηh)

The overall scaling hyperparameter for the exponential component controls the variance of the cor-

responding latent function at each x. For the case of φ̂GPT and φ̂GPE , η1, η2 and η0 not only control

the variances of gµ = g1 + g0 and gν = g2 + g0 but also the correlation between them. For better

performance, the overall scaling hyperparameters must be adjustable with higher level priors. Log-

normal distributions are a common choice for these priors. In the experiments considered, the following

log-normal distributions will be used.

log(η1) ∼ N (log(0.3), 0.7) , log(η2) ∼ N (log(0.2), 0.7) , log(η0) ∼ N (log(0.3), 0.7) (4.26)

These priors for ηh’s are chosen so that the corresponding µ function and ν function will not be saturated

with high probabilities, and the correlation between these two functions will not have a high probability

of being too extreme.

Length-scale hyperparameters (`h)

The length-scale hyperparameters for the exponential component control the correlation between

the values of the latent function at different x’s. For a given distance between two x’s, the smaller the

length-scale hyperparameters are, the less correlated the values of the latent function at these two x’s

are. Therefore, the length-scale hyperparameters determine how wiggly or smooth the corresponding

latent function is. Similarly to the linear component hyperparameters, a joint prior can be given to

the length-scale hyperparameters for different covariates xj ’s, so that each length-scale can be adjusted
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individually without losing their dependency. The following multivariate log-normal priors are chosen.

log(`1) ∼ Nd




log(2)

log(2)
...

log(2)

 ,


0.8 0.2 · · · 0.2

0.2 0.8 · · · 0.2
...

...
. . .

...

0.2 0.2 · · · 0.8



 ,

log(`2) ∼ Nd




log(2)

log(2)
...

log(2)

 ,


0.8 0.2 · · · 0.2

0.2 0.8 · · · 0.2
...

...
. . .

...

0.2 0.2 · · · 0.8



 ,

log(`0) ∼ Nd




log(1)

log(1)
...

log(1)

 ,


0.8 0.2 · · · 0.2

0.2 0.8 · · · 0.2
...

...
. . .

...

0.2 0.2 · · · 0.8



 (4.27)

These priors for `h’s are chosen so that atypical length-scale values will not happen with high proba-

bilities.

For the case of φ̂GPR and φ̂GPS , `1 is d+ 1 dimensional instead of d dimensional.

Exponents (rh)

The exponents for the exponential components must satisfy 0 < rh ≤ 2 for the corresponding

covariance matrices to be positive definite. When the exponents equal 2, the corresponding latent

functions are analytic. Otherwise, they are non-differential. In practice, rh’s could be made adjustable

with higher level priors. However, for the experiments considered in this section, rh’s are all fixed at 2

partly for faster computation.

Jitter

For numerical stability, a jitter equal to 10−5 will be added to the diagonal elements of the covariance

functions of both gµ and gν . Doing so will help avoid singularity of the covariance matrix after possible

round-off errors in numerical computations. Quite small compared to the overall scaling hyperparam-

eters η2
h, h = 1, 2, 0, adding such a jitter will only affect the results to a negligible extent. (Note that

using a jitter is not necessary for real-valued variables. For example, when y is a real-valued response,

a jitter will be replaced by a noise standard deviation which may be a fixed constant or a parameter

to be adapted.)

A limitation
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One limitation of the chosen priors for λh’s and for `h’s needs to be addressed. In the chosen

multivariate log-normal priors, the correlations are fixed. In practical situation, when prior information

is not sufficient to fix these correlations, they can be made adjustable by the following strategy. Take

`h’s for example. Let

log(`h1), . . . , log(`hd)
iid∼ N (ah1, bh1), given ah1, bh1, and

ah1 ∼ N (ah2, bh2), given ah2, bh2, h = 1, 2, 0. (4.28)

Then

Cor (log(`hi), log(`hj)) =
bh2

bh1 + bh2
, i, j = 1, . . . , d, i 6= j, given ah2, bh1, bh2, h = 1, 2, 0. (4.29)

If bh2’s are assigned higher level priors, then the correlations can be adjusted through updating bh2’s

(with bh1’s either fixed or also assigned higher level priors). For λh’s, the same strategy can be applied.

4.2.2 Scenario design

This subsection describes in details how the experiments under various scenarios are designed.

Four types of scenarios

Four types of scenarios are designed for generating the functions µ and ν with different degrees of

correlation. The four types of scenarios are denoted by c.gp, gp.c, gp.i, gp.d and described next.

• Scenario c.gp: µ is a constant function and ν is generated using a Gaussian process model.

• Scenario gp.c: ν is a constant function and µ is generated using a Gaussian process model.

• Scenario gp.i: both µ and ν are generated using a Gaussian process models, independently.

• Scenario gp.d: both µ and ν are generated using a joint Gaussian process model, dependently.

Under the c.gp or gp.c scenario, µ and ν are completely uncorrelated. Under the gp.i scenario, µ

and ν as two random functions are independent; however, the values of the particular µ and ν that

are generated may end up correlated by chance with respect to random x. Under the gp.d scenario,

µ and ν as two random functions are dependent; therefore, particular µ and ν generated are likely to

be more correlated than under the gp.i scenario. Note that under the gp.c scenario where the selection

probability is a constant, the estimators φ̂GPR and φ̂GPS that use the selection probability as a covariate

do not apply.
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Generating µ and ν given hyperparameters

In order to evaluate the average performance of the estimators under each scenario, 20 pairs of µ and

ν functions are generated independently for each scenario. For the constant µ or ν under the c.gp or

gp.c scenario, 20 equally spaced values between 0.2 and 0.8 are selected. To generate the non-constant

functions using Gaussian process models with given hyperparameters, the strategy of (2.59)-(2.60) is

adopted and described in detail next.

• Step 1. For a given dimensionality d, generate 2000 x0’s iid∼ Nd (0, 2Id), where Id is the d dimen-
sional identity matrix.

• Step 2. With the given hyperparameters, generate values of gµ = g1 + g0 and gν = g2 + g0 at
both x0’s and −x0’s, using the Cholesky decomposition of the 8000× 8000 covariance matrix of
gµ and gν .

• Step 3. Get the values of the µ and ν functions at these x0’s and −x0’s by

µ(x) = Φ(gµ(x))

ν(x) = (1− 0.1)Φ(gν(x)) + 0.1. (4.30)

The µ function generated this way is used for the gp.c, gp.i and gp.d scenarios; the ν function
generated this way is dependent on the generated µ function and used for the c.gp and gp.d
scenarios.

• Step 4. Repeat Steps 2-3 20 times to get 20 independent pairs of dependent µ and ν functions.

• Step 5. Generate gν = g∗2 + g∗0 again from the given hyperparameters at x0’s and −x0’s with g∗2
and g∗0 independent of the previous g2 and g0.

• Step 6. Get the values of the ν function at x0’s and −x0’s from the newly generated gν by (4.30).
This newly generated ν function is independent of the generated µ function and used for the gp.i
scenario.

• Step 7. Repeat Steps 5-6 20 times to get 20 ν functions that are independent of the µ functions.

Generating xi, yi, and ri given µ and ν

For each given pair of µ and ν functions and a given sample size n, two sets of x1, . . . ,xn are selected

from the previously generated x0’s. (Note that for different pairs of functions under the same scenario,

different sets of x1, . . . ,xn are selected to avoid systematic error due to fixed x’s). Given each set of

x1, . . . ,xn, two sets of y1, . . . , yn and r1, . . . , rn are generated according to the corresponding µ values

and ν values, respectively. Therefore, under each scenario, there are in total 20× 2× 2 datasets. Note

that having nested datasets allows for an analysis of variance (ANOVA).
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Three sets of hyperparameters

To produce functions of different degrees of correlation and smoothness, three sets of hyperparameters

are considered. The three sets of hyperparameters share common constant component hyperparame-

ters, linear component hyperparameters, overall scaling hyperparameters for g1 and g2, and exponent

hyperparameters as follow.

σ2
0,1 = 0.52, σ2

0,2 = 0.52, σ2
0,0 = 0

λ1 = (0.2, . . . , 0.2), λ2 = (0.3, . . . , 0.3), λ0 = (0.2, . . . , 0.2)

η1 = 0.2, η2 = 0.2

r1 = 2, r2 = 2, r0 = 2 (4.31)

Three different sets of length-scale hyperparameters `h’s and overall scaling hyperparameters η0 for

g0 are selected to produce functions of different degrees of correlation and wiggliness (or smoothness)

as given by (4.32)-(4.34). The first set has large length-scales and small value of η0, therefore produces

functions with low wiggliness and low correlation. The second set has the same length-scales as the first,

but has larger η0, and therefore produces functions of the same wiggliness but higher correlation. The

third set has the same η0 as the second, but has smaller length-scales, and therefore produces functions

with both high wigglieness and high correlation. The three sets of hyperparameters are denoted by ll,

hl, hh, respectively.

• Hyperparameter set ll:

`1 = (2 exp(
√

0.8), . . . , 2 exp(
√

0.8))

`2 = (2 exp(
√

0.8), . . . , 2 exp(
√

0.8))

`0 = (exp(
√

0.8), . . . , exp(
√

0.8))

η0 = 0.3 (4.32)

• Hyperparameter set hl:

`1 = (2 exp(
√

0.8), . . . , 2 exp(
√

0.8))

`2 = (2 exp(
√

0.8), . . . , 2 exp(
√

0.8))

`0 = (exp(
√

0.8), . . . , exp(
√

0.8))

η0 = 0.3 exp(1.3
√

0.7) (4.33)
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• Hyperparameter set hh:

`1 = (0.2, . . . , 0.2)

`2 = (0.2, . . . , 0.2)

`0 = (0.1, . . . , 0.1)

η0 = 0.3 exp(1.3
√

0.7) (4.34)

Note that log(η0) under the hyperparameter set ll equals the prior mean of log(η0) assigned to the

GP estimators; log(η0) under the hyperparameter set hl or hh is 1.3 standard deviations bigger than

the prior mean of log(η0) assigned to the GP estimators. Similarly, log(`)’s under the hyperparameter

set ll or hl are one standard deviation bigger than the corresponding prior means of log(`)’s assigned

to the GP estimators; log(`)’s under the hyperparameter set hh are about 2.5 standard deviations

smaller than the corresponding prior means of log(`)’s assigned to the GP estimators. Such choices of

hyperparameters for generating data guarantee the true hyperparameter values are reachable by the

GP methods with reasonably large prior probabilities. In practice, having priors that cover the possible

true parameter or hyperparameter values with reasonably large probabilities is the key to the success

of a Bayesian method.

Also note that for different covariates xj , j = 1, . . . , d, the same linear component coefficients and

length-scales are used. This is so that the generated functions are indeed of dimension d. If, instead,

some xj ’s dominated the others, the generated functions would actually resemble lower dimensional

functions. Having the same linear component coefficients and length-scales makes all covariate variables

equally relevant, which may not be the case in practice. However, our models which the GP estimators

are based do not “know” this fact and therefore are valid for general situations.

Dimensionalities and sample sizes

For all scenarios, six dimensionalities (d = 1, 2, 3, 5, 10, 20) and two sample sizes (n = 20, 50) are

considered.

Figure A.1 in Appendix gives two sample pairs of the µ and ν functions generated in one-dimensional

space (d = 1) under {hh, gp.d}, {hh, gp.i}, {hl, gp.d}, {hl, gp.i}, {ll, gp.d}, and {ll, gp.i}, respectively.

4.2.3 Results and discussion

This subsection compares the Gaussian process (GP) estimators and the non-model based estima-

tors on datasets generated under the various scenarios described in the previous subsection. All the

estimators are compared in terms of mean squared error.



4 Experimental studies 56

To compute the mean squared error, we first need to compute the true value of the population mean

φ. For each µ function generated, the true value of φ is estimated by averaging the values of µ at

x0’s and −x0’s, where x0’s and −x0’s are sampled as described in Subsection 4.2.2. (For a constant

µ function, φ simply equals µ.) For the Horvitz-Thompson estimator φ̂HT3 which requires knowledge

of ψ, the true value of ψ is estimated the same way as for the true value of φ. Then, for each pair of

the generated µ and ν functions, the mean squared error of each estimator conditional on the given

pair of µ and ν is estimated by averaging over the 2 × 2 sets of y1, . . . , yn and r1, . . . , rn. Since there

are 20 independent pairs of µ and ν generated under each scenario, for each estimator, there are 20

estimated conditional mean squared errors which are independent of each other under each scenario.

Then for any two estimators, a paired t-test can be performed on these estimated conditional mean

squared errors under each scenario.

The mean squared errors (MSE) of all the estimators are presented along different dimensionalities

and different scenarios in Figures 4.5 - 4.10 for different hyperparameter sets and different sample sizes,

where for example, d5 refers to the dimensionality d = 5. The results of paired t-tests on the conditional

mean squared errors are given in Figures A.2-A.28 in the Appendix.

Note that none of the datasets simulated in this subsection have the effective sample size neff =∑n
i=1 ri equal to zero. So the results presented in this subsection will be the same regardless how the

φ̂naive, φ̂HT2 and φ̂HT3 estimators are defined when
∑n
i=1 ri = 0.

Non-model based estimators

When the µ and ν functions are independent

When one of the µ and ν functions is a constant, i.e. under the gp.c or c.gp scenario, there is

no potential selection bias. Under these two types of scenarios, the naive estimator φ̂naive is the

best among the four non-model based estimators (i.e. φ̂naive, φ̂HT1 , φ̂HT2 and φ̂HT3), under all sets

of hyperparameters: hh, ll and hl. The advantage of the naive estimator under these cases simply

indicates that when the selection bias is not an issue, the Horvitz-Thompson estimators are subject to

larger sampling errors than the naive estimator. (Note that φ̂HT2 and φ̂HT3 exactly equal φ̂naive under

the gp.c scenario).

Under the gp.i scenario, where the two functions are chosen independently, but will have some

chance correlation, the selection bias can be an issue. However, the naive estimator is still better

than the Horvitz-Thompson estimators (except for a few cases under the hyperparameter sets hl and

ll where φ̂HT2 or φ̂HT3 is slightly but not significantly better than φ̂naive). The advantage of the naive

estimator over the others under the gp.i scenario is bigger under the hyperparameter set hh than under
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ll n = 20
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Figure 4.5: Low correlation and less wiggly. n = 20. Mean squared errors (MSE) in logarithm. ‘n’: bφnaive;

‘1’: bφHT1 ; ‘2’: bφHT2 ; ‘3’: bφHT3 ; ‘I’: bφGPI ; ‘T’:, bφGPT ; ‘E’: bφGPE ; ‘R’: bφGPR ; ‘S’: bφGPS .

the hyperparameter sets hl and ll. One possible explanation is that with two independent functions

both more wiggly under the hyperparameter set hh, it is more likely for the biases within each wiggled

subregion to cancel out over the whole range of x to such a degree that the sampling errors dominate

the selection bias. (More specifically, since the two functions are independent, by randomness they tend

to be correlated positively in one subregion and negatively in another so that biases within subregions
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ll n = 50
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Figure 4.6: Low correlation and less wiggly. n = 50. Mean squared errors (MSE) in logarithm. ‘n’: bφnaive;

‘1’: bφHT1 ; ‘2’: bφHT2 ; ‘3’: bφHT3 ; ‘I’: bφGPI ; ‘T’:, bφGPT ; ‘E’: bφGPE ; ‘R’: bφGPR ; ‘S’: bφGPS .

have both signs and tend to cancel out over a large number of subregions.)

The Horvitz-Thompson estimator φ̂HT1 , although unbiased, has, except five cases, been the worst

among all the non-model based estimators under the scenarios c.gp, gp.c and gp.i for all hyperparameter

sets. In the five cases (ll, n = 20, gp.i, d = 5; hh, n = 50, c.gp, d = 2; hl, n = 20, gp.i, d = 3; hl,

n = 20, gp.i, d = 5; hl, n = 50, c.gp, d = 2) where φ̂HT1 is not the worst, it seems better than φ̂HT3
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hl n = 20
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Figure 4.7: High correlation and less wiggly. n = 20. Mean squared errors (MSE) in logarithm. ‘n’: bφnaive;

‘1’: bφHT1 ; ‘2’: bφHT2 ; ‘3’: bφHT3 ; ‘I’: bφGPI ; ‘T’:, bφGPT ; ‘E’: bφGPE ; ‘R’: bφGPR ; ‘S’: bφGPS .

but not significantly. Recall from (2.41) that the MSE of φ̂HT3 is asymptotically smaller than that of

φ̂HT1 under all cases unless ψ = 1 or φ = 0. Therefore, the smaller MSE of φ̂HT1 under those five cases

may be either due to the sample size n being not large enough or to the inaccurate estimates of the

MSE’s (which are based on only 20 independently drawn pairs of functions under each scenario).

φ̂HT2 and φ̂HT3 are both equal to the naive estimator under the gp.c scenario. However, φ̂HT2 is
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Figure 4.8: High correlation and less wiggly. n = 50. Mean squared errors (MSE) in logarithm. ‘n’: bφnaive;

‘1’: bφHT1 ; ‘2’: bφHT2 ; ‘3’: bφHT3 ; ‘I’: bφGPI ; ‘T’:, bφGPT ; ‘E’: bφGPE ; ‘R’: bφGPR ; ‘S’: bφGPS .

almost always better than φ̂HT3 under the scenarios c.gp and gp.i. (Where it is not, i.e hh, n = 50,

gp.i, d = 20, the difference between these two estimators is tiny.) It is not surprising that φ̂HT2 does

better than φ̂HT3 under the c.gp scenario due to it being equivariant in the extended sense where y has

a constant mean function, as shown in (2.6). The reason why φ̂HT2 is better than φ̂HT3 under the gp.i

scenario remains less clear.
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Figure 4.9: High correlation and highly wiggly. n = 20. Mean squared errors (MSE) in logarithm. ‘n’: bφnaive;

‘1’: bφHT1 ; ‘2’: bφHT2 ; ‘3’: bφHT3 ; ‘I’: bφGPI ; ‘T’:, bφGPT ; ‘E’: bφGPE ; ‘R’: bφGPR ; ‘S’: bφGPS .

When the µ and ν functions are dependent

When the µ and ν functions are dependent, i.e. under the gp.d scenario, φ̂HT1 eventually gains some

advantage over the naive estimator under the hyperparameter set hh and when n = 50, since now the

selection biases are strong and the sampling errors fade away. However, the advantage of φ̂HT1 over

φ̂naive under this scenario is only significant for a couple of cases (d = 1 and d = 10). When n = 20
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hh n = 50
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Figure 4.10: High correlation and highly wiggly. n = 50. Mean squared errors (MSE) in logarithm. ‘n’: bφnaive;

‘1’: bφHT1 ; ‘2’: bφHT2 ; ‘3’: bφHT3 ; ‘I’: bφGPI ; ‘T’:, bφGPT ; ‘E’: bφGPE ; ‘R’: bφGPR ; ‘S’: bφGPS .

under the hyperparameter set hh, φ̂HT1 is as bad as φ̂naive. Under the hyperparameter set hl where

the dependency between the two functions is weaker , φ̂HT1 seems better than the naive estimator

in most cases, but none of the differences are significant. Under the hyperparameter set ll where the

dependency between the two functions is the weakest, the naive estimator is actually always better

than φ̂HT1 . (If the dependency between the two functions is even stronger or the sample size is even
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larger, we would expect to see more advantage of φ̂HT1 over the naive estimator when selection bias

eventually dominate sampling error.)

The Horvitz-Thompson estimators φ̂HT2 and φ̂HT3 also start gaining advantages over the naive esti-

mator under the gp.d scenario, especially under the hyperparameter set hh. Under the hyperparameter

set hh, φ̂HT3 is the best among all the four non-model based estimators when n = 20, with the ad-

vantages being significant. Under the hyperparameter set hh, φ̂HT2 performs as badly as φ̂HT1 and

the naive estimator when n = 20; when n = 50, φ̂HT2 catches up with φ̂HT3 and outperforms φ̂HT1

and φ̂naive significantly, due to its consistency and reduced bias with the larger sample size. Under

the hyperparameter set hl, φ̂HT3 still seems mostly the best among the non-model based estimators,

but with no significant advantages. Compared to φ̂HT1 , φ̂HT2 appears to improve more due to a larger

sample size under the hyperparameter set hl. But the apparent advantages of φ̂HT2 over both φ̂HT1

and the naive estimator are not significant. Under the hyperparameter set ll, φ̂HT2 and φ̂HT3 are more

often better and less often worse than the naive estimator under the gp.d scenario than under the

other scenarios where the two functions are independent, although the differences between these three

estimators are seldom significant. (As argued for φ̂HT1 , we can also expect to see more significant

advantages of φ̂HT2 and φ̂HT3 over the naive estimator when the dependency between the two functions

are stronger or the sample size is larger.)

Summary

According to the above analyses, when selection bias is strong, φ̂HT3 tends to outperform both

φ̂HT1 and the naive estimator. φ̂HT2 , although not having so much advantage over φ̂HT1 or the naive

estimator when the sample size is small, catches up with φ̂HT3 with a larger sample size. When the

two functions are less correlated, although φ̂HT2 and φ̂HT3 are not better, or may even be worse, than

the naive estimator, they outperform φ̂HT1 most of the time. The Horvitz-Thompson estimator φ̂HT1

has no general advantages over the other non-model based estimators in all the scenarios investigated.

The overall poor performance of φ̂HT1 is not surprising as its inefficiency has been recognized by many

researchers (e.g. Rotnitzky et al., 2012; Scharfstein et al., 1999; Kang and Schafer, 2007).

φ̂HT3 seems superior to φ̂HT2 under the gp.d scenario where selection bias is strong. However, note

that under the gp.d scenario, µ(x) and ν(x) as random functions are positively correlated and likely

have a positive correlation with respect to x. The advantage of φ̂HT3 over φ̂HT2 under the gp.d scenario

where µ(x) and ν(x) are positively correlated coincides with the results found in Section 4.1. How the

performance of φ̂HT3 is affected by the sign of the correlation between µ(x) and ν(x) requires further

investigation. (Note that φ̂HT2 will not be affected by the sign of the correlation between µ(x) and

ν(x) due to its equivarance under all affine transformations). Nevertheless, φ̂HT3 requires knowledge of

the marginal selection probability ψ =
∫
ν(x)dFX and is therefore not as widely applicable as φ̂HT2 .
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Model based estimators

φ̂GPT versus φ̂GPE

When the relationship between the µ and ν functions are modeled correctly, or in other words, when

the selection probabilities are incorporated correctly, we would expect that φ̂GPT should outperform

φ̂GPE , since φ̂GPT is based on the true selection probabilities while φ̂GPE is based on estimated ones.

Under the gp.d scenario, where the two functions are generated using dependent Gaussian process priors

that are similar to the adaptable Gaussian process priors assigned for φ̂GPT and φ̂GPE , φ̂GPT indeed

outperforms φ̂GPE except one case (ll, n = 50, gp.d, d = 5) where all the GP estimators are about the

same. Under the hyperparameter set hh, the advantages of φ̂GPT over φ̂GPE are the strongest, often

marginally significant and sometimes even significant with p-values < 0.01. Under the hyperparameter

set hl, φ̂GPT outperforms φ̂GPE with marginal significance half of the time. Under the hyperparameter

set ll where selection bias is the weakest, φ̂GPT is still better than φ̂GPE except when d = 5 and n = 50,

but the advantages of φ̂GPT over φ̂GPE are not large.

When the µ and ν functions are independent, φ̂GPT seems worse than φ̂GPE under the scenarios c.gp

and gp.i, especially under the hyperparameter set hh when n = 50. Under the gp.c scenario where the

selection probability is a constant, the differences between φ̂GPT and φ̂GPE are rather small. Actually,

it is not clear what we would expect for the differences between φ̂GPT and φ̂GPE under these scenarios,

since models that lack dependence of µ and ν have only small probabilities under the priors assigned

for both φ̂GPT and φ̂GPE .

φ̂GPR versus φ̂GPS

First note that φ̂GPR and φ̂GPS are not applicable under the scenario gp.c where the selection

probability is a constant. Otherwise, the differences between φ̂GPR and φ̂GPS are rather small under

all scenarios. Although we would expect that φ̂GPS should be better than φ̂GPR , since φ̂GPS is based

on a larger set of x sampled from the distribution of x, it is not clear how much better φ̂GPS is. If the

advantage of φ̂GPS over φ̂GPR is small as in the scenarios considered, then practically when a larger

set of x is not available and φ̂GPS is thus not applicable, we would not be too concerned whether the

results by φ̂GPR would be slightly better if φ̂GPS were used instead.

φ̂GPT versus φ̂GPR and φ̂GPS

Although φ̂GPT , φ̂GPR and φ̂GPS all use the true selection probabilities, they take different ap-

proaches. Recall that φ̂GPT incorporates the selection probability by modeling the µ function condi-

tional on the true selection probabilities using dependent priors for the µ and ν functions, while φ̂GPR

and φ̂GPS only model the µ function, but with the selection probability ν as an additional covariate.

Under the gp.d scenario where the two functions are generated dependently using joint Gaussian
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process priors, φ̂GPT has its model closer to the true model than φ̂GPR and φ̂GPS do. Therefore, we

would expect that φ̂GPT is better than φ̂GPR and φ̂GPS under the gp.d scenario. Indeed, under the gp.d

scenario, φ̂GPT is better than φ̂GPR and φ̂GPS except one case (ll, n = 50, gp.d, d = 5) where all the

GP estimators are about the same. The advantage of φ̂GPT is the strongest under the hyperparameter

set hh where selection bias is the strongest, and the weakest under the hyperparameter set ll where

selection bias is the weakest.

Under the scenarios c.gp and gp.i where the two functions are independent, φ̂GPR and φ̂GPS seem

generally better than φ̂GPT , with a few cases where the advantages of φ̂GPR and/or φ̂GPS over φ̂GPT are

(marginally) significant. Note that φ̂GPR and φ̂GPS are not applicable under the scenario gp.c where

the selection probability is a constant.

φ̂GPE versus φ̂GPR and φ̂GPS

Under the gp.d scenario, φ̂GPE (like φ̂GPT ) has its model closer to the true model than φ̂GPR and

φ̂GPS do. But, φ̂GPE is based on the estimated selection probabilities while φ̂GPR and φ̂GPS use the

true selection probabilities. Therefore, it is not obvious whether φ̂GPE would do better or worse than

φ̂GPR and φ̂GPS under the gp.d scenario. Under the hyperparameter set ll, there are no significant

differences from φ̂GPE to φ̂GPR and φ̂GPS . Under the hyperparameter set hl, φ̂GPE seems generally

better than φ̂GPR and φ̂GPS , but the differences are mostly not significant. Under the hyperparameter

set hh, φ̂GPE perform better than φ̂GPR and φ̂GPS for larger dimensionalities d, possibly because in the

higher dimensional spaces, the generated functions are more complex and therefore having the right

model is more important than having the right selection probabilities.

Under the scenarios c.gp and gp.i, φ̂GPE (like φ̂GPT ) seems generally worse than φ̂GPR and φ̂GPS ,

with a few cases where the advantages of φ̂GPR and/or φ̂GPS over φ̂GPE are (marginally) significant.

Note that φ̂GPR and φ̂GPS are not applicable under the scenario gp.c where the selection probability is

a constant.

φ̂GPI versus φ̂GPT , φ̂GPE , φ̂GPR and φ̂GPS

Theoretically, we would expect that φ̂GPI should perform worse than the other GP estimators when

the µ and ν functions are dependent and better when the two functions are independent. Under the

scenario gp.d where selection bias is the strongest, φ̂GPI is indeed the worst among all the GP estimators

except where φ̂GPI is pretty close to φ̂GPR and φ̂GPS . For hh when n = 20 and d = 10 or 20, φ̂GPI

seems significantly better than φ̂GPR but with an advantage much less than the advantages of φ̂GPT

and φ̂GPE over φ̂GPR .

Under the scenarios c.gp and gp.i, the differences between φ̂GPI and φ̂GPR and φ̂GPS are rather small

except two cases (hh, n = 20, gp.i, d = 10; hh, n = 20, gp.i, d = 20) where φ̂GPI is (marginally)
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significantly better than φ̂GPR . Under the scenarios c.gp and gp.i, φ̂GPE is also often close to φ̂GPI .

Where it is not, φ̂GPE is only slightly worse than φ̂GPI . Since, as discussed earlier, under the scenarios

c.gp and gp.i, φ̂GPT is generally worse than φ̂GPE (although the differences are not dramatic), it is not

surprising that the advantages of φ̂GPI over φ̂GPT under these scenarios are more obvious than the

advantages of φ̂GPI over φ̂GPE . However, the advantages of φ̂GPI over φ̂GPT under these scenarios are

not very large too, and often not significant. Under the scenario gp.c where φ̂GPR and φ̂GPS are not

applicable, φ̂GPI , φ̂GPT and φ̂GPE are rather close each other.

Although we would expect φ̂GPI to perform better under the scenarios where the µ and ν functions

are independent, it often does not have obvious advantages over the other GP estimators. When it

does, the advantages are not large. Although under the priors assigned for the other GP estimators,

independent µ and ν functions only occur with small probabilities, the other GP estimators are able

to model the µ function comparably well when it is independent of the ν function.

Model based v.s. Non-model based estimators

Under the various scenarios considered, all the model based estimators generally perform better than

all the non-model based estimators, often with large and significant advantages, whether selection bias

is strong or not. In particular, φ̂GPI is often significantly better than the Horvitz-Thompson estimators

when selection bias is not strong (or not present). When selection bias is the strongest (i.e. under

hh and gp.d), compared to φ̂HT2 and φ̂HT3 , φ̂GPI does comparably well when n = 50 and significantly

better when n = 20. This is contrary to what one might expect from the arguments by Robins and

Ritov (1997) and by Ritov et al. (2013) that when the sample size is small and the µ function is

complex, any Bayesian method that fails to consider the selection probability will not do as well as the

Horvitz-Thompson estimator φ̂HT1 . (Note that, φ̂HT1 is even worse than either of φ̂HT2 and φ̂HT3 or

both of them in all scenarios considered.)

Summary

Based on the above analyses, whether selection bias is strong or not, having an appropriate model

for µ is important for improving the efficiency for estimating the population mean φ. A method like

Horvitz-Thompson that totally ignores the covariates, x, can be very inefficient, even if it is unbiased

or consistent. When the µ function is dependent on the selection probability, a method like φ̂GPI ,

although consistent by having a correct model for µ, may also not perform well enough with limited

sample sizes. Therefore, it is best to have a method which not only corrects selection bias but also

exploits the covariate information as much as possible. Some have argued (e.g. Robins and Ritov,

1997; Kang and Schafer, 2007) that in complex situations, where the dependency between the µ and
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the ν functions is complex, it is impossible to have a model for µ that is flexible enough to effectively

capture the relationship between x and µ(x) with a limited sample size. However, the results analyzed

in this subsection demonstrate that Gaussian process model based methods (even with the selection

probability being ignored) can efficiently model complex functions with better performance than those

non-model based methods most of time. These results also demonstrate that Gaussian process models

can be implemented effectively enough for their benefits to be realized in practice.

4.3 An example due to Kang and Schafer

This section studies an example from Kang and Schafer (2007) as described next. Suppose that a

covariate vector z = (z1, z2, z3, z4) is distributed as N(0, I) where I is the 4× 4 identity matrix. Given

z, the real-valued response variable y is determined by,

y = µ0(z) + ε = 210 + 27.4z1 + 13.7z2 + 13.7z3 + 13.7z4 + ε, (4.35)

where ε ∼ N(0, 1). The response variable y is observed if r = 1, with the selection probability function

being

ν0(z) = Pr(r = 1|z) = expit(−z1 + 0.5z2 − 0.25z3 − 0.1z4) (4.36)

Instead of observing the zj ’s, suppose it is the following covariates that are observed

x1 = exp(z1/2)

x2 = z2/(1 + exp(z1)) + 10

x3 = (z1z3/25 + 0.6)3

x4 = (z2 + z4 + 20)2 (4.37)

Denote x = (x1, x2, x3, x4). Since Pr(z2 + z4 < −20) ≈ 0, the mapping between these two covariate

vectors z and x is practically one-to-one. Therefore, if the true relationships were known, y could be

predicted from x as well as it could be from z. However, with xj ’s being the covariates, the functions

µ(x) = E[y|x] and ν(x) = Pr(r = 1|x) are more complicated than µ0(z) and ν0(z). Since we pretend

we observed the wrong covariate vector x, we assume that the distribution of x is unknown.

Note that in this artificial example, the selection probability ν is not bounded away from zero in

the original paper by Kang and Schafer. As discussed earlier, in practice, it is essential to have the

selection probability bounded away from zero. Otherwise, the survey is not sufficiently well designed,
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and any inference problem based on it would be inherently difficult. In this section, I will consider both

the cases where the selection probability is not bounded or is bounded away from zero by 0.05.

4.3.1 Setup

For this example, the ordinary least squares (OLS) estimator based on the linear regression model

(without interaction terms) will be included for comparison, in addition to the estimators considered

in Section 4.2. Since we do not know the distribution of x, φ = E[µ(x)] will be estimated using only

the observed x’s as in (3.22). In such a case, the estimator φ̂GPS does not apply.

Since y is real-valued, for the Gaussian process estimators that use the latent function gµ, the link

function from gµ to µ is simply the identity function. Then, y is modeled as

y = µ(x) + ε = gµ(x) + ε (4.38)

where the predictor function gµ has a prior based on Gaussian process model and the noise term ε

has a normal distribution N (0, δ2) and is independent of the predictor gµ. When µ(x) = gµ(x), the

latent vector g(n)
µ , i.e. the values of gµ at x1, . . . ,xn, no longer needs to be updated. Therefore, for the

estimators φ̂GPI , φ̂GPT and φ̂GPR , no latent vector will be updated, while for φ̂GPE , only g(n)
ν , i.e. the

values of gν at x1, . . . ,xn, will be updated. (Whether a latent vector is updated or not substantially

affects the computing time, as will be discussed in Section 4.4.)

For the Gaussian process estimators, the same priors for gµ and gν from Section 4.2 will be used.

In addition to model gµ and gν , we also need to model the noise standard deviation δ. The following

log-normal distribution is selected for δ,

log(δ) ∼ N (log(2.4), 0.8) (4.39)

Such a prior for δ is chosen so that it covers a range of values of the noise standard deviation with

reasonably large probabilities, including the true value of 1.

Since the xj ’s under this example differ dramatically in scale from the xj ’s generated in Section 4.2,

we need to transform them so that they have about the same range as those in Section 4.2, since the

same priors will be used. The xj ’s are transformed by

x1 →
√

2(x1 − 1)/0.6, x2 →
√

2(x2 − 10)/0.5

x3 →
√

2(x3 − 0.2)/0.04, x4 →
√

2(x4 − 400)/55 (4.40)
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These transformations of xj ’s are what one might do after looking at the summary statistics or the

scatterplots of the observed xj ’s. Similarly, we also need to subtract 200 from y and then divide the

difference by 40 so that it has about the same range as the latent function gµ generated in Section

4.2. This transformation of y is also what one might do after looking at the summary statistics or

the scatterplot of the observed y’s, and therefore does not build in knowledge of the true mean of y.

(Note that transforming the observed data with the priors for the hyperparameters kept the same is

equivalent to transforming the priors for the hyperparameters with the observed data kept the same.)

Consequently, the prior for the noise standard deviation becomes

log(δ) ∼ N (log(0.06), 0.8) (4.41)

For convenience, the transformed xj ’s are also used for the OLS estimators and the transformed y is

also used for both the OLS estimator and the Horvitz-Thompson estimators. For the Horvitz-Thompson

estimators φ̂HT1 and φ̂HT3 which are non-equivariant under the transfomation: y → y + c, c 6= 0, the

results would be different if the untransformed y is used, as will be discussed more later in this section.

Robins et al. (2007) have pointed out that under the original selection mechanism of this example,

the selection bias is not very strong and therefore it is not surprising that the ordinary least squares

(OLS) estimator performed well or even better than some of the doubly robust estimators considered

in Kang and Schafer (2007). Robins et al. (2007) have also showed that if the selection mechanism

is reversed, i.e. y being observed with the selection probability function 1 − ν(x), the performance

of the OLS estimator is no longer acceptable. Therefore, in this section all the estimators will be

studied under both the original and the reversed selection mechanisms. When considering the bounded

selection probability, the selection probability equals 0.95ν(x) + 0.05 under the original selection and

equals 0.95(1− ν(x)) + 0.05 under the reversed selection.

In the original paper, Kang and Schafer considered two sample sizes, n = 200 and n = 1000, with

m = 1000 simulated datasets for each. However, due to the limited amount of time, only datasets of

sample size n = 200 will be studied. Also to save time, the Gaussian process estimators will be studied

only with m = 100 simulated datasets. The frequentist estimators that are fast to compute will be

studied with m = 1000 simulated datasets.

For the estimators φ̂GPT and φ̂GPE which are based on Gaussian process models that assign only

positive correlation for the functions gµ and gν and therefore favors µ(x) and ν(x) with positive correla-

tion (w.r.t x), the sign of y needs to be reversed, since the true correlation between µ(x) and ν(x) (w.r.t

x) is negative (−0.61). Under the reversed selection mechanism, y is kept with its original sign, since

the correlation between µ(x) and the reversed selection probability 1−ν(x) is positive. (Generalisation
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of φ̂GPT and φ̂GPE so that the correlation between gµ and gν is adjustable will be discussed in the last

chapter.)

For the estimators φ̂GPT and φ̂GPE , ν will not be bounded away from zero when being linked from

the corresponding latent function gν , whether the true selection probability is bounded or not. This

will, however, make the estimator φ̂GPT and φ̂GPE slightly different from what they are in Section

4.2. Robustness of φ̂GPT and φ̂GPE against whether ν is bounded or not will be discussed later in this

section. Note that φ̂GPI and φ̂GPR will not be affected, since they do not have a model for ν.

For the Horvitz-Thompson estimators, true selection probabilities at the observed covariates are

used, typical in survey problems where selection probabilities are often available. For the estimator

φ̂HT3 , it is also the true marginal selection probability ψ that is used. If ψ is hard to obtain in practice,

φ̂HT3 will not be applicable.

4.3.2 Results

First note that none of the datasets simulated in this section have the effective sample size neff =∑n
i=1 ri equal to zero. So the results presented in this subsection will be the same regardless how the

φ̂naive, φ̂HT2 and φ̂HT3 estimators are defined when
∑n
i=1 ri = 0.

When the selection probability is not bounded

We first look at the results when the selection probability is not bounded. The results of the

frequentist estimators obtained from m = 1000 datasets are given in Table 4.1. Table 4.2 gives the

results for the Gaussian process estimators and two of the frequentist estimators based on m = 100

datasets. All the results are presented based on the original scale of y.

Obviously, as shown in Table 4.1, φ̂naive must be severely biased and has an extremely large MSE

compared to the other estimators under both the original and reversed selection mechanisms. Under

the original selection mechanism, all comparisons between the frequentist estimators are significant

according to the paired t-tests except for φ̂HT1 and φ̂HT3 . φ̂HT2 seems better than φ̂HT1 and φ̂HT3

under both selection mechanisms, but not significantly when the selection is reversed. (Note that from

the result in Section 2.1, we may expect that φ̂HT3 is better than φ̂HT1 under both selection mechanisms,

which seems true but not significantly.)

The OLS estimator φ̂OLS does substantially better than all the other frequentist estimators under

the original selection mechanism. This is no surprise, as Robins et al. (2007) point out that selection

bias is not very strong under the original selection mechanism. Unlike the naive estimator, φ̂OLS ,

although also ignoring the selection probability, does consider the covariates xj ’s, although not in a
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MSE p-value
φ̂naive φ̂HT1 φ̂HT2 φ̂HT3

A. Original Selection

φ̂naive 110.9 (2.3)
φ̂HT1 29.5 (1.9) 0.000
φ̂HT2 22.6 (1.2) 0.000 0.000
φ̂HT3 29.2 (1.9) 0.000 0.572 0.000
φ̂OLS 11.9 (0.5) 0.000 0.000 0.000 0.000

B. Reversed Selection

φ̂naive 110.5 (2.2)
φ̂HT1 33.9 (12.9) 0.000
φ̂HT2 26.5 (3.5) 0.000 0.447
φ̂HT3 30.7 (9.8) 0.000 0.314 0.523
φ̂OLS 31.9 (1.0) 0.000 0.877 0.135 0.902

Table 4.1: Mean squared errors (MSE) of bφnaive, bφHT1 , bφHT2 , bφHT3 and bφOLS (with standard errors in brackets)
and p-values of paired t-tests on the squared errors, based on m = 1000 datasets of sample size n = 200. The
selection probability is not bounded away from zero. Note: a p-value of “0.000” means “< 0.0005”.

very effective way. Therefore, φ̂OLS is able to remove part of selection bias and even does better

than the HT estimators which are unbiased or consistent but ignore the covariates totally. When the

selection is reversed and selection bias is strong, φ̂OLS no longer outperforms the HT estimators. But

the differences between φ̂OLS and the HT estimators are not significant.

Note that the results for the OLS estimator in Table 4.1 obtained with m = 1000 datasets are similar

to those by Kang and Schafer (2007) and by the discussants of Kang and Schafer (2007).

MSE p-value
φ̂HT2 φ̂OLS φ̂GPI φ̂GPT φ̂GPE

A. Original Selection

φ̂HT2 21.9 (3.3)
φ̂OLS 11.0 (1.4) 0.003
φ̂GPI 7.5 (0.9) 0.000 0.000
φ̂GPT 7.0 (0.8) 0.000 0.000 0.101
φ̂GPE 7.6 (1.0) 0.000 0.007 0.866 0.294
φ̂GPR 5.9 (0.7) 0.000 0.000 0.035 0.050 0.029

B. Reversed Selection

φ̂HT2 21.1 (4.0)
φ̂OLS 29.9 (2.6) 0.081
φ̂GPI 10.1 (1.2) 0.007 0.000
φ̂GPT 8.0 (1.0) 0.001 0.000 0.000
φ̂GPE 8.1 (1.0) 0.001 0.000 0.000 0.877
φ̂GPR 5.7 (0.7) 0.000 0.000 0.000 0.002 0.002

Table 4.2: Mean squared errors (MSE) of bφHT2 , bφOLS , bφGPI , bφGPT , bφGPE and bφGPR (with standard errors
in brackets) and p-values of paired t-tests on the squared errors, based on m = 100 datasets of sample size
n = 200. The selection probability is not bounded away from zero. Note: a p-value of “0.000” means
“< 0.0005”.

Table 4.2 gives the results of the Gaussian process estimators with comparison to both φ̂OLS and
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φ̂HT2 (the best among the HT estimators according to Table 4.1). Obviously, all the GP estimators

perform better than both φ̂OLS and φ̂HT2 under either selection mechanism. The superority of the GP

estimators is because they, whether ignoring the selection probability or not, can model the complex

function µ(x) more effectively, compared to φ̂OLS which is based on a linear regression model and φ̂HT2

which has no model at all.

Among the GP estimators, φ̂GPR is best under both selection mechanisms. Under the original

selection, φ̂GPT seems better than φ̂GPE but not significantly, and is only better than φ̂GPI with

a marginal significance. The difference between φ̂GPE and φ̂GPI is rather small under the original

selection. When selection bias is strong under the reversed selection, all the differences between the GP

estimators are significant, except for φ̂GPT and φ̂GPE , the difference between which is almost invisible.

Unlike φ̂GPT and φ̂GPE , φ̂GPR does not assume a link function between the latent function gν and the

selection probability ν. (It actually does not model ν or have gν at all.) Both φ̂GPT and φ̂GPE impose

a probit link function between gν and ν which may not match the truth well. This difference of φ̂GPR

from φ̂GPT and φ̂GPE may explain why φ̂GPR does better than φ̂GPT and φ̂GPE , although they have all

exploited the selection probability in some way. As discussed in earlier sections, φ̂GPT is expected to be

better than φ̂GPE if the selection probabilities are correct and the model for the dependency between

the functions µ and ν is also correct. In this example, however, we are not sure how the µ and ν

functions are actually related. If the Gaussian process priors which φ̂GPT and φ̂GPE are based on do

not have a high probability for the true relationship between µ and ν, φ̂GPT is not necessarily better

than φ̂GPE as seen in Table 4.2. φ̂GPE , although about the same as φ̂GPI under the original selection,

indeed does better when the selection is reversed. That is, when selection bias is strong, even with a

highly flexible model for y, incorporating the selection bias in some appropriate way can help achieve

better results. Note that φ̂GPE is the only estimator that does not require knowledge of ν but still

exploits the selection probability through a joint model for µ and ν.

When the selection probability is bounded

Results with the selection probability bounded away from zero by 0.05 are presented in Tables 4.3

and 4.4, where the selection probability equals 0.95ν(x) + 0.05 under the original selection and equals

0.95(1− ν(x)) + 0.05 under the reversed selection.

Compared to the results in Tables 4.1 and 4.2, the Horvitz-Thompson estimators have improved quite

a bit under both selection mechanisms. Particularly, all the HT methods are now significantly better

than the OLS method under the reversed selection, although still much worse than the OLS method

under the original selection. The substantial improvement of the HT estimators when the selection

probability is bounded away from zero is not surprising, since they are well known to be sensitive
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MSE p-value
φ̂naive φ̂HT1 φ̂HT2 φ̂HT3

A. Original Selection

φ̂naive 92.7 (2.0)
φ̂HT1 23.0 (1.2) 0.000
φ̂HT2 18.6 (0.9) 0.000 0.000
φ̂HT3 22.5 (1.1) 0.000 0.078 0.000
φ̂OLS 11.5 (0.5) 0.000 0.000 0.000 0.000

B. Reversed Selection

φ̂naive 94.5 (2.0)
φ̂HT1 16.0 (0.7) 0.000
φ̂HT2 18.3 (0.8) 0.000 0.000
φ̂HT3 15.5 (0.7) 0.000 0.005 0.000
φ̂OLS 26.3 (0.9) 0.000 0.000 0.000 0.000

Table 4.3: Mean squared errors (MSE) of bφnaive, bφHT1 , bφHT2 , bφHT3 and bφOLS (with standard errors in brackets)
and p-values of paired t-tests on the squared errors, based on m = 1000 datasets of sample size n = 200. The
selection probability is bounded away from zero by 0.05. Note: a p-value of “0.000” means “< 0.0005”.

MSE p-value
φ̂HT1 φ̂HT2 φ̂HT3 φ̂OLS φ̂GPI φ̂GPT φ̂GPE

A. Original Selection

φ̂HT1 23.0 (3.5)
φ̂HT2 18.1 (2.5) 0.002
φ̂HT3 23.6 (3.7) 0.484 0.000
φ̂OLS 11.7 (1.4) 0.004 0.030 0.004
φ̂GPI 7.1 (0.8) 0.000 0.000 0.000 0.000
φ̂GPT 6.7 (0.8) 0.000 0.000 0.000 0.000 0.117
φ̂GPE 7.0 (0.9) 0.000 0.000 0.000 0.001 0.856 0.518
φ̂GPR 6.0 (0.7) 0.000 0.000 0.000 0.000 0.061 0.111 0.062

B. Reversed Selection

φ̂HT1 13.3 (2.1)
φ̂HT2 15.5 (2.4) 0.008
φ̂HT3 13.0 (2.1) 0.421 0.000
φ̂OLS 23.9 (2.4) 0.000 0.003 0.000
φ̂GPI 8.7 (1.2) 0.026 0.002 0.037 0.000
φ̂GPT 7.2 (1.0) 0.002 0.000 0.004 0.000 0.000
φ̂GPE 7.2 (1.0) 0.003 0.000 0.004 0.000 0.000 0.934
φ̂GPR 5.6 (0.6) 0.000 0.000 0.000 0.000 0.001 0.014 0.013

Table 4.4: Mean squared errors (MSE) of bφHT1 , bφHT2 , bφHT3 , bφOLS , bφGPI , bφGPT , bφGPE and bφGPR (with
standard errors in brackets) and p-values of paired t-tests on the squared errors, based on m = 100 datasets
of sample size n = 200. The selection probability is bounded away from zero by 0.05. Note: a p-value of
“0.000” means “< 0.0005”.

to extremely small selection probabilities, and are incapable of extrapolating into regions where no

observations are available, since they totally ignore x.

The GP estimators have also improved compared to the results in Table 4.2, presumably due to

both the availability of observations in the previously empty regions and the slightly increased effective

sample sizes. (The average effective sample size over 100 datasets has increased from 99.4 to 104.4 under
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the original selection and from 100.6 to 104.5 under the reversed selection.) Similar to the results in

Table 4.2, all the GP methods are substantially better than both the HT methods and the OLS method

under both selection mechanisms. φ̂GPR also remains the best among all the GP methods under both

selection mechanisms. The advantage of φ̂GPE over φ̂GPI is still more signifincant under the reversed

selection where selection bias is strong.

Note that not getting any observations in regions with extremely small selection probabilities imposes

an inherently difficult problem for all methods. But this problem is less severe for model-based methods

for which extrapolation into those empty regions is possible, depending on how good the models are.

This is one of the reasons why the GP methods are less sensitive to extremely small selection proba-

bilities than the HT methods. Another reason why the HT methods are more sensitive to extremely

small selection probabilities is inherent to all methods based on inverse probability weighting where the

weights can be extremely large due to the extremely small selection probabilities.

Comparison to some doubly robust methods

The results of some doubly robust (DR) methods by several authors are summarized in Tables 4.5-4.7.

These DR methods are based on estimated selection probabilities using the linear logistic regression

either on the original covariates zj ’s or on the transformed covariates xj ’s, as shown in Tables 4.5-

4.7. Note that results by these authors are based on datasets generated using unbounded selection

probabilities.

MSE
fit ν with z fit ν with x

A. Original Selection

KSBC 10.8 166.9
KSWLR 8.3 14.7
KSR 8.6 12.3
KSSRRR 22.0 1.8× 1010

Table 4.5: Results by Kang and Schafer (2007) with m = 1000 datasets. BC: bias-corrected linear regression;
WLR: linear regression with inverse probability weighted coefficients; R: linear regression using selection
probability based covariates; SRRR: using the inverse selection probability as a covariate as proposed by
Scharfstein et al. (1999). For more details, see Kang and Schafer (2007).

Since the true selection probability is indeed a linear expit function of the original covariates z’s, I

assume that their estimated selection probabilities based on z’s are very close to the true values. Even

so, it may not be completely fair to compare their results to the results by GPT and GPR which use

the true selection probabilities. Therefore, I will only compare their results to those by GPE and GPI ,

where GPE estimates the selection probabilities using the transformed covariates x’s and GPI totally

ignores the selection probabilities. Please note that since these authors did not provide the standard

errors of their estimated MSE, and since all their results are based on m = 1000 datasets and mine are
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MSE
fit ν with z fit ν with x

A. Original Selection

RSLRDR(π̂,m̂REG) 12.12 169.91
RSLRDR(π̂,m̂WLS) 9.24 14.74
RSLRDR(π̂,m̂DR−IPW−NR) 7.40 14.90
RSLRB−DR(π̂,m̂REG) 11.83 54.65
RSLRB−DR(π̂EXT ,m̂REG) 9.69 16.82

B. Reversed Selection

RSLRDR(π̂,m̂REG) 13.11 19.90
RSLRDR(π̂,m̂WLS) 9.02 18.24
RSLRDR(π̂,m̂DR−IPW−NR) 7.76 17.90
RSLRB−DR(π̂,m̂REG) 11.76 19.69
RSLRB−DR(π̂EXT ,m̂REG) 11.12 19.55

Table 4.6: Results by Robins et al. (2007) with m = 1000 datasets. π̂: the estimated ν or the ν-model; m̂:
the estimated µ or the y-model, “B-DR”: DR robust methods that guarantee that the estimated φ fall into
the parameter space of φ: π̂EXT : the selection probabilities are estimated using an extended linear logistic
regression with an additional user-supplied covariate h(z) or h(x). For more details, see Robins et al. (2007).

MSE
fit ν with z fit ν with x

A. Original Selection

TANAIPWfix
11.8 158.8

TANWLS 8.9 15.3
TANREGtilde 7.5 12.0
TANREGhat 7.9 13.5
TAN

REG
(m)
tilde

7.5 12.7
TAN

REG
(m)
hat

7.0 13.5

Table 4.7: Results by Tan (2007) with m = 1000 datasets. For more details, see Tan (2007).

based on m = 100 datasets, I assume that their results are “accurate” compared to mine. The standard

errors of the estimated MSE by GPI and GPE are given in Table 4.2.

Comparing results in Table 4.2 and Tables 4.5-4.7, GPI and GPE clearly do much better than all

these DR methods when the selection probabilities are estimated using x. (Note that GPE is based

on estimated selection probabilities using x and GPI totally ignores the selection probabilities.) Even

when compared to the results by the DR methods based on the true model for ν, i.e. using z, GPI

and GPE still do better than most of the DR methods and do comparably well compared to the best

of these DR methods. The inefficiency of these DR methods when both models are wrong (i.e. both

models are based on x) confirms that only being “doubly” robust is not enough and we need highly

flexible models that are robust against various situations.
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4.3.3 Discussion

Non-equivariance of φ̂HT1 and φ̂HT3

Since φ̂HT1 and φ̂HT3 are non-quivariant under the transformation: y → y + c, where c 6= 0, the

results of φ̂HT1 and φ̂HT3 will be different if based on the original y’s. Table 4.8 gives the results of φ̂HT1

and φ̂HT3 using the untransformed y’s, which dramatically differ from the results using the transformed

y’s as in Tables 4.1 and 4.3. Whether the results are better or worse under different transformations,

non-equivariance is just undesirable.

Unbounded Selection Probability Bounded Selection Probability
Original Selection Reversed Selection Original Selection Reversed Selection

φ̂HT1 543.0 (28.9) 359.6 (23.0) 414.6 (19.7) 276.6 (11.5)
φ̂HT3 308.8 (20.7) 132.9 (9.2) 199.6 (10.3) 74.2 (3.3)

Table 4.8: Mean squared errors (MSE) of bφHT1 and bφHT3 (with standard errors in brackets) based on the
original y’s with m = 1000 datasets.

Robustness of GPT and GPE against whether ν is assumed bounded or not

In practice, it is common that the selection probability is bounded away from zero. However, it is

not always clear where the bound is. When using a method, like GPT and GPE , that assumes a model

on the selection probability ν, it is desired that the results do not vary a lot whether the model assumes

ν is bounded or not. Therefore, I also consider the variants of GPT and GPE that assume the selection

probability is bounded away from zero by 0.05 and denote them by GPTb and GPEb, respectively. For

the datasets generated with selection probabilities bounded away from zero by 0.05, we would expect

that GPTb and GPEb will do better than GPT and GPE .

The results of GPTb and GPEb for the datasets generated using bounded selection probabilities are

presented in Table 4.9 along with the results of GPT and GPE . As shown in Table 4.9, the difference

between GPE and GPEb is not significant under both selection mechanisms. The difference between

GPTb and GPT is not significant, either, under the reversed selection. Under the original selection,

GPTb indeed seems significantly better than GPT , but the difference between GPTb and GPT is rather

small, particularly smaller than the differences from φ̂GPT to φ̂GPE and φ̂GPR as in Table 4.4.

Robustness of GPT and GPR against the transformation of ν

Interestingly, I also ran into some variants of the estimators φ̂GPT and φ̂GPR due to a mistake. Recall

that the link function from gν to ν assumed for φ̂GPT and φ̂GPE is the probit function. Therefore, for

φ̂GPT , it is gν,i = Φ−1(ν(xi)), i = 1, . . . , 200, that should be used as the “known” gν . However,
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MSE p-value
φ̂GPT φ̂GPTb φ̂GPE

A. Original Selection

φ̂GPT 6.7 (0.8)
φ̂GPTb 6.5 (0.8) 0.044
φ̂GPE 7.0 (0.9) 0.518 0.293
φ̂GPEb 7.1 (0.9) 0.468 0.263 0.855

B. Reversed Selection

φ̂GPT 7.2 (1.0)
φ̂GPTb 7.2 (1.0) 0.471
φ̂GPE 7.2 (1.0) 0.934 0.736
φ̂GPEb 7.0 (1.0) 0.504 0.699 0.266

Table 4.9: Mean squared errors (MSE) of bφGPT , bφGPTb ,
bφGPE , and bφGPEb (with standard errors in brackets)

and p-values of paired t-tests on the squared errors, based on m = 100 datasets of sample size n = 200. The
selection probability is bounded away from zero by 0.05. GPT and GPE assume ν is not bounded away
from zero; GPTb and GPEb assume ν is bounded away from zero by 0.05. Note: a p-value of “0.000” means
“< 0.0005”.

I originally used gν,i = logit(ν(xi)), i = 1, . . . , 200, instead. Having different gν,i’s would alter the

prior relationship between µ and the fixed ν, since the prior relationship between gµ and gν is fixed,

thereby making the comparison between φ̂GPT and φ̂GPE more complicated. After having corrected

this mistake, I found that the result is very different, a bit surprisingly. The difference between these

two φ̂GPT ’s is presumably due to the sensitivity of the prior for gµ conditional on gν,i’s (which φ̂GPT is

based on) against the scaling of gν,i’s. This has prompted me to wonder if similar issues may occur to

φ̂GPR , if a different transformation of ν is used as the additional covariate. Therefore, I also considered

two variants of φ̂GPR with the additional covariate x5 = Φ−1(ν(x)) or x5 = 6ν(x) − 3, respectively.

These two variants of φ̂GPR are denoted by φ̂GPR2 and φ̂GPR3 , respectively. The variant of φ̂GPT with

gν,i = logit(ν(xi)), i = 1, . . . , 200, is denoted by φ̂GPT2 .

To compare these different versions of φ̂GPT and φ̂GPR , I consider both situations where the true

selection probability is bounded away from zero or not. For datasets generated using bounded selection

probabilities, I also consider the respective variants of φ̂GPT and φ̂GPT2 which assume that ν is bounded

away from zero by 0.05. Similar to φ̂GPTb , this variant of φ̂GPT2 is denoted by φ̂GPT2b .

Table 4.10 gives the results for these different versions of φ̂GPT and φ̂GPR with datasets generated

using unbounded selection probabilities. Table 4.11 gives the results with datasets generated using

bounded selection probabilities.

According to Table 4.10, φ̂GPT2 does differ from φ̂GPT significantly under the reserved selection.

Under the original selection where selection bias is not strong, it is conceivable that φ̂GPT and φ̂GPT2

may be less sensitive to the scaling of gν,i’s and therefore differ less. The three versions of φ̂GPR ’s are,

however, close to each other under either selection mechanism.

According to Table 4.11, when the selection probability is bounded away from zero, the differences
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MSE p-value
φ̂GPT φ̂GPT2 φ̂GPR φ̂GPR2

A. Original Selection

φ̂GPT 7.0 (0.8)
φ̂GPT2 6.5 (0.7) 0.150
φ̂GPR 5.9 (0.7) 0.050 0.185
φ̂GPR2 6.0 (0.7) 0.077 0.278 0.140
φ̂GPR3 5.9 (0.7) 0.026 0.057 0.888 0.536

B. Reversed Selection

φ̂GPT 8.0 (1.0)
φ̂GPT2 6.8 (0.8) 0.0002
φ̂GPR 5.7 (0.7) 0.0025 0.0416
φ̂GPR2 5.7 (0.7) 0.0018 0.0297 0.450
φ̂GPR3 5.9 (0.7) 0.0004 0.0143 0.593 0.425

Table 4.10: Mean squared errors (MSE) of bφGPT , bφGPT2 , bφGPR , bφGPR2 and bφGPR3 (with standard errors in
brackets) and p-values of paired t-tests on the squared errors, based on m = 100 datasets of sample size n = 200.
The selection probability is not bounded away from zero. Note: a p-value of “0.000” means “< 0.0005”.

MSE p-value
φ̂GPT φ̂GPTb φ̂GPT2 φ̂GPT2b φ̂GPR φ̂GPR2 φ̂GPR3

A. Original Selection

φ̂GPT 6.7 (0.8)
φ̂GPTb 6.5 (0.8) 0.044
φ̂GPT2 6.0 (0.7) 0.006 0.045
φ̂GPT2b 6.2 (0.7) 0.035 0.149 0.391
φ̂GPR 6.0 (0.7) 0.111 0.230 0.913 0.581
φ̂GPR2 6.0 (0.7) 0.122 0.252 0.983 0.633 0.361
φ̂GPR3 6.0 (0.7) 0.103 0.226 0.989 0.593 0.776 0.939

B. Reversed Selection

φ̂GPT 7.2 (1.0)
φ̂GPTb 7.2 (1.0) 0.471
φ̂GPT2 6.7 (0.9) 0.068 0.114
φ̂GPT2b 6.2 (0.8) 0.001 0.002 0.088
φ̂GPR 5.6 (0.6) 0.014 0.017 0.026 0.163
φ̂GPR2 5.6 (0.6) 0.012 0.015 0.021 0.146 0.653
φ̂GPR3 5.6 (0.6) 0.006 0.007 0.009 0.100 0.927 0.976

Table 4.11: Mean squared errors (MSE) of bφGPT , bφGPTb ,
bφGPT2 , bφGPT2b ,

bφGPR , bφGPR2 and bφGPR3 (with
standard errors in brackets) and p-values of paired t-tests on the squared errors, based on m = 100 datasets of
sample size n = 200. The selection probability is bounded away from zero by 0.05. GPT and GPT2 assume
that ν is not bounded away from zero; GPTb and GPT2b assume that ν is bounded away from zero by 0.05.
Note: a p-value of “0.000” means “< 0.0005”.

between the different versions of φ̂GPR are, again, rather close to each other, under both selection

mechanisms. The difference between φ̂GPT and φ̂GPT2 is significant under the original selection and

marginally significant under the reversed selection. The difference between φ̂GPT2 and φ̂GPT2b is not

significant under the original selection, but significant under the reversed selection.

The sensitivity (or robustness) of φ̂GPT and φ̂GPR against the scaling of gν,i’s or the transformation

of ν could be clarified further by additional investigations.
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Estimated noise standard deviations (δ)

Since the mapping between the original covariates zj ’s and xj ’s is practically one-to-one, we expect

that modeling on xj ’s should be as good as on zj ’s, if the model is good enough. A perfect model

would figure out nearly the exact relationship between y and all the covariates xj ’s and thus have the

estimated noise standard deviation δ close to its true value. A less perfect model tends to miss some

of the important effects and thus produce a larger estimate for the noise standard deviation.

Estimated noise standard deviation (δ)
(true δ = 1)

Min Median Mean Max

A. Original Selection

on 1000 datasets
OLS 10.4 14.7 14.7 22.9

on 100 datasets
OLS 10.9 14.9 14.9 22.9
GPI 0.6 5.5 5.3 9.8
GPT 1.0 3.6 3.6 7.6
GPTb 1.0 3.5 3.6 7.6
GPT2 1.3 2.3 2.5 6.6
GPT2b 1.3 2.0 2.1 5.9
GPE 0.6 4.3 4.3 9.7
GPEb 0.6 4.3 4.3 9.9
GPR 0.8 1.0 1.0 1.2
GPR2 0.8 1.0 1.0 1.2
GPR3 0.9 1.1 1.1 1.3

B. Reversed Selection

on 1000 datasets
OLS 9.4 14.6 14.6 22.7

on 100 datasets
OLS 10.9 14.5 14.6 22.7
GPI 1.5 5.6 5.6 9.0
GPT 1.6 3.8 3.9 6.9
GPTb 1.2 3.6 3.7 8.0
GPT2 1.3 2.3 2.5 6.3
GPT2b 1.2 2.1 2.2 6.4
GPE 1.0 4.1 4.1 8.1
GPEb 1.1 3.9 4.1 8.5
GPR 0.8 1.0 1.1 1.2
GPR2 0.8 1.0 1.0 1.2
GPR3 0.8 1.0 1.0 1.3

Table 4.12: Minimum, median, mean and maximum of the estimated noise standard deviations by each method
on m = 1000 or m = 100 datasets. The selection probability is bounded away from zero by 0.05.

Table 4.12 gives the estimated noise standard deviations by each method on datasets generated using

bounded selection probabilities. Clearly, by the OLS method, the estimated noise standard deviations

are much larger than those by the GP methods, indicating that the OLS method is far from figuring out

the true relationship between y and xj ’s. By the GPI method, also ignoring the selection probability,

the estimated noise standard deviations are much smaller than those by the OLS method, indicating
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that the GPI method, although still much less than perfect, can fit the relationship between y and xj ’s

substantially better than the OLS method. All the other GP methods have the estimated standard

deviations much smaller than those by GPI . Particularly, all the three versions of GPR have the

estimated noise standard deviations pretty close to the true value of 1.

As may be noted in Table 4.12, by the methods GPE and GPR, the estimated noise standard

deviations are sometimes smaller than the true value, 1. This might seem that the data has been

overfitted. However, these estimated noise standard deviations are subject to two sources of random

errors. First, they are based on MCMC samples which may have an effective sample as small as 20

due to the stopping rule applied (see Subsection 3.2.5). Therefore, even when the posterior mean of δ

is well above 1, the estimated δ may occassionally be smaller than 1 by chance. Second, the particular

observed dataset may just be less variable than typical due to randomness. In such a case, a good

model tends to have the estimated noise standard deviation less than the true value of δ. In particular,

the posterior mean of δ by a GP method may be smaller than the true value of 1.

Overfitting by the GP methods, however, might also be possible. Recall that the exponential parts of

the covariance functions used for the GP methods as in (2.50) and (2.66) are stationary, and therefore

favor functions with the same properties over different regions in the covariate vector space. For a

function with different degrees of wiggliness over different regions, GP methods based on such covariance

functions may produce large estimated length-scales due to the smoother parts of the function, therefore

underfitting the more wiggly parts; they may also produce small estimated length-scales due to the more

wiggly parts of the function, therefore overfitting the less wiggly parts. More about the stationarity of

the GP covariance functions is discussed in the last chapter.

4.4 Computing time by Gaussian process estimators

The computing time taken by each Gaussian process method for processing one dataset is determined

by the time taken for each MCMC iteration and the number of MCMC iterations required. The time

taken per iteration depends on the efficiency of the MCMC sampling schemes used (e.g. Elliptical slice

sampling and univariate slice sampling). For the sampling schemes used, the time taken per iteration

depends on the dimensionality d of the covariate vector and the length n of the latent vector(s). The

dimensionality d of the covariate vector determines how many hyperparameters need to be updated and

the length n of the latent vector(s) determines the time taken for computing the Cholesky decomposition

of the covariance matrix of the latent vector(s), which is proportional to n3. Computing the covariance

matrix of the latent vector(s) takes time proportional to dn2.

The number of MCMC iterations required depends on the required effective sample size from the
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MCMC iterations and how fast the MCMC iterations mix (see Subsection 3.2.5). Given the required

effective sample size of the MCMC iterations, the slower the MCMC iterations mix, the larger the

autocorrelation times of the MCMC iterations are and the larger number of iterations are required.

The speed at which the MCMC iterations mix is mainly attributable to the length n of the latent

vector(s), when n is large compared to d. That is why the average number of iterations required by

GPE per dataset is much larger for the Kang and Schafer example (where the length of the latent vector

is n = 200) than for the experiments considered in Section 4.2 (where the length of the concatenated

latent vector is 2×n = 2× 20 or 2× 50). Similarly, the average numbers of iterations required by GPI ,

GPT and GPR per dataset for the Kang and Schafer example are much less than those required for the

experiments considered in Section 4.2, since for the Kang and Schafer example where y is real-valued,

no latent vector needs to be updated by GPI , GPT and GPR.

Take the Kang and Schafer example for illustration. The average times for 1000 iterations by GPI

and GPR are around 10 minutes on a processor running at about 3GHz. The average times for 1000

iterations by GPT and GPE are about 45 minutes using the same processor and the same version of R

programming language. The reasons why GPT and GPE take longer time per iteration are 1) about

two times more hyperparameters need to be updated for GPT and GPE than for GPI and GPR, and

2) the covariance matrix of the latent vector(s) that needs to be updated for GPT and GPE is 2n× 2n

instead of n × n for GPI and GPR. The average numbers of iterations required per dataset by GPI ,

GPT and GPR are about 1000-1500, while the average number of iterations per dataset required by

GPE is about 12000-15000. Therefore, the average total times taken per dataset by GPI and GPR are

less than 15 minutes, the average total time taken per dataset by GPT is about one hour or less, and

the average total time taken per dataset by GPE is about 10 hours.

The total time (10 hours) taken per dataset by GPE may seem unacceptable in certain practical

situations. However, there is large space for improvement in the time taken by GPE . The current

computing program written for this thesis is not optimal. First, there may be redundancy in computing

or updating things that are not needed. Second, in terms of computation, the dimensionality of the

covariance matrix of the latent vector(s) can be reduced from 2n × 2n to (neff + n) × (neff + n) in

the case of GPT and GPE , or from n × n to neff × neff in the case of GPI and GPR, where neff

is the effective sample size of the observed dataset. These two types of improvement will help reduce

the computing time taken per iteration by all these estimators. The dominating factor that influences

the time taken per dataset by GPE compared to GPT is the number of iterations required, which is

determined by the efficiency of sampling the latent vector. In the current computing program, the

latent vector is updated 5 times in between updating each hyperparameter. If instead, the latent vector

is updated more times (e.g. 10 or 20) in between updating hyperparameters, the latent vector will
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be sampled more efficiently over iterations with reduced autocorrelation time. Note that updating

the latent vector takes a minor amount of time compared to updating the hyperparameters. That is,

increasing the number of times updating the latent vector per iteration will not substantially increase

the total time taken per iteration, but may largely reduce the number of iterations required per dataset.

Therefore, the time taken per dataset by GPE can conceivably be reduced greatly, for example, from

10 hours to a few hours or even less.



Chapter 5

Conclusion

Both simulation studies and the analysis of the Kang and Schafer example in this thesis show that

the Gaussian process approaches that use the selection probability are able to not only correct selection

bias effectively, but also control the sampling errors well, and therefore can often provide more efficient

estimates than the methods compared that are not based on Gaussian process models, in both simple

and complex situations. Even the Gaussian process approach that ignores the selection probability

often, though not always, performs well when some selection bias is present.

Particularly, a method like the Horvitz-Thompson estimator that totally ignores the covariates can

be very inefficient, even if it is unbiased or consistent. A method like the Gaussian process estimator

φ̂GPI that has a highly flexible model for the response, but does not employ the selection probability

explicitly, may still do reasonably well when selection bias is not strong. When the response function

depends on the selection probability in a complex manner, a method like φ̂GPI that has a flexible model

for the response, but does not exploit the selection probability more explicitly, may no longer do well

with a limited sample size. Therefore, it is best to have a method which not only corrects selection bias

explicitly but also exploits the covariate information to a maximum extent without overfitting the data.

The Gaussian process estimators φ̂GPT , φ̂GPE and φ̂GPR not only have a flexible model for the response,

but also employ the selection probability in a rather flexible manner, unlike many popular approaches

in the literature that employ the selection probability only in the form of its inverse. Methods like

φ̂GPT , φ̂GPE and φ̂GPR , although not perfect, can conceivably deal with a large number of complex

problems sufficiently well, when selection bias is an issue.

In addition to demonstrating the strength of the Gaussian process methods considered, this thesis

shows that these methods can be implemented efficiently enough to realize their benefits in practice.

They, therefore, should be brought to broader attention, and help promote use of Bayesian hierarchical

83
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models in general for dealing with selection bias in complex situations.

The Gaussian process approaches considered in this thesis are, however, not without flaws. Particu-

larly, the exponential parts of the Gaussian process covariance functions used in this thesis as in (2.46),

(2.47), (2.50) or (2.66) are stationary, and therefore favor functions with the same degrees of smoothness

over different subregions of the covariate vector space. With such covariance functions, functions that

have different properties in different regions of the covariate vector space only have very small prob-

abilities under the corresponding Gaussian process priors. Therefore, with finite sample sizes, models

based on these Gaussian process priors may not do well for estimating such functions. Developing

approaches to correcting selection bias using Gaussian process models with non-stationary covariance

functions or using other Bayesian hierarchical models would be interesting for future research.

In addition, the strategy given by (2.59) only allows positive correlations between the latent functions

gµ and gν . When the correlation between µ(x) and ν(x) with respect to x is known to be negative

as for the Kang and Schafer example, the response variable can be reversed so that this strategy still

works fine. However, in practice, it is often not known if the correlation between µ(x) and ν(x) (w.r.t

x) is positive or negative. The strategy by (2.59) can be generalized such that the correlation between

the latent functions gµ and gν is adjustable. One type of generalisation is as follows. Consider

gµ = αg0 + g1 and gν = βg0 + g2 (5.1)

where g1, g2, g0 are the same as in (2.60) and α and β are hyperparameters which have priors over

(−∞,∞). Then for any x1, . . . ,xn, the covariance matrix for

 g(n)
µ

g(n)
ν

 where

g(n)
µ =


gµ(x1)

gµ(x2)
...

gµ(xn)

 and g(n)
ν =


gν(x1)

gν(x2)
...

gν(xn)

 , (5.2)

is

Cov

 g(n)
µ

g(n)
ν

 =

 K1 + α2K0 αβK0

αβK0 K2 + β2K0

 (5.3)

where Kh, i = 1, 2, 0, are the same as in (2.63). With α and β adjustable over (−∞,∞), the correlation

between g(n)
µ and g(n)

ν is also adjustable over (−1, 1).

Despite the extensive experimental studies in this thesis, certain aspects of the Gaussian process
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estimators studied remain unclear. In particular, as indicated by the Kang and Schafer example in

Section 4.3, the type of estimators that use the selection probability as a covariate (i.e. φ̂GPR , φ̂GPR2

and φ̂GPR3) seem more robust against how the selection probability function has been transformed when

used as a covariate, compared to the type of estimators (i.e. φ̂GPT and φ̂GPTb) that assign a joint prior

for gµ and gν . Further studies may determine whether it is generally true that the φ̂GPR estimator is

more robust than the φ̂GPT estimator against the transformation of the selection probability.

If the φ̂GPR estimator is indeed more robust than the φ̂GPT estimator, then we can expect that a

modified version of φ̂GPR that uses estimated selection probabilities would also be more robust than

φ̂GPE (the version of φ̂GPT that uses the estimated ν). Particularly, we may consider estimating the

selection probability using Gaussian process models. To do so, two strategies could be considered.

First, the selection probability could be estimated, and then used as a fixed covariate over MCMC

iterations for modeling the response. Second, we could model the response and the selection probability

simultaneously. That is, the selection probability is sampled at each MCMC iteration. In this case, the

hyperparameters for the response and the hyperparameters for the selection probability can either be

independent or share common priors.
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