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This thesis develops techniques for adjusting for selection bias using Gaussian process models. Selec-
tion bias is a key issue both in sample surveys and in observational studies for causal inference. Despite
recently emerged techniques for dealing with selection bias in high-dimensional or complex situations,

use of Gaussian process models and Bayesian hierarchical models in general has not been explored.

Three approaches are developed for using Gaussian process models to estimate the population mean
of a response variable with binary selection mechanism. The first approach models only the response
with the selection probability being ignored. The second approach incorporates the selection probability
when modeling the response using dependent Gaussian process priors. The third approach uses the
selection probability as an additional covariate when modeling the response. The third approach
requires knowledge of the selection probability, while the second approach can be used even when the
selection probability is not available. In addition to these Gaussian process approaches, a new version
of the Horvitz-Thompson estimator is also developed, which follows the conditionality principle and

relates to importance sampling for Monte Carlo simulations.

Simulation studies and the analysis of an example due to Kang and Schafer show that the Gaussian
process approaches that consider the selection probability are able to not only correct selection bias
effectively, but also control the sampling errors well, and therefore can often provide more efficient
estimates than the methods tested that are not based on Gaussian process models, in both simple and

complex situations. Even the Gaussian process approach that ignores the selection probability often,
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though not always, performs well when some selection bias is present.

These results demonstrate the strength of Gaussian process models in dealing with selection bias,
especially in high-dimensional or complex situations. These results also demonstrate that Gaussian
process models can be implemented rather effectively so that the benefits of using Gaussian process
models can be realized in practice, contrary to the common belief that highly flexible models are too

complex to use practically for dealing with selection bias.
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Chapter 1

Introduction

Adjusting for selection bias is a key issue in statistical inference whenever selection probabilities are
involved. In high-dimensional or complex situations, dealing with such an issue can be very difficult.
Despite a large number of techniques that have emerged recently for dealing with selection bias, Bayesian
hierarchical models have not been explored in this area to our best knowledge. In this thesis, I will
demonstrate how Gaussian process models, a type of Bayesian hierarchical models, can be effectively

utilised for dealing with selection bias.

1.1 The problem

Selection bias arises in both sample surveys and observational studies for causal inference, when
sampling of survey units or assigning of treatment exposures is not completely at random, but instead

depends on some covariate variables which also affect the outcome of interest.

1.1.1 Selection probability and selection bias in sample survey

Suppose (X1,%1,71), -, (Xn, Yn, 'n) are n independent and identically distributed realizations of a
three element random tuple (X,Y,R). X is a d-dimensional vector of covariates. Y is the outcome
variable of interest. R is a binary variable, indicating if Y is observed or not. The probability that
Y is observed given X = x, denoted by v(x) = Pr(R = 1|X = x), is called the selection probability
or the selection probability function when considered as a function of x. In this thesis, we assume
strong ignorability (Rosenbaum and Rubin, 1983) that given X, R and Y are independent. Suppose
that the goal is to estimate the population mean of Y, denoted by ¢ = E[Y] = E[u(X)], where
w(x) = E[Y|X = z] is the mean function of Y. And suppose that X has a d-dimensional probability

1



1 Introduction 2

measure Fx or a density function fx when continuous, then
¢:/u(x)de(x) :/,u(x)fx(x)dx (1.1)

Since both p(x) and v(x) depend on x, any method of estimation for ¢ that ignores both x and
v(x) may be biased. For example, the simple average of the observed y;, i.e. > yiri/ > i i, i &
biased estimator for ¢, unless p(x) or v(x) is a constant function or there is unlikely exact cancellation
of biases over regions of x. This type of bias is called selection bias in the context of sample surveys.
Selection bias may occur in any inference problem that involves selection probabilities. Techniques
developed for estimating the population mean should be readily extensible to other problems such as

estimating regression coeflicients.

In most of this thesis, I will assume that the selection probability function v(x) is bounded away
from zero by some fixed constant ¢ > 0. This assumption is essential since otherwise, there are always
some x’s whose selection probabilities are so small that they may almost never be observed with a
practical sample size. For convenience, I will also use x, y and r instead of X, Y and R referring to

both the random variables and their realizations unless confusion is present.

1.1.2 Connection to propensity scores and confounding bias

Consider a four element random tuple (X,Y{1),Y(),T). Again, X is a d-dimensional vector of
covariates. T' is a binary treatment assignment indicator. Y(;) is the response variable if treatment is
received, i.e. T' = 1; Y|y is the response variable if control is given, i.e. T'= 0. Note that of course,
only one of Y(;) and Yq) can be observed. The probability that treatment is assigned given X = x,
denoted by p(x) = Pr(T = 1|X = x), is called the propensity score or the propensity score function
when considered as a function of x. Again, we assume strong ignorability (Rosenbaum and Rubin, 1983)
that given X, Y(;) and Y{o) are independent of T. The goal is to estimate the population treatment
effect, i.e. E[Y{1)] — E[Y{0)]. When the covariate vector X affects both the responses Y(;) and Y{o) and
the treatment assignment 7', any estimation procedure for E[Y(1)] — E[Y(¢y] that ignores both x and
p(x) will be biased unless E[Y(1)|X = x] — E[Y{()|X = x| or p(x) is a constant function or there is
unlikely exact cancellation of biases over regions of x. This type of bias is called confounding bias in

the context of observational studies for causal inference.

A propensity score problem can be considered as two sample survey problems. Specifically, if a
subject receives treatment, the treatment response will be observed with the “selection” probability
equal to p(x). If a subject receives control, the control response will be observed with the “selection”

probability equal to 1 —p(x). Therefore, selection bias due to selection probability and confounding bias
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due to propensity score are equivalent statistical issues under different contexts. Although sometimes,
estimating the treatment effect directly can be more efficient than estimating E[Y(;)] and E[Y(¢)] sepa-
rately, techniques developed for dealing with selection bias in sample survey should also be applicable

for dealing with confounding bias.

1.2 Existing approaches to addressing selection bias

Conventional techniques for adjusting for selection bias include weighting, matching, stratification
and covariate adjustment (e.g. Cochran, 1965, 1968; LaLonde, 1986; Dehejia and Wahba, 2002; Dehejia,
2005; Austin, 2008). For example, the Horvitz-Thompson (HT) method (Horvitz and Thompson, 1952)
weights the observed responses y’s using the inverse of the selection probability, v(x), resulting in an

unbiased estimator for the population mean ¢.

When the covariate vector x is high-dimensional, weighting, matching, stratification or covariate
adjustment based on the selection probability v(x) only is easier to implement than on x itself and
can still produce unbiased or consistent results (e.g. Rubin, 2001, 2007). However, when x is high-
dimensional, only adjusting on the selection probability will produce inefficient results due to substantial
information reduction. Even in low-dimensional situations, regression on x combined with adjusting on
selection probabilities has been recommended for achieving better results (e.g. Cochran, 1957; Cochran
and Rubin, 1973). In addition, methods based on adjusting on the selection probability require the
knowledge of the selection probabilities. When they are unknown, estimating the selection probabilities

may be as difficult as estimating the mean function p(x), especially when x is high-dimensional.

One recently developed class of methods are double-robust (DR) methods (e.g. Robins and Rotnitzky,
1995; Scharfstein et al., 1999; Kang and Schafer, 2007; Rotnitzky et al., 2012). A DR method requires
specifying two models: one for the response population, i.e. the y-model; the other for the selection
mechanism, i.e. the selection probability function or the r-model. When the two models are combined
properly, a DR estimator remains consistent if one of the two models is correctly specified even if
the other is not. There are various ways of constructing a DR method. For example, one can use a
function of the selection probability as an additional covariate in a regression model; or regress y on x
within classes stratified on selection probabilities; or apply weighted estimating equations or regression

functions with weights equal to the inverse probabilities.

DR methods are more robust than methods based on only a y-model if the r-model is correctly
specified, and more efficient than methods without a y-model if the y-model is correctly specified.
However, if both the y-model and the r-model are misspecified, a DR method may not be better, or

may even be worse, than a method using only one of the incorrect models (Kang and Schafer, 2007).
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Additionally, although DR methods are “double guarded” for achieving consistent estimation, they
do not promise that the estimation is efficient, especially for complex problems, if the y-model is not
flexible enough. A DR method with a simple y-model may not perform better than a method without
a v-model but with a flexible y-model, if the simple y-model does not capture important information

well enough.

As widely agreed, for a method to achieve efficient results, the covariate information must be used to
a maximum extent, yet without overfitting the data. When the problem is complex or high-dimensional,
constructing a proper y-model in a traditional class such as linear polynomial regression models, may
be quite difficult, if not impossible. The regression model may become extremely complicated, with
more parameters than the data can support, and then cause model overfitting. Kang and Schafer (2007,
p525) argued that “with many covariates, it becomes difficult to specify a y-model that is sufficiently
flexible to capture important nonlinear effects and interactions, yet parsimonious enough to keep the

variance of prediction manageably low”.

Such flexible models do exist, however. Many well established Bayesian hierarchical models are highly
flexible and fairly easy to implement including, for example, Gaussian process models and Bayesian
neural networks. Unfortunately, the capacity of these Bayesian hierarchical models in dealing with
selection bias in complex problems has not been widely recognized. Gelman (2007) pointed out the
merits of Bayesian hierarchical models for high-dimensional problems only on the conceptual level by
simple illustration. The strength of Bayesian hierarchical models has yet to be demonstrated through

more sophisticated experiments.

Ideally, a Bayesian hierarchical model should capture all the information contained in the covariate
vector x and therefore produce consistent estimation even without exploiting the selection probability
explicitly. Robins and Ritov (1997) have, however, argued through extremely complex worse-case
examples that any Bayesian method that does not use the selection probability will fail to be uniformly
consistent under the set of semiparametric models that are indexed by the mean function p only. In
their view, uniform consistency is important since in high-dimensional or complex problems, the sample
size can never be large enough for estimating the mean function p(x) well. Therefore, they claim that
methods such as the simple inverse probability weighted (IPW) Horvitz-Thompson (HT) estimator
(Horvitz and Thompson, 1952) that is uniformly \/n-consistent is more desired than any Bayesian

method that ignores the selection probability.

In practice, however, the problem may never be as complex as the worst cases considered by Robins
and Ritov (1997). Therefore, their argument against Bayesian methods without using the selection
probability may not be practically relevant. In addition, from a Bayesian point of view, the worst-case

scenarios in Robins and Ritov (1997) only occur with tiny probabilities a priori. Bickel and Kleijin
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(2012) have shown that over a smaller set of semiparametric models, Bayesian estimators (ignoring
v(x)) can be uniformly /n-consistent. Actually, Ritov et al. (2013, Theorem 7.1) have demonstrated
that uniformly \/n-consistent Bayesian estimators (ignoring v(x)) do exist under the set of semipara-
metric models considered by Robins and Ritov (1997) except subsets of zero prior probability measure.
Therefore, those worst-case scenarios both in Robins and Ritov (1997) and in Ritov et al. (2013) should

not present an issue to a Bayesian who trusts that their prior is well matched to realities.

If extremely complex situations do happen, in which the two functions p(x) and v(x) are correlated
in a complex manner, Bayesian methods ignoring the selection probability may indeed not do well unless
the sample size is huge. Nevertheless, with Bayesian hierarchical models, the selection probability can
be easily incorporated in multiple ways. In a simplified finite population example from Wasserman
(2004) where x € {x1,...,Xn}, y is binary and ¢ = Zf\il 1(x;), Ritov et al. (2013) showed that using

the following prior that depends on v(x)

eT/V(x,i)

= (1.2)

p(x;) ~ Beta (pr(i),1 —pr(i)) with pr(i)
where T is an unknown hyperparameter, the Bayesian estimator is uniformly /n-consistent for ¢ under
the semiparametric models. However, this approach still uses the inverse of the selection probability and
the choice of pr(i) seems arbitrary in our view. The selection probability can actually be incorporated

more flexibly if orthodox Bayesian hierarchical models such as Gaussian process models are adopted.

1.3 Bayesian inference using Gaussian process models

This thesis will demonstrate how Gaussian process models can be implemented effectively for dealing
with selection bias in both simple and complex problems. Gaussian process models are non-parametric
regression models which assign Gaussian process priors to the regression functions of interest. As
flexible models, Gaussian process models are able to capture high-order nonlinear and interaction effects
without restricting the maximum effect order. Gaussian process models can be implemented to employ
the selection probability in several ways. One can assign dependent Gaussian process priors to both
the y-model and the selection probability function v(x) jointly. With dependent priors, the model will
update the hyperparameters not only according to the observed y’s but also to the selection indicators
r’s, or if known, selection probabilities v(x), through the prior relationship between the y-model and
the selection probability function, thereby effectively adjusting for selection bias in a flexible manner.
Alternatively, instead of using dependent priors, one can use the v(x) function as an additional covariate
in the y-model. Due to the flexibility of Gaussian process models, one need not worry much about how

the selection probability should be entered into the y-model. In particular, we do not have to use the
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inverse of the selection probability as the covariate, because the model can automatically decide the
best relationship between y and this additional covariate. Incorporating the selection probability into
the y-model flexibly in either way may help achieve more efficient results in either simple or complex

situations.

Three approaches are developed in this thesis for using Gaussian process models for the problem
of estimating the population mean ¢ as described earlier. The first approach models the mean func-
tion only and ignores the selection probability. The second approach models the mean function with
the selection probability incorporated using dependent priors. The third approach uses the selection
probability as an additional covariate while modeling the mean function. When using the selection
probability as a covariate, the selection probabilities must be known at least for the observed covariate
vectors. When modeling the mean function with dependent priors, the selection probabilities need not
be available, although exploiting the known selection probabilities simplifies the estimating procedure
and may also help achieve better results. The estimators based on these three approaches for using
Gaussian process models will be compared to other estimators through both simulation experiments

and an example due to Kang and Schafer (2007).

1.4 Outline

This thesis consists of five chapters and one appendix. Chapter 2 describes two groups of methods
for adjusting for selection bias — those using a model or not, and discusses the fundamental difference
between these two groups. Chapter 3 presents in detail how to make inference for ¢ using Gaussian
process models and describes the Markov chain Monte Carlo (MCMC) algorithms used for sampling
from the posterior distribution of ¢ based on Gaussian process models. Chapter 4 illustrates how
Gaussian process methods perform compared to other methods through simulation experiments and
an example due to Kang and Schafer. Chapter 5 summarizes the results of this thesis, discusses the
limitation of the present work and identifies a number of research directions for future work. Appendix
A lists all the figures that do not fit into the main body. The associated computing programs using R

language are available at http://www.cs.toronto.edu/~radford/ftp/meng-r-functions.r.


http://www.cs.toronto.edu/~radford/ftp/meng-r-functions.r

Chapter 2

Methodologies

This chapter will present two types of methodologies for adjusting for selection bias: non-model

based frequentist methods and Bayesian methods based on Gaussian process models.

2.1 Methods without a model

This section will review four non-model based frequentist estimators that will be compared with
Gaussian process based estimators in the following experimental studies. The four estimators include

one naive estimator and three types of Horvitz-Thompson (HT) estimators, denoted by <$nme, EHTU

QASHTZ and $HT3, respectively.

2.1.1 The naive estimator

The naive estimator is the one which ignores the selection probabilities and takes a simple average

of the observed y;’s with equal weights, as given by

5o _Xiawn 1 i Y
naive Z?:l T Neff iy =1 l |

where nesr = Z?Zl r; is the effective sample size. Note that qAﬁnawe is not defined when ners = 0.

Since the naive estimator does not consider the selection probabilities at all, it is not expected to
perform well when there is substantial correlation between the function of interest and the selection
probability function. Clearly, the naive estimator could be severely biased when strong correlation

between the two functions is present. However, we may wonder if the naive estimator might be nearly
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as good as other estimators when the correlation between the two functions is relatively weak. Another
situation where the naive estimator might do comparably well as other methods is when the function
of interest is restricted within a narrow band (i.e. almost a constant) and when the sample size is
small. In this case, even if the correlation between the function of interest and the selection probability
function is strong, due to the limited sample size, the sampling error may dominate the selection bias

so that estimators that do consider the selection probabilities would have little practical advantage.

The naive estimator will be included in all the experimental studies in this thesis, for the behavior
of it may help identify when selection bias is indeed an issue and therefore help decide which scenarios

are meaningful to investigate.

2.1.2 The Horvitz-Thompson estimator: type 1

Unlike the naive estimator, the estimator originally given by Horvitz and Thompson (1952) weights
each observed y; with the inverse of the corresponding selection probability v; = v(x;), provided that

v;’s are available for all x;’s with r; = 1. This Horvitz-Thompson estimator is defined by

- L= il Yi
PHT, = = = (2.2)
n- v . ny;
=1 r;=1
Clearly, QZHTl is unbiased for the population mean ¢, since for all i = 1,2,...,n,

xH ~F [“(X)“‘)] — Blu(x)] = ¢ (2.3

v(x;)

El¥N ) _p| Y| g |g | Y
v; v(x;) v(x;)
and by the law of large numbers, it is also consistent for ¢.

Although $ mr, has arguably been the standard non-model based frequentist estimator for its sim-
plicity and being unbiased when selection bias is present, it bears two obvious drawbacks. The first
drawback is evident when all the y;’s equal some non-zero constant ¢ # 0, in which case quSHT1 does
not equal c¢. Clearly, this drawback makes $ T, hon-equivariant under certain affine transformations
of y;’s. For example, when y;’s are binary, reversing the coding, i.e. y7 = 1 — y;, will not give the
corresponding estimate 1 — QASHTl. Similarly, when y;’s are numerical, we will not get $HT1 +c, if y;’s
are measured from a different origin, i.e. y = y; + ¢ with ¢ # 0. The second flaw of (;ASHT1 is common
to all non-model based estimators which ignore the covariate vector x. Particularly, by averaging each
yiri/v; with an equal weight 1/n, all the units of observation are treated as equally important, which
is often not true in practice. Assuming all the units being equally important is another form of naivety
and could conceivably lead to severely inefficient results, especially when there are a large number of

clustered units due to randomness.
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2.1.3 The Horvitz-Thompson estimator: type 2

A variant of qASHTl that has been often used in practice in replacement of QZHTI is given by
"y " 7 1
-~ T i i
- A0 == 2 = 24
o, Z Vi /Z Vi Z Vz/z Vi 24)
=1 =1 i:r;=1 :r; =1

Although not unbiased, (EHT2 is still consistent for ¢, since by the strong law of large numbers, both
n Y yiri/vi — ¢and n~t Y| r;/v; — 1 with probability one. Note that like the naive estimator,

QASHT2 is not defined when all the r;’s equal zero.

One advantage of ¢ g7, over ¢, is its equivariance under all affine transformations. More clearly,

rewrite vas

(gHTz = ; (:/z; Z:) Yi (2.5)

Since Z?:l ( L/ ZZ 1 Vl) =1, ;é\HTz simply equals ¢ when all y;’s equal ¢, therefore is equivariant
under all affine transformations. The equivariance of 5 uT, is extensible to the situation when y is not

a constant but has a constant mean value, i.e. u(x) = ¢. In such a case,
n

Z(:/ZZ>y1X177X7L]
=1 i=1
2 [ T i T |
= ZE W/ZIVZ X1, Xn | X Ely;|x]
— ZE (Z:/Z:) X1,y Xn | X p(xX4)

n r n 7
T T
= E E —/E X1,...,Xp| X c=¢, foranyxq,...,x,. (2.6
: _(Vi i VZ-> 1 n & C or any X n ( )

Elpurn, [X1,...,%n] =

2.1.4 The Horvitz-Thompson estimator: type 3

The type 3 Horvitz-Thompson estimator replaces v; in ¢HT1 with v; /1, where ¥ = [ v(x)dFx(x) is

the marginal selection probability, and then averages /7 7 over only the observed units, as given by

N yzrz Y
bHT, = . VZ/ZZJ/Z - ff Z (2.7)

Note that like QZHTQ, CZHTg is not defined when ners = 0.

By the strong law of large numbers, </§HT3 is apparently consistent for ¢ as the other Horvitz-
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Thompson estimators. In addition, qAﬁHTS is conditionally unbiased given n.ry > 0, although not

unbiased marginally. Actually, qZAJ T is also conditionally unbiased given ry,72,..., 7, as long as nefr >
0. To show these, we first have

| = el - / e

pxi) (%) fx(xi
/y(xi)/w » / (xi) fx, (xi)dx; = ¢ (2.8)

Xi] in\Ri (xi[1)dx;

and then for all r1,7o,...,7, with Y7 | r; >0,
Eldur, | = B|— | > E |
HT3T17T27"‘7rn - neff ~, VZ/q)[} T1,72,...,Tn _neff Vz/w T1,72,...,Tn
- ZE[% ] Y o=¢ (2.9)
Neff r;=1 4 Neff ir;=1
This proves the conditional unbiasedness of (E HTs given ri,72,...,7, With nerr > 0. Then by
~ n ~
ElfbHTg > ri>0 :ElE[¢HT3|Tl7T27~-~;Tn} ‘>O] =0, (2.10)

(;ASHT3 is also unbiased given n.sy > 0.

2.1.5 Connection of Horvitz-Thompson estimators to importance sampling

Aside from being related to the original Horvitz-Thompson estimator $ HTy (;AS uT, and a HT, can also

be viewed as estimators based on importance sampling, a technique used in Monte Carlo simulations.

We start with a brief description of importance sampling; for more details, see Neal (2001). Suppose
we want to estimate the mean of the function h(a) with respect to the distribution f. However,
sampling from f is difficult. Instead, suppose that, sampling from an alternative distribution f* is
more convenient and the ratio of f/f* can be computed easily. With aq,...,a; sampled from f*, an

estimator for E¢[h(a)] can be constructed as

B[]V[ Zh az (],z /f (al). (2.11)
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hin is actually unbiased for E¢[h(a)], since

[*(a;) da;

*
/-\
(q
~

S| =
SIM—‘

Elhin] =

Z/ f(ai) da; = Eg[h(a)] (2.12)

Z fla)/f* all

31\'—‘

hra is called importance sampling estimator for E r[h(a)] and the ratio f(a;)/f*(a;) is called importance

weight.

Equation (2.11) requires complete knowledge of f and f*. When f and f* are only known up to
their normalizing constants, as is common for applications in Bayesian inference, replacing n in the

denominator by 2?21 f(ai)/f*(a;) results in the following alternative estimator for Ef[h(a)]

EIM =

Doy hlai)f(as)/ 1" (i) (2.13)
Yy flai)/ f(ai)

Iy is no longer unbiased but is still consistent for E r[h(a)] by the strong law of large numbers.

Now, recall that

3 yy (2.14)

r;=1

bHT, =
Neff

where ¢ = [v(x)dFx(x) = Pr(r; = 1). By simply noting that

v fx(x) fx(x)
vi fx(xq)vi/Y B fx|Ri(xi|1)' (2.15)

is the ratio of the marginal density function of x; to its conditional density function given r; = 1, (E HT,
is clearly an importance sampling estimator with f = fx and f* = fx|g(-|1). In other words, restricted
to those x;’s with y; observed, x;’s are considered as sampled from fx|g(:[1) (with 72 = n.ys) instead
of from fx. Being an importance sampling estimator alternatively proves that a T, is unbiased for ¢

given nepp > 0.

Similarly, with f = fx and f* = fx|g(-|1),

B, = zﬁz/z “%’/z%zm

iry=1 i 1 Vi irg=1 ¢

Therefore, (;ASHTZ is the type of importance sampling estimator when 1 is unavailable. It should be

noted that although (;AS HT, can be considered as an alternative to qAS a7, When 9 is unavailable, a HT, has
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its own merit of being equivariant under all affine transformations which (E HT, does not have.

2.1.6 MSE of types 1 and 3 Horvitz-Thompson estimators

In this subsection, I will derive the (asymptotic) mean squared errors (MSE) of 7, and ¢xr, for

estimating ¢ and then compare them. We start with two lemmas.

Lemma 2.1 Assume that v(x) > ¢ for all x where ( >0 and E[y*] < co. Then

Yi ¢
Bl =1 = 2
[Vz' " } (G
Yi A ¢
il =1) = =% 2.1
Var (Vi T 1) Y (2.16)
where
2
- / By %] fx (x) (2.17)
v(x)
is a finite constant not depending on 1.
Proof As noted earlier, fx|r(xi|r; = 1) = % Therefore,
E[‘%rizl - E|E| 2 xl} =1
Vi i L Lv(xi)
[ 11(x5) ] /M(X) fx(x)v(x) ¢
— E T, = 1 — dX = — 2.18
v T v (219
2 1 g2
2 P = L ; i 1
E{ 12 T 1_ E _E 2 (x) XZ:| T }
Ely?xfx )
- [ vt o e i S 2.19)
v2(x) ( (8 (8
And then,
Yi A ¢
Var <l/z T, = 1) = P (2.20)

Note that the finiteness of A is guaranteed by v(x) > ¢ > 0 and E[y?] < co. This completes the proof

of Lemma 2.1.

Lemma 2.2 Assume that ¢p > 0. Then

1
Neff

E

Z’I“i>0‘| :7211/1—’—0(11;/2)' (2.21)

i=1
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Proof We first note that when 1 = 1, n.yy = n with probability one and therefore

[neff

When 0 < 9 < 1, ﬁ is not defined if neyy = 0. However, since Pr(nesr = 0) = (1 — )™ goes to zero

Zr1>0]_E{ ! ] i (2.22)

Neff

exponentially fast, we can assign an arbitrary value to n—lff at nesr = 0 without causing any practical

concerns. Then, we have by the generalized central limit theorem that

1/neff - 1/nw

N(0,1), asn — o0 2.23
V(L =)/ (n)? oy 22
That is, for any Borel set A C R,
Pr (\/Zb”elff_ 1/’”2}) e A) —Pr(Z e A)+o(l) (2.24)
where Z ~ N(0,1). Therefore,
l/neff — 1/”’(/J
E =E[Z]+0(1)=0 2.25
[ma - w>/<nw>41 Ziret =otl 22)
And thus,
1 1 1
E [neff} oo +/np(1 — )/ (n)* x o(1) = o +o0 <W> : (2.26)

And since Pr(3°7, 7 = 0) = (1 — ¥)™ which goes to zero faster than O ( 3/2)

Neff

Zrl > 0} oy (113?0) . (2.27)

This completes the proof of Lemma 2.2.
The MSE of $ a7y, and $HT3 are given by Theorem 2.1 and Theorem 2.2, respectively.

Theorem 2.1 Assume that v(x) > ( for all x where ( > 0 and E[y*] < oo. Then ¢A5HT1 has the

following finite mean squared error

(1—v)¢? L ¥A- ¢?
ny ny

MSE(@nr,) = (2.28)

where A is as defined in (2.17).
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Proof Recall that aHT1 is unbiased for ¢. Therefore,

Var(aHTl )

E {Var ($HT1 71,72, ... ,rn)} + Var (E {QASHTI [r1, 72, ... ,TnD (2.29)

7’1,7‘2,...,7"n>

eff (A&
ro=1) =24 <¢ = Zz) : (2.30)

MSE(bu,)

From Lemma 2.1,

~ 1 &
Var(¢HT1|r1,r2,...,rn> = Var (nz_;yln/ul

Neff
e

and then,

i )] - o[ (4-)

ny (A ¢*\ YpA-¢°
F <¢ _ W) - (2.31)
Also from Lemma 2.1,
E $HT1|T17r27-~-arn:| = E :Lzyiri/yirh?ﬁ?v'-')rn]
i=1
= B [ymfr=1] = ”Jfg (2.32)
and then,
~ _ 2 _ 2
Var (E [¢HT1|7’1,7’2, e ,rnD = Var (nj{f Z) = ml)(jﬂﬂ ¥) % = ( HZ)¢ (2.33)
Therefore
—~ _ 2 42
MSE@Gur,) = L= v4-¢" (2:34)

n ny
This completes the proof of Theorem 2.1.
Theorem 2.2 Assume that v(x) > ¢ for all x where ( > 0 and E[y*] < co. Then $HT3 has the

following asymptotic mean squared error, regardless its undefined value when negy = Z?:l r; = 0.

~ A &2
MSE (¢HT3) - % +o <n31/2) (2.35)

where A is as defined in (2.17).
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Proof Recall that (EHT3 is unbiased for ¢ given Y " | r; > 0 or given r1,79,...,7, with > r; > 0.
Therefore,
N n N n
MSFE <¢HT3 Zri > O) = Var <¢HT3 Zri > O)
i=1 i=1

= E

n
Var (¢HT3\T1,7“27 R O Zri > 01

+ Var <E {ngTJTl, T, ... Tn

~

= E Var ng |71, 72,y T

)
]

= E Var( HTg\rl,rg,...,rn) Zri>0
)

i|T1,72, .-

= E

zr—l

- E v’ Var<y r1_1>

Neff 1)

yi/Vi T1,72,...,Tn

)
)

=1

Zn: ri > o] (2.36)

From Lemma 2.1,

n n

Zri>0] :(¢A—¢2)El 1 Zri>0] (2.37)

neff =1

=N 2 2
e (o ()

Xn:m>0> =E

i=1

and then,

MSE (dnry) = (1= (1=9)") (A~ )E [

‘Zr2>01

+ (1-v¢)"MSE <$HT3 Zn:m = 0) (2.38)

i=1

Neff

Since (1 —1)™ goes to zero faster than O ( —), regardless the undefined value of o HT, When Y o 1 =

0, from Lemma 2.2,

MSE (Q?HTS) _ @A-4 L, (1> (2.39)

n n3/2

This completes the proof of Theorem 2.2.
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From Theorem 2.1 and Theorem 2.2, we have that

MSEGur,) - MSE@ur,) = “‘n‘f‘b o (i) (2.40)

That is, for sufficiently large n,

MSE(¢rr,) > MSE(¢rr,), unless 1h =1 or ¢ =0. (2.41)

2.1.7 A short summary

Note that, in the situation where the observations are missing completely at random, i.e., when all

the selection probabilities equal a constant v, both (/5 T, and (E mT, reduce to the naive estimator, which

_1
Neff

estimator, which equals % Zizm:l y; in this situation ignores the number of actually observed y;’s,

takes a simple average of the observed y;, i.e. Zi:m:l y;. However, the original Horvitz-Thompson
ie. nesp = > 1. Ignoring the ancillary effective sample size n.yy = > ., 74, conflicts with the

conditionality principle, which has been widely accepted in both theory and practice.

Although the Horvitz-Thompson estimators have the merit of adjusting for the selection probabilities
through weighting, they have ignored all other possible aspects of variation among the covariates x;’s.
A regression model with appropriately chosen predictors could potentially produce estimates of higher
accuracy than the Horvitz-Thompson estimators. However, for a conventional regression model, e.g.
a polynomial regression model fit by least squares, the complexity and flexibility of the model must
be limited to avoid overfitting, especially in high dimensional situations. Instead, Gaussian process
regression, a non-parametric method, can model various aspects of the covariates more flexibly than
the traditional regression methods, without the risk of overfitting. Also, unlike the Horvitz-Thompson
estimators which treat all the units of observation as equally important, a Gaussian process regression
model will weight the importance of each x; by its distance from other covariates, and therefore could
be expected to be a more powerful method of inference. More detailed discussion on Gaussian process

regression will come in the next section.

We may also note that when nepr = > 1, 7; = 0, all the estimators introduced in this section except
$HT1 are not defined. In practice, the situation where Z?:l r; = 0 is of no interest. In numerical
experiments, when the simulated sample size is relatively small, " | 7, = 0 may happen by chance.
Then, to avoid numerical computer errors, we need to assign some values to these estimators when
>, ri = 0. However, which values to assign should not be a critical issue, since with reasonably large

sample size this situation may not happen at all. More about this issue will be discussed in Chapter 4.
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2.2 Bayesian inference using (Gaussian process models

This section will give a general introduction to Bayesian inference using Gaussian process models and
briefly discuss how Gaussian process models can be applied to the problem considered in this thesis.
Details on how to derive the posterior estimator for the population mean of the response variable and
how to implement Gaussian process models through Markov chain Monte Carlo (MCMC) algorithms
will be given in Chapter 3.

2.2.1 Gaussian process models

Gaussian process models are Bayesian models with Gaussian process priors. A Gaussian process is
a stochastic process whose values at any finite set of points have a multivariate Gaussian distribution.
All these multivariate Gaussian distributions must be compatible with each other, in the sense that
they produce the same marginal distributions for the same subsets of points. A Gaussian process is
entirely specified through a mean function and a covariance function, as a finite-dimensional multivariate

Gaussian distribution is entirely specified by a mean vector and a covariance matrix.

Gaussian process models have long been used for Bayesian regression analysis where the regression
predictors are assigned Gaussian process priors. Suppose h(x) is a function of interest for some random
variable z. For example, h(x) can be the mean function of the response variable y or the (selection)
probability function of the selection indicator r. h(x) can often be modeled through a latent function

g(x) (i-e. the predictor) as

h(x) = h(g(x)) (2.42)

where £ is the link function from g(x) to h(x). When z is binary, h can be, for example, the expit

function such that

1

hix) = ———. 2.43
)= T ey 249

When z is numerical, his typically the identity function such that
h(x) = g(x). (2.44)

In either case, the latent function g can be assigned Gaussian process priors. Then inference about

h(x) will be made through modeling g(x).

In practice, it is typical to let the prior mean of g(x) equal zero for all x, unless specific prior
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information is available. When E[g(x)] = 0 a priori for all x, the Gaussian process model is determined

by its covariance function

C(xi,%;) = Cov (9(xi), 9(x;)) - (2.45)

Typical covariance functions for Gaussian process models (Rasmussen and William, 2006; Neal, 1998)

include
d 2\ /2
Tik — Tjk
C(Xiaxj5037 NP lr) = 03 + Z)‘ixikwjk +nPexp — (Z <€k]> ) (2.46)
k=1 k=1
and
d |.I‘ e | r
C(thj;o-?)’ A27 772a E’ 7‘) = O-g + Z Ai'rlkxjk + 772 exp {_Z (W) } (247)
k=1 k=1
where

s, M=), n? L= (..., ), and 7 (2.48)

are hyperparameters which can be either fixed or assigned higher level priors. Note that the two types

of covariance functions above are equivalent when r =2 or d = 1.

With a covariance function given by (2.46) or (2.47), a Gaussian process model can be denoted by
GP(ag, A, 1%, £, ) (2.49)

It has been well-known (Rasmussen and William, 2006; Neal, 1998) that when 0 < r < 2, both of
these types of covariance functions are positive semi-definite. When r = 2, the corresponding (random)
functions produced by these covariance functions are analytic and therefore differentiable to infinite

order.

The covariance function is the crucial ingredient of a Gaussian process model, as it defined the
functions that can be fit by the observed data. The first two terms of the covariance function in
(2.46) or (2.47) are equivalent to a linear regression model and will be explained more in the next
subsection. The exponential term, the key component of the covariance function, determines all the
nonlinear effects and interactions in the function it can model, with the length-scale hyperparameters
£’s controlling the relevance of each covariate and the exponent r controlling the smoothness of the

produced function. The overall scaling hyperparameter n controls the magnitude of the exponential
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component or the marginal variance of the function produced with the exponential component only.

Some example functions produced by a one-dimensional (d = 1) Gaussian process model with the
covariance function (2.46) are illustrated in Figure 2.1. As shown in Figure 2.1 (a) and (b), functions
produced by an exponential covariance function with a length-scale ¢ equal to 1 look less wiggly than
those with a length-scale £ equal to 0.3, since with a larger length-scale, distant =’s are more correlated.
In Figure 2.1 (c), a constant term 02 = 1.5% is added to the covariance function, resulting a (random)
vertical shift to the functions that would have been produced without it. In addition to the constant
term, a linear term is included as in Figure 2.1 (d) where all the functions exhibit a (random) linear

trend.

o~ o~

h h

< <

) )
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2

(@) (b)

< - < o

NA/\_/_\/V\/\/\/_\/ o

o - o -

o~ o~

h )

< <+

) )

(c) (d)

Figure 2.1: Three sample functions from each of the following Gaussian process priors: (a) C(z;,z;) =
exp{—(zi — z;)*}; (b) Clwi,x;) = exp{=(55*)%}; (¢) Clwi,z;) = 1.5 + 0.4% exp{—(Z55*)*}; (d)
1.5% +1.2%z,x; 4 0.4% exp{ — (552 )?}.

In this thesis, a slightly modified version of (2.47) will be considered as

d
O(xi, %5308, N2, n°, £, 1) = 0p + Z)\kxmxjk—l—n exp{ Z(|xzk :Ejk|) } (2.50)

lc 1 k=1

.,
This covariance function has A\iz;,z ;) and (%) averaged over the d dimensions. The merit of
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™
having the averages instead of the sums of )\imik:vjk’s and (Iwkp;kwl) ’s is that the correlation between
g(x;) and g(x;) will be more stable as the dimensionality d changes, assuming that z1, 2, ..., x4 have
the same marginal distributions for each value of d, the linear coefficients A1, A2 ..., Aq have the same

marginal priors, and the length-scale hyperparameters 1,15 ..., [; have the same marginal priors.

2.2.2 Connection to conventional regression

Gaussian process regression models are more sophisticated and flexible than conventional regression
models in that it can model complex functions without incurring overfitting issues. However, it still
has some connection to the classical regression models. Indeed, the classical models can be considered
as simple cases of the Gaussian process models. To illustrate the connection, consider the following

multiple linear regression model.

Yi = Po+Lixia + Boxip + -+ BaTia T €, i=1,...,n (2.51)
= f(x)+e, i=1,...,n (2.52)

where
f(xi) = Po + Bixi1 + Boia + -+ - + Batia (2.53)

is the linear predictor at the observation x; and the noises ¢;’s are i.i.d. with normal distribution

N(0,62). Suppose we assign independent Gaussian priors to the parameters 3;, i = 0,1,...,d, with

zero means and variances 02-2, 1=0,1,...,d. That is,
Bo~N(0,08) L B ~N(@0,07) L - L Bg~N(0,07) (2.54)
Then, given the covariates x; = (%;1,..., %), ¢ = 1,2,...,n, the linear predictors at each x; will have

a multivariate normal prior with a zero mean vector and a covariance matrix equal to

Cov ( [ f(Xl), f(X2)7 S f(xn) ]T )

d
op + Z Ufl’ikxjk] ) (2.55)
k=1 i

= Cov(Xp) = XCov(B)XT =
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where

1 z11 -+ @14
1 xo1r -+ @og

x=| T (2.56)
1 Tpl - Tnd

Clearly, the above covariance matrix corresponds to the first two terms of the Gaussian process
covariance functions given by (2.46), (2.47) and (2.50). This correspondence also explains why the first
two terms of those covariance functions superimpose a constant shift and a linear trend on the functions
produced with only the exponential part of the covariance function as shown in Figure 2.1 (¢) and (d).
The exponential component of the covariance function produces more complex functions than a single
linear regression model does, with the overall scaling hyperparameter n controlling the magnitude of
this exponential part of the whole function. Because of its flexibility, Gaussian process models with

covariance functions defined by (2.46), (2.47) or (2.50), are considered non-parametric models.

2.2.3 Modeling two correlated functions

For the problem considered in this thesis, we need to model not only the mean function u(x) of y,
but also the selection probability function v(x) and their correlation. Two strategies for incorporating
the selection probability through Gaussian process models will be discussed in this subsection and next

subsection, respectively.

Since v(x) may be correlated with u(x), assigning dependent priors may be an effective way for mod-
eling the correlation between these two functions. Let g, and g, be the latent functions corresponding

to p(x) and v(z), respectively. That is,

w(x) = ilgu) = ilgu(z)) (2.57)
V(X) = ’;(gu) = D(gu(x)) (258)

where [i and ¥ are the link functions from the latent functions g,, and g, to pu(x) and v(x), respectively.

As mentioned earlier, when y is numerical, fi is simply the identity function. Next, define g, and g, by

gu=91+9g0 and g, = g2+ go (2.59)

where, given hyperparameters, g1, g2 and go are functions with independent Gaussian process priors.
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That is,

g1 ~ gpl = gP(US,l? )‘%a 77%7 Ela rl) L

gs ~ gP2 = gP(US,27 >‘37 77%» 627 T2) i

g~ GPo=gP(050, b 15, Lo 7o) (2.60)
given 0(2)7,1, A= (Ay, A2, 2y U= (hy .oy lha)s Thy h=1,2,0. In general, g1, g2 and go may

not necessarily be marginally independent, since g1, g2 and gy may have some of the hyperparameters
equal, or their hyperparameters may be dependent a priori with higher level priors. With the above

strategy, g, and g, are correlated a priori through go.

For particular covariates x1,--- , X, denote the corresponding values of the latent functions g, and
gy by
gu(x1) Iu,1 gu(x1) v,
g 9 (?cz) _ g;f,z and g — | * (.XQ) _ gu.,2 | (261)
9u(Xn) Yun 9v(Xn) Jun

By the strategy (2.59), the latent vectors g,(L") and g™ will have the following joint multivariate

Gaussian distribution

(m Ki+ K K
g‘( |~ (o, L 0 (2.62)
g Ky K> + Ky
where
Kp = [C(xi,%j300 1, Afy My n,s rh)]ij, h=1,2,0 (2.63)

with the covariance function C’(xi,xj;aah7 A2, m2, Ly, 1) defined by (2.46), (2.47) or (2.50).

When the response variable y is real-valued, a noise term should be added into the regression model

y=p(x)+e=gu(x)+e (2.64)

where € typically has a Gaussian distribution N'(0,62). The noise standard deviation ¢ can either be a
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fixed constant or be adaptable with a prior distribution that is independent of the latent function g,,.

The strategy described above, however, has its limitation. Particularly, by (2.59), prior correlations
between g, (x) and g, (x) are always positive for all x’s. If instead, let g, = g2 — go, all the correlations
will be negative. However, in practice, we may not know whether g, and g, should be positively or
negatively correlated. Nevertheless, this scheme is simple and yet will help reveal the fundamental
issues involved. Some discussion on how to expand this strategy for more general situations are given

in the last chapter of the thesis.

2.2.4 Using selection probability as a covariate

Instead of modeling p(x) and v(x) jointly with dependent priors, one can alternatively use the
selection probability v(x) or a transformation of it as an additional covariate. More specifically, let
Za+1 = h(v(x)) and x* = (21,22, ...,Z4, Tat+1), where h is some inversible transformation. (Note that
non-inversible h is also useful, but v(x) would not be fully exploited.) With x* being the covariate

vector, p(x) can be re-written as

p(x) = figu(x)) = i (g, (x, h (v(x)))) = p*(x") (2.65)

where g, is a function with d arguments, 1, ..., ¥4, while g, has d+1 arguments, z1, ..., Z4, T4+1. Note
that it is g, that will be assigned Gaussian process priors with the (d+ 1)-dimensional covariate vector
x*. With a Gaussian process model, the selection of h is less crucial compared to some existing methods
that also use h(v(x)) as an additional covariate, since the Gaussian process model will automatically
figure out the best relationship between p*(x*) and its covariate 441 = h (v(x)). Particularly, h (v(x))

does not have to be the inverse selection probability that is popularly used in the literature.

Compared to the strategy (2.59) described in the previous subsection, this strategy only has one
Gaussian process model and therefore is conceivably easier to implement and faster to compute. How-
ever, with the selection probability as an additional covariate, this strategy requires knowledge of the
selection probability function v(x) for at least the observed x’s. It is also often desired that p*(x*)
can be predicted at all x* or at a fairly large number of x* so that the error due to approximating
an integral by a finite sum can be reduced to a minimum degree by averaging p*(x*) over all these
x*. The strategy defined by (2.59), however, does not require knowing any v values by modeling the
selection probability function v(x) simultaneously, although knowing some v values may help improve

the efficiency of the estimation. Therefore, the strategy (2.59) has wider applications.

When the selection probability v is used as an additional covariate, the covariance function (2.50)
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becomes
L&
L2 42 .2 _ 2 2 2
C(X;‘»X;‘, 90> A%, n, l, T) = 05+ E Z /\kxikxjk + )‘d+1xi7d+1zjvd+1
k=1
5 U (o — el (Jzian = 25an]\"
+ n°exp ffz _ ] - | (2.66)
d P £y Las1
where x = (21,...,%id, Ti,d+1) and X = (j1, .-y Tjds Tjar1) With ;911 = h(v(x;)) and 25,441 =

h(v(x;)) being the additional covariates and h being some inverse function. Note that z; ¢q+1 and ;441
T
are not included in count of covariates for scaling A\iz;xzj; and (Iw’“%kw““l) . And for k = 1,....,d,

T
N and (lm’“;im]’“l) are still scaled by d instead of d + 1, so that the approach that uses the

k

selection probability as a covariate is more directly comparable to the approaches that do not, in the

sense that they treat the d-dimensional covariate vector x the same way.



Chapter 3

Implementing (Gaussian process

models

In Bayesian analysis, it is typical to estimate an unknown quantity, e.g. the population mean ¢,
by its posterior mean value given the observed data. However, with Gaussian process priors, one can
rarely obtain the analytical form for the posterior distribution of the quantity of interest or for the
posterior distribution of the corresponding latent function. Therefore, Monte Carlo methods, typically
Markov chain Monte Carlo (MCMC) sampling, are essential for implementing the Gaussian process
models. This chapter first discusses how inference can be made for the population mean ¢, assuming
an MCMC sample are already obtained from the posterior distribution of the latent vectors gl(]l) and
g,(,n) , where g,(fb) and g,(,") are defined as in (2.61). Description of the adopted MCMC sampling schemes

and how to implement them follow next.

3.1 Inference from the posterior distribution

This section first derives the formulas for the estimators for the population mean based on the
Gaussian process models discussed in Section 2.2, and then analyzes the different sources of errors
involved in these estimators.

3.1.1 Obtaining the estimators for the population mean

In this subsection, the formula for the estimator for the population mean ¢ is first derived under

the strategy (2.59) as in Subsection 2.2.3, with both the mean function p and the selection probability

25



8 Implementing Gaussian process models 26

function v being modeled. The formulas for the estimator under the same strategy (2.59) but with v
known, for the estimator that ignores v, and for the estimator that uses the known v as a covariate as

in Subsection 2.2.4 are special cases of the first formula as will be illustrated later.

Recall that

o= / ) dFx = / i(9.(x)) dFx = $(g,) (3.1)

which is a functional of the latent function g,. Therefore, the estimation of the posterior mean of ¢

(n)
m

will be based on the posterior distribution of the latent vectors g, ’ and gl(,") and the conditional dis-

tribution of the latent function g, given the latent vectors g,&n) and g(yn) Given the observations D,

(x1,91,71), -+, (Xn,¥y1,7n), denote the joint posterior distribution ofg ) and gy by P(g, (n) gl, \D ).
Given the hyperparameters of ,, A\i = (Ajys- s A2q)s s bn = (Cn1s- -5 €na), hy b = 1,2,0, de-
note the conditional distribution of the latent function g, given the latent vectors gu ) and g,(, ") by

P(g,| g“ ,g(un)) Note that P(gu | gu ) gl )) is a functional of the latent function g,. For any particular
x = (xl, cey ), (gu | g# ) gln )) reduces to the conditional distribution of the latent variable g, (x)

given gu ) and g,, , which is

Plgu(x) | g g5") ~ N (me (xigl, 80" ve(x)) (3.2)
where
o \ " o m
(x gfi"),g(u”))) [ o fatfo o Bu (3.3)
kSZ}Z Ky Ky + Ky gl
and
ORN D
Ky, K+ K K, kx
V(%) = kypy — " Lo 0 " (3.4)

k(") Ko  Ky+ Ko k(")
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with Kp, h =1,2,0, defined as in (2.63) and

kxpy = Var(gu(x)) = C(x,x;08 1, AT, 07, b1,m)

= og+ Z Aeth 4117 (3.5)
kX”ZI,L)L = [COV(QM (X)7 9u (Xz))]l

= [C(X7Xi;o-(2)7la)‘%a7’%76177”1) +C(vai;o—(Q),O’)‘(2)777(2]760?7'0)]7; (36)
k) = [Cov(gu(x), 90(xi))];

= [C(X7Xi;0(2)70a)‘gan§7€07700)}i (37)

Then the posterior mean of ¢, denoted by ¢post = E[¢|D,,], can be expressed as

bpos = [ ([ ([ ono) drxi)) aPla, |0.)) aP(ef? e 10,
= [ ([ ([ itonton aptan | 52,6 arx)) apeg,efe0,)

= [ ([ B[aa60 1 60.] aro) are el D) (3.5
Clearly three steps of computations are involved in obtaining ¢p.s:. First, we need to obtain
B [0, | i & | = [ (90) dP (9,00 £ 57) (39)
for each x. According to (3.2), when fi is the identity function, we simply have

B (9,00 | 80, 80"] = me (xg 80" (3.10)

where m, (X gLn),gg'L)> is as in (3.3). When [ is the probit function, i.e. i = ®, analytic result can

be obtained for E [[L(g#(x)) | gLn)7 gy(/n)}

(X g}(}:n) 7 gl(jn))

1+ ve(x)

E[i9.(x) | 8”80 | = @ (3.11)

where m, (X g,(L ), gz(jn)) and v.(x) are as in (3.3) and (3.4), respectively.



8 Implementing Gaussian process models 28

Proof of (3.11) Consider

1 1
P = (_p)2
271'0/ (x)exp{ 202(35 ) }dm
1 2
= 27m/ / exp{ ~ 3 (x—a) }dyda;
outo
— 1, 1, -0
= QW[MKM exp{ gy — U }dydu, where u = -

) 0
Vito2 y—ou oy +u
= w)p(v) dw dv, where w = ——=, v = ——
[T st N

o (\/Iij) (3.12)

This completes the proof of 3.11.

In general, (3.9) can not be obtained analytically. Then E [/l(g# (x)) | g;(fl),gl(/n)} needs to be esti-

mated by numerical methods. One good scheme for estimating E {ﬁ(g#(X)) | g;&n), gz(/”)} is to average

fi(g,(x)) over equally spaced quantiles of P <9u( )| gu ,g(n)) Note that, since P (g (%) | gu ,g,(,n))

is a one-dimensional normal distribution, its quantiles can be easily obtained. Let g1,...,gs be the
05 L5 5203 guantiles of P (gu( )] g# ,g,(,n)) Then,

zn: (3.13)

31\'—‘

B [i(gu(x)) | &, 80| ~

The error of estimating E [[L( (%)) | gu ,g(n)] by (3.13) converges to zero at a rate proportional to

St
o=

Second, we need to estimate

e (87 807) = [ B [lo,0) | el 8] dx(x) (3.14)

where E |fi(g,(x )\gu ,g,(,")} is either in its exact form as in (3.10) or (3.11) or in the estimated form

as in (3.13). When Fx is available, we may sample X7, -+, X} e Fx with N much larger than the

sample size n and then estimate @cong (gLn), gz(/n)) by averaging over x; as

Peond (gff‘),gy ) ;,i [ ) g, gl )] (3.15)

When Fx is not available, ¢cong (g/(,l,n)vgl(/n)) will be estimated using the observed x only and (3.15)
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becomes

beond (gu),gi")> ~ %Zﬂ(gu(xj)) (3.16)
j=1

where (g, (x1), ... ,gu(xn))T = gftn) and the step of computing E [ﬂ(gu (x)|gftn), g,(,n) has been skipped.

Third, we need to estimate
Sport = [ Geona (27 88") AP(g( £ |D,) (3.17)

where @cond (g&n),g,(, )) is as in (3.14). Estimating [ @cond (g&n)yg(un)) dP(gffL 7gy )|D )] requires an
MCMC sample of gH ) and gy given the observations D,,. Suppose we have the following MCMC
sample of size B drawn from P(g&"), g )|D )

(n) (n) (n)

gp, 1 g/L 2 gu B
K o | ) (3.18)
gv 1 gl/ 2 gl/ B
where
9u,1,b guv,1,b
9u,2,b 9v,2.b
g =" and g = , ,b=1,2,...,B. (3.19)
gu,n,b gz/,n,b
Then ¢p0st can be estimated by
1B
Bpost = / Geond (81”807 ) dP(g(", 80" |Dn) ~ = 3" deona (2117875 ) (3.20)
b=1

where dcong (gf‘",z, g(unb)) s can be estimated by either (3.15) or (3.16).

Now, we have obtained all the three steps of computations for the posterior mean ¢p,s¢ of ¢. The
three steps are summarized in the following formulas with $post denoting the estimator for ¢pos:. When

sampling additional x7,...,x} from Fx is possible, we have

B N n n ~ .. .
EY A Y hame (x5l el ). iisidentity
~ 1 B 1 N Me (x gf:z,b) g(nb)) . )
¢p08t = B Zb:l N Zj:l (b T(x) , M1S prOblt (321)

B LY ~ Z] 15 2ot F(Gj.0,8)s otherwise
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where mc( ],gig,ginb)) and v.(x}) are as in (3.2) and Gjp1,--.,0j,p,n are the 2 ﬁ , 17;5’7 el h_ﬁ0'5
quantiles of P (gu( il g# . gl(, b)) When sampling x7, ..., x} from Fx is not possible, we have

d)post - % Z % Z g;t 7 b (322)

b=1 = j=1

where (G165 - - Gump)’ = gL g

As noted, (3.21) and (3.22) are derived when both the mean function and the selection probabil-
ity function v are modeled by the strategy (2.59). By the same strategy (2.59), when v is known,
,(jb)’s in (3.21) become the fixed g,(,") corresponding to the known values of v at x1,...,x,. When
the selection probability is ignored, P (gu(x;) | gl(:bg, gi"b) ) reduces to P (g (x7) | g ) Consequently
me (X gl(L 2, g£ b)) reduces to m, <X gl(t g) as the mean of g, (x) with respect to P (gu( B g, b) and
ve(x}) also becomes the variance of g, (x) with respect to P (gu(x}‘) | gflng) When the selection prob-
ability is used as a covariate, the formula (3.21) is in the same form as when the selection probability is
ignored, except that the covariate vector x becomes (d+ 1)-dimensional with the additional covariate is
an inversible transformation of v as discussed in Subsection 2.2.4. In all situations, the formula (3.22)

remains in the same form but with gLng’s sampled from different posterior distributions.

3.1.2 Sources of errors involved in estimating the population mean

The three steps of computing (EPOSt involve different degrees of errors. When computing
E [u( (X ))|g# ,g(")}, if {1 is the identity or the probit function, exact result can be obtained. When
E [[L(g,t(x))|gu ,g,(,n)} is estimated using (3.13), the error of estimation converges to zero at a rate
proportional to ~2 Since the time taken by estimating E |fi(g,(x))] g&"), g,(,n) using (3.13) is negligible
compared to the time taken by MCMC sampling, 7 can be chosen arbitrarily large so that the error

involved in this step is negligible compared to the errors involved in the other two steps.

The error of estimation involved in estimating (3.14) using (3.16) can not be controlled or evaluated,
since the x; used for estimation are fixed over MCMC iterations. Instead, when (3.15) is used for
estimating (3.14), if N is large enough, the error involved in this step of estimation is negligible compared
to the error due to MCMC sampling. However, when x is high-dimensional, sampling a sufficiently
large number NN of x}’s can be computationally costing (e.g. taking too much computer memory space).

Alternatively, instead of using fixed x7,...,x} for all MCMC iterations, x7,...,x} can be sampled
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independently for each MCMC iteration. With independently selected x7’s, (3.21) becomes

B N I .
% Dbt % ijl Me ( X b gL 2, ginb)) [t is identity

~ (n (n)
_ 1 B 1 N ( 5,608,680 ~. .
Ppost =\ B 2pe1 N 21 P (Hv(x]b) ;s probit (3.23)
Bk .
B Zb 1N Z] 13 2sm1 (T 0s)s otherwise
where X7 ..., X}, are the random sample of x at each iteration b and g7, {,...,d}, 7 are the corre-

sponding quantiles of P (gu(x;}b) | gftng, gl(,"b)) Denote

N n n ~ .. .
%ijl me ( jb,gftg,g(yb)) [ is identity
2 1 &N me (5.8 80 ) . .
¢cond,b = N Z]:l P T{;]b) , M1S problt b= 1, ey B (324)

N Z] 15 et (G5 6): otherwise

Then @wst is the MCMC sample average of ;é\wnd,h ceey 500"(17 B, that is,

B
¢p08t - E bz cond,b- (325)

Since xj ;s vary randomly at each iteration b, the error due to estimating (3.14) using (3.15) also varies
randomly over the MCMC iterations. Then this source of error is part of the random uncertainty
of acond’h .. .,qAﬁcond) B and therefore can be evaluated through evaluating the standard deviation of
¢?md,1, .. 7$cond,B~ The error due to estimating (3.17) using a finite MCMC sample is the major
contributor to the overall error involved in computing gZ,,ost by either (3.23) or (3.22). But the error

due to MCMC sampling can also be evaluated through evaluating the standard deviation of (Econd’b’s.

The standard deviation of q@condﬁ’s can be estimated as follows.

~ 2
d'(¢cond,b) ~ Z (¢cond b — ¢post)
7B
B
1 1 —~ 2
= 73/7_3 1 Z B (¢cond b — ¢post) (326)
where 75 is the autocorrelation time of {qz?cond’l, cee ac(md, p} and B/7p is the corresponding effective

sample size of {&md,l, cee (Econd, B}. Then the standard error of g/b\post, i.e. the estimated standard
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deviation of (Zposh can be obtained by

- 1 B
s.e.(Ppost) = s.e. (BZ wnd’b)

- \/3/17'3 X <S’d'($w”d’b))2
B
b=

1 1 ~ —~ 2
% <.B—TB Z <¢cond,b - ¢post) > . (327)

1

Various methods of estimating 7z are available in the literature and will be discussed in the next
section. It is noted that the error of estimation for 75 has nothing to do with the standard deviation

of apost, but only affects the accuracy of the estimated standard deviation of g’gpost, s.e.(gfb\post).

3.2 MCMC algorithms for implementing Gaussian process

models

In practice, we normally do not have enough information to fix the hyperparameters in a Gaussian
process model. Instead, we need to assign priors to the hyperparameters at a higher level so that the
hyperparameters can also be updated according to the observed data. Therefore, we need to alternate
between two steps of Markov chain Monte Carlo (MCMC) updating: 1) updating the hyperparameters
given the current latent vector(s) and the observed data; 2) updating the latent vector(s) given the
current hyperparameters and the observed data. This section will first describe the respective MCMC
algorithms for the two steps of updating and then explain how to combine these two steps. The
initializing policy and the stopping rule for MCMC updating will also be discussed in the end of this

section.

3.2.1 Univariate slice sampling

Univariate slice sampling (Neal, 2003) is a good choice for sampling one hyperparameter at a time,
given the latent vector(s) and the other hyperparameters. Compared to Metropolis-Hastings sampling,
univariate slice sampling does not depend crucially on the choice of a scaling parameter and is therefore

easier to tune, especially when the spread of the target distribution varies over the MCMC iterations.

Suppose we need to sample from a univariate distribution f(y) where f(y) is known only up to the
normalizing constant. The one-step univariate slice sampling for sampling from f(y) is illustrated in

Figure 3.1.
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Algorithm 1

Input: current state y
output: new state yx

1. Choose a step width w (not dramatically crucial)

2. Determine the slice
u ~ Unif]0,1]
logz « logf(y)+logu

(ie. z ~ Unif(0, f(y)])
3. Determine the interval to sample from

u~ Unif(0,w)
L—y—u; R—y+w—-u
Propose y* from Unif(L, R)
If log(f(y™)) > log(z): accept and return y*
Else: if y* >y, R« y" else L «— y*
Go back to step 4

o ot

Figure 3.1: Univariate slice sampling

3.2.2 Metropolis-Hastings sampling with proposal from the prior

The well known multivariate Metropolis-Hastings (MH) algorithm (Hastings, 1970) may be suitable
for sampling the latent vectors given the hyperparameters and the observed data. However, it requires
a careful choice of the proposal distribution. A possible good choice for the proposal distribution is
based on the (joint) prior of the latent vector(s) which is a multivariate Gaussian distribution as given
in (2.62). For simplicity, denote the (joint) prior distribution of the latent vector(s) by m(g) ~ AN (0, X)

. We can then select v ~ 7(g) and propose
gi=(1-e)Ygtev (3.28)

where 0 < € < 1 is a scaling constant (Neal, 1998). The transition from g to the proposed g* follows a

normal distribution with a mean vector (1 — ¢?)!/2g and a covariance matrix €2¥.

Let T(g*; g) be the transition probability from g to g*. Then T'(g*;g) satisfies the detailed balance
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with respect to 7(g) ~ N(0,X) as shown by the following.

1 1 pey
ICERSE p{ 38> »
<27re>1nlzéep{ (8" (L= )y (@x) (g - 1 62)1/2g>}

X
(2m)" (S| (2me)n |7

2 2
1

1

X
CeRPHEORPE

1 1
exp {gTzlg . 7672g*T271g* 4 672(1 o 62)1/2gT271g* - *(672 o 1)gTzlg}

1 1
exp {_QG_QETZ_lg - 56_2g*T§3_1g* +e (1 - 62)1/2gT§]_1g*}

= n(g") T(g:8"), (3.29)

where the last equation is obvious since the preceding expression is symmetric in g and g*. The detailed
balance of T(g*;g) with respect to 7(g) results in an acceptance probability « that only depends on
the likelihood function L as shown by

o (URED ) () o

However, the scaling parameter € needs to be carefully selected for obtaining good performance. An

alternative method that automatically selects the scaling parameter is given in the next subsection.

3.2.3 Elliptical slice sampling

The elliptical slice sampling (ESS) scheme by Murray, Adams and MacKay (2010) automatizes the
selection of € in the previous Metropolis-Hastings sampling, by applying the slice sampling on an ellipse
so that € can be chosen by uniformly sampling 6 from the ellipse with € = cos . The algorithm of the

ESS is described in Figure 3.2.

The elliptical slice sampling algorithm illustrated in Figure 3.2 is only suitable for Gaussian priors
with a zero mean vector. When the latent vector g has a non-zero prior mean a, this algorithm needs

to be slightly modified as shown in Figure 3.3.
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Algorithm 2

Input: current state g
output: new state g*.

1. Choose ellipse: v ~ N(0,X)
2. Determine Log-likelihood threshold:

u ~ Unif[0,1]
logz « logL(g)+logu
(e =~ Unifl0, L(g)

3. Draw an initial proposal, also defining a bracket:

0 ~ Unif[0,2n]
[emiru amaac] — [9 — 2, 9]

4. Let g* <+ gcosf + vsinf
5. If log L(g*) > log z: Accept and return g*

6. else: Shrink the bracket and try a new point: if 8 < 0 then 0,,in < 0 else Opaz «— 6
7. Go to step 4

Figure 3.2: Elliptical slice sampling.

Algorithm 2.1

Input: current state g, with prior V'(a,X).
output: update state g*.

1. Let g=g—a
2. Update § — g* using Algorithm 2.
3. Return g* =g* + a

Figure 3.3: Elliptical slice sampling with non-zero prior mean.

3.2.4 Combining univariate slice sampling and elliptical slice sampling

As discussed earlier, the hyperparameters and the latent vector(s) need to be updated alternately.
More specifically, each hyperparameter will be updated using Algorithm 1; after updating each hyper-
parameter, the latent vector(s) will be updated for a fixed number (e.g. 5) of times using Algorithm
2 or 2.1; then the next hyperparameter will be updated using Algorithm 1 until all the hyperparam-
eters have been updated once. The latest values of the hyperparameters and the latent vector(s) form
one MCMC iteration. Figure 3.4 illustrates the combined algorithm of univariate slice sampling and

elliptical slice sampling for alternately updating the hyperparameters and the latent vector(s).
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Algorithm 3

Input: current states: latent vector g and hyperparameter (1, (2, ..., (&
Output: new states: latent vector g and hyperparameter ¢, (5, ..., ¢

1. Update hyperparameter (1 — (i using Algorithm 1
2. Update latent vector g — g*! using Algorithm 2 or 2.1 for s iterations (e.g. s = 5).

3. Repeat steps 1-2 alternately for (2, ..., (k:
-G, gt =g, GG g Y g
4. Return ¢1%, ¢3, ..., (f and g* = g**

Figure 3.4: Combining univariate slice sampling and elliptical slice sampling.

3.2.5 Initializing and stopping MCMC updating

There are multiple ways of initializing a MCMC updating. For the experiments and the example
considered in this thesis, all the hyperparameters that need to be updated will be initialized with the
mean values of their corresponding prior distributions; the latent vector(s) will be initialized with the
vector of zeros. Given these initial values, the latent vector(s) will first be updated for 100 times using
Algorithm 2 or 2.1 so that the latent vector(s) can be well catered to the observed data. The latest
latent vector(s) will be considered as the new initial values. Then the hyperparameters and the latent
vector(s) will be updated using Algorithm 3. The updating will be stopped when enough iterations
have been obtained. With all the iterations obtained, an initial portion (e.g. 1/5) should be discarded

since at these initial iterations the MCMC sampling may not have converged well.

The desired number of iterations is determined by the desired effective sample sizes of the MCMC
sample of the population mean ¢ and of the MCMC samples of various other functions of the hyperpa-
rameters and the latent vector(s). The effective sample size of a MCMC sample equals the number of
MCMC iterations (after discarding the non-convergent initial portion) divided by its autocorrelation
time. To estimate the autocorrelation time, the autoregression method by Thompson (2010) will be
adopted for its demonstrated advantage over other available methods. For the experiments and the
example considered in this thesis, 100 will be chosen as the desired effective MCMC sample size for ¢
and 20 is chosen for all the other functions of state considered. If time allows, one can, of course, obtain

larger effective sizes by running MCMC updating for longer time to achieve more accurate estimation.



Chapter 4

Experimental studies

This chapter investigates, through computer simulated experiments, the behaviors of the Gaussian
process estimators as described in Section 2.2 with comparison to the Horvitz-Thompson estimators
and the naive estimator. In Section 4.1, only the non-model based Horvitz-Thompson estimators
and naive estimator are studied in a very simple scenario. High-dimensional experiments with both
the Gaussian process estimators and the non-model based estimators are carried out under various

scenarios in Section 4.2. An example from the literature is also studied in Section 4.3.

Recall that with n iid observations (x;,¥;,7:), ¢ = 1,...,n, the non-model based estimators are

defined as
n n
(bnaive = Zyzrz/zrz
i=1 i=1
1 o=y
~ _ 1 T4
T, = nz v
=1
i YiT "y
~ . i Ti
onr = 2NN/
i=1 =1
our, = YU 3
1

i=1 i=1

where v; is the selection probability at x; and ¢ = [ v(x)dFx(x) is the marginal selection probability.
As mentioned earlier that these estimators (except (E gt ) are not defined when Y " | r; = 0. Although
the case where all the observations are missing is of no practical interest, to avoid numerical errors in

computer simulations, let

n
¢nai'ue = ¢HT2 = ¢HT3 = 01 when Zri =0
1=1

37
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through all the experiments and the example considered in this thesis.

4.1 Non-model based estimators in a special scenario

This section studies the Horvitz-Thompson estimators as well as the naive estimator in a simple
special scenario described next. Consider a partition of the covariate vector space X into two subspaces,

X = A U Xy, as shown in Figure 4.1. Let p = 0 and v = vy, when x € Xy and ¢ = 1 and v = vy,

Figure 4.1: The special scenario: X = X U X,

when x € X;. Then u and v are perfectly correlated (unless vy = 1v41). Let py = Pr(x € Ap) and
p1 = Pr(x € X1). Then

6 = [ uxirx=p

Y = /V(X)de = povo + P11 (4.1)
Note that since u =0 for all x € Xy and p =1 for all x € X7, y is fully determined by x as
Pr(y=0x€ Xp)=1 and Priy=1jx€ X;) =1 (4.2)

Because of this, $ uT, does not depend on vy as shown by

~ 1 Zn yiri 1 Z Oxmr; 1 Z yiry 1 Z YiTi
— —_ = — — z = — 4'
Ouy n v; n vy + n vy W 21 (4.3)
11X |

i=1 i:x; €Xo % EXY

However, if we flip y around, i.e. let y* = 1 —y, then it is v; rather than vy that QZHTI does not depend

on. This is not surprising, due to the non-equivariance of ¢, under certain affine transformations.
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To compare the Horvitz-Thompson estimators under this special scenario, we first look at their

(asymptotic) mean square errors (MSE). Numerical studies through computer simulations follow next.

4.1.1 MSE of the Horvitz-Thompson estimators

First consider two trivial cases, where p; = 0 or 1. When p; = 0, all estimators equal zero and

estimate ¢ perfectly.

When p; = 1, we have

0, if Z?:l T, = 0

(4.4)
]., if Z?:l T 7& 0

¢naive = ¢HT2 = d)HTg =

That is, qAﬁnawe, (EHT2 and (EHT3 estimate ¢ = p; = 1 almost perfectly except when all the observations
are missing, which happens with a probability (1 — v1)™ — 0 as n — oo. Therefore, the above three

estimators have their mean square error equal to the probability that Z?zl r; = 0, that is,
MSE($naive) = MSE(¢rt,) = MSE(pr,) = (1 — 11)" (4.5)

When p; = 1, we also have

R "
oHT, = Zl;l; (4.6)

nry

with an MSE equal to

MSE((EHTl) — Var(;gHTl) = Var (E?—l Ti) _ TLV1(1 - Vl) _ 1-— 141

= - (4.7)

n2v? nyy
where the first equation is due to qAS g7, being unbiased. (;AS mr, in (4.6) can be viewed as the ratio of the
number of observed y’s to the expected number of observed y’s.

For general p; values, following directly from (2.28) and (2.35), we have

2

~ 1 wopopr | (L—)pi 1 wopopr + (1 — ¢p)vip?
MSE = — -
SE(ér) ny 1 * nap nap vy
_ 1 wopops +vip? —dwapt 1 Ypr—Yupl  pi(l—vapa) (4.8)
n vy nap vy nvy '

and

MSE@HR):@VOi?lero( = ) (4.9)
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Comparing (4.8) and (4.9), we expect that for reasonably large n, $ T, would dominate qAﬁ HT, in terms

of MSE, unless 9 =1 or p; = 0.

Rewrite (4.9) as

~ 1 vopops VopoP1 Pop1

( ) ny n(povo + pivi)vr n(po + pivi/vo)a ( )
From (4.10), we expect that when n is reasonably large, the MSE of $HT3 would decrease when 1
increases and increase when 1 increases. As also noted, the MSE of <$HT17 however, does not change

when vy changes.

4.1.2 Simulation studies

For numerical studies with computer simulations, the following values of p;, vy, v; and n are consid-

ered

p1: 0.05,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95

vp: 0.1, 0.2, 0.5, 0.6, 0.9, 1

vi: 0.1,0.2,0.5, 0.6, 0.9, 1

n: 30, 100, 500, 1000
For each combination of vy and vy, the root mean squared error (RMSE) of each estimator is plotted
versus p;. The plots for n=30, 100 and 500 are given in Figures 4.2 - 4.4, respectively. For n=1000,

the results are similar to those of n=500 and are not present here in order to save space.

As observed from Figures 4.2 - 4.4, the naive estimator has relatively bigger RMSE when vy # 14
than when vy = 1 due to selection bias. The selection bias is more an issue than the sampling error
for the naive estimator when n is large. For example, when n = 1000 (not shown here), the RMSE of
the naive estimator is the smallest when vy = 1 for all py’s. This is also true for n = 500, except when
p1 = 0.05 or 0.95 where the selection bias is a less important contributor to the MSE than the sampling
error. The (;ASHT1 estimator has its RMSE decrease when v increases. As pointed out earlier, the MSE
or RMSE of (E 7, remains the same as vy changes. For $ T,, the RMSE decreases when either vy or v
increases with a more obvious trend when 1y changes. The RMSE of (E HT,, however, increases when vy
increases and decreases when vy increases, as expected from (4.10). When vy = vy = 1, all the methods

converge to the naive method and therefore have the same RMSE.

As expected from (4.8) and (4.9), <$HT1 always has bigger RMSE than aHTg, except for a few cases
when n = 30 or 100 where the asymptotic result in (4.9) may not apply. Although qZHTl is always
unbiased and the naive estimator is not when vy # vy, for certain values of vy, 11 and pq, (g HT, €ven

has larger RMSE than the naive estimator due to selection bias being dominated by sampling error.
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Figure 4.2: Root mean squared error (RMSE) (in log scale) v.s. pi: Praive (solid black), $HT1 (dashed
red), ¢ur, (dotted blue), pur, (dash-dotted purple). vp = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from top to bottom;
v1 = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from left to right; n = 30.

$ T, and $ T, both reduce to the naive estimator when vy = v; and therefore have the same RMSE
when vy = v;. Since as noted earlier, when 1 increases, the RMSE of $HT2 deceases while the RMSE
of $HT3 increases, it is not surprising that QASHT2 outperforms $HT3 for vy > 11 and is outperformed by

¢uT, for vy < vy.
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Figure 4.3: Root mean squared error (RMSE) (in log scale) v.s. pi: Praive (solid black), $HT1 (dashed
red), ¢ur, (dotted blue), pur, (dash-dotted purple). vp = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from top to bottom;
v1 = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from left to right; n = 100.

Note that under this special scenario, the correlation between p(x) and v(x) with respect to x equals

pop1v1 — popivo. Therefore, when vy < v where g/b\HTS outperforms $HT2, wu(x) and v(x) are positively

correlated; when vy > v; where 5 T, is outperformed by a Ty, #(x) and v(x) are negatively correlated.

Since cZHT3 is not equivariant if y is flipped to y* = 1 — y, it will perform differently when u(x) and
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Figure 4.4: Root mean squared error (RMSE) (in log scale) v.s. pi: Praive (solid black), $HT1 (dashed
red), ¢ur, (dotted blue), pur, (dash-dotted purple). vp = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from top to bottom;
v1 = 0.1, 0.2, 0.5, 0.8, 0.9, 1 runs from left to right; n = 500.

v(x) are correlated in different directions. 5 HT,, however, will not be affected by the sign of the
correlation between p(x) and v(x) due to its equivariance under all affine transformation as discussed
earlier. Whether <$HT3 will always be better than (ZHTQ when u(x) and v(x) are positively correlated

and worse when p(x) and v(x) are negatively correlated remains unclear and will be discussed more in
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later sections.

As when Z?:l r; = 0, the values of &Emive, (;AS HT, and $HT3 are arbitrary, we may also consider, for
example, amme = $HT2 = $HT3 =1/2at > ;r, =0. For ¢ € (0,1), 1/2 seems a more reasonable
guess than zero when nothing is observed. By such definition, the MSE of (}@\m“,e, quS HT, and quS HT; When

p1 = 0 or p; = 1 becomes

(1_V0)n7 lfpl =0

MSE(bnaive) = MSE(dpr,) = MSE(bur,) =
(1 — Vl)n7 lfpl =1

(4.11)

Ll

which will lead to symmetry with respect to p; when vy = 1. When n is large, Pr(3>;_,r; = 0) is
negligible and therefore, regardless of the value of (Enaivey 3 T, and $ T, When Z?:l r; = 0, the RMSE
of these three estimators will exhibit symmetry about p; when vy = 11, as shown by those plots on the
diagonal positions in each of Figures 4.2 - 4.4. For qAS 1, which favors zero when none or few of y's are

observed will not have such a property, even when n is large (unless vy = v1=1).

In summary, when potential selection bias exists, an estimator that ignores the selection bias is
not, desired. However, a good estimator should not only be unbiased, but also be able to control the
overall MSE under various situations. According to the results of this simple experiment, q/ﬁ\ HT, 1S more
desirable than (;AS mT, whenever 1) is known or easy to obtain, however, neither 25 HT, DOT $ HT, dominates

the other in all situations considered.

4.2 High-dimensional experiments

This section studies both the Gaussian process estimators and the non-model based frequentist
estimators through computer simulated experiments under various scenarios with different dimension-
alities, d. In all the experiments considered, the response variable y is binary with u(x) = Pr(y =
1]x) =1 — Pr(y = 0|x). An example due to Kang and Schafer with y being real-valued is studied in

the next section.

4.2.1 Methods of estimation

In total, there are nine estimators to be studied in this section. They are grouped into two categories:

non-model based estimators and Gaussian process model based estimators.
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Non-model based estimators

The non-model based estimators include the naive estimator defined in (2.1) and the three Horvitz-
Thompson estimators defined in (2.2), (2.4) and (2.14). The reason to have the naive estimator is to
help identify when selection bias is indeed an issue and how severe an issue it is. These four estimators

assume no models for the response variable y and completely ignore the covariate vector x.

Gaussian process model based estimators

Gaussian process model based estimators (or Gaussian process estimators) are built on latent func-
tions that have priors based on Gaussian process models. Latent functions are connected to the func-
tions of interest by link functions. For its computational convenience, the probit link function is used

throughout this section. That is,

px) = Algu(x)) = @(gu(x))

(9(x) = (1= )P(g,(x)) +¢, 0 < <1 (4.12)

=
»

S~—
Il
N

where g, (x) and g, (x) are latent functions, ® is the probit link function, i.e. the cumulative distribution

function of the standard normal, and ¢ is a constant that keeps v(x) away from zero.

A Gaussian process model is characterized by its covariance function. When the selection probability

is not used as a covariate, the following covariance function as in (2.50) is used.

d d r
1 1 Tik — T
C(xi,xj;00, N2, %, 4, 1) = op + p Z/\il"ikﬂﬁjk +n? exp {_d Z (| kgk ]k|) } (4.13)
k=1 k=1

When the selection probability is used as a covariate, the following covariance function as in (2.66) is

used instead,

d
* * 1
O(Xi 7XJa 0-87 )‘Qa 772) Ea ’I") = 0-8 + E Z )\ix’bkxﬂC + )\?l+1xi>d+1$j7d+1
k=1
2 1 ‘ |z, — ] " |75 a11 — Tj,d41] "
boPexpd —= S0 (kT Tk (Fadat TEGdT) L g
d = Oy Lay1

As before, given the hyperparameters o2, A2, n%, £, r, a corresponding Gaussian process model is

denoted by

GP(a5, X%, 0°, £, 1) (4.15)
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Given the observed data, a posterior sample of the latent function g,(x) based on its Gaussian
process prior can be obtained by MCMC algorithms described in Section 3.2. From the posterior
sample of g, (x), the population mean ¢ = E[u(x)] can be estimated according to formula (3.21), (3.22)
or (3.23).

As discussed in earlier chapters, there are three ways of constructing Gaussian process estimators
for estimating ¢: ignoring the selection probability v, using a joint dependent prior of g,, and g,, and

using the selection probability v as a covariate.
1. Ignoring the selection probability (GPr)

First, consider ignoring the selection probability v(x) and modeling u(x) only. As discussed ear-
lier, a model based method without incorporating the selection probability may do a good job if the

relationship between y and x is modeled nearly correct.

Let
Iu = g1 (4.16)
where g; has a Gaussian process prior as follows
g1~ GP1=GP(051, A1, 7, l1, 11). (4.17)

This approach is denoted by GP; and the estimator for ¢ obtained by this approach is denoted by
bap-
2. Using a joint dependent prior (GPr and GPg)

Second, consider assigning a joint dependent prior for g,(x) and g,(x), so that pu(x) and v(x) are

jointly modeled. By incorporating the selection probability v, we expect that the efficiency of estimating

¢ should be improved, if 4 and v are indeed related.

To assign a joint dependent prior to g,(x) and g,(x), the strategy described by (2.59)-(2.60) is
adopted. That is,

gu=91+90 and g, =g2+go (4.18)
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where g1, go and go have the following Gaussian process priors

g1~ GP1=GP(ogq, A\, i, f1, 1) L
g2 ~ GPy=GP(054, A3, 03, L2, m2) L

go ~ GPo= gP(US,Ov )‘(%7 7787 Lo, 7ﬂO)' (419)

where “1.” denotes independent given the hyperparameters.

To apply this strategy, two situations need to be considered.

e When the selection probabilities v = v(x1),12 = v(x2),...,vn = v(x,) are known,

the prior for g, becomes the prior probability measure conditional on the latent vector
g,(,") = (gv1,9v.2:- > Gun)’, Where g,.1,9u2,-..,9un are the latent variables corresponding to
V1,V2,...,Vnp.

The GP method applied under this situation is denoted by G Py and the corresponding estimator
for ¢ is denoted by ¢ap,.

e When the selection probabilities are unknown, we assign the same joint dependent prior to g,
and g,,, but estimate both y and v.

The GP method applied under this situation is denoted by G Pg and the corresponding estimator
for ¢ is denoted by ¢ap,-

If the Gaussian process model is appropriate and the selection probabilities are known correctly, we
expect (}S\G p; to perform better than $GPE. Since g/b\GPE does not require knowledge of the selection
probability, it has wider applications, and would be more robust against incorrect information for the

selection probability, compared to QASG Pr-
3. Using the selection probability as a covariate (GPr and GPs)

Third, consider using the selection probability v(x) as an additional covariate z441. By doing so,
we utilise v(x) while only needing to model u(x). Since all the x;, ¢ = 1,...,d, simulated by our
experiments will range from —oo to oo, we let z4411 = logit(v(x)) so that x4.1 has about the same

range as the other x;’s, where logit(a) = log (ﬁ) Then

p(x) = filgu(x)) = ii (g, (x,logit (v(x)))) (4.20)

Note that g, is a function with d arguments, z1, ..., x4, while gj, has d+1 arguments, z1, ..., T4, Td+1-

Let

9 =91 (4.21)
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where ¢ has a Gaussian process prior as follows
gf ~ gpl = gP(OS,l? )‘%a 77%) Ela Tl)' (422)

The difference between ¢ and g is that for g7, the hyperparameters A\; and ¢; are d + 1 dimensional

instead of d dimensional.

As discussed in Subsection 2.2.4, the strategy of using the selection probability as a covariate requires

knowledge of v(x).

e When v(x) is only known at the observed x1, . .., Xp, formulae (3.22) should be used for estimating
o.
In this case, the GP method is denoted by GPgr and the corresponding estimator is denoted by
bcpy-

e When v(x) is known for all x, formula (3.21) can be used instead.
In this case, the GP method is denoted by G Ps and the corresponding estimator is denoted by

baps-

The above five Gaussian process model based estimators are summarized as follow.

QZGPI : ignoring v(x)

(/b\g Pr with a joint dependent prior and true vy, vs, ..., vy,

$G Py ! with a joint dependent prior and estimated v1,vs, ..., v,

ang : with v(x) as a covariate known only at X1, Xa,...,X,

e Ps with v(x) as a covariate known at all x. (4.23)

One difference worth noting between $G P aGPR and qgg pg from &5@ pp and (ZG py, is that for (gg P
ngPR and (}S\GPS, 1(x) is based on a single latent function, g; or gf, while for ggng and QZGPE, w(x)
is based on the sum of two independent latent functions, g; and gg. Although this difference may
complicate the comparison of these estimators, as long as the hyperparameters are adjustable over a

wide range of values, it will have little effect on the issues this thesis addresses.

Choosing hyperparameters and their priors

For the Gaussian process model based estimators, we need to decide how to select the hyperparam-
eters U&h, A2, m2, by, rny, ho=1,2,0, or their corresponding priors when they need to be adjustable
at higher levels. For the estimators Q/Z/)\GPI, ng Py, and g/b\gps, only the hyperparameters for g; or g7, i.e.

0(2)71, A2, m2 {1, r1, are involved and the other hyperparameters do not apply.
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Constant components (o ;)

The hyperparameters for the constant components determine how much the latent functions g; (or
g1), g2 and go can shift vertically from zero. These hyperparameters do not need to have a prior at a

higher level and are fixed as follow.
051 =05% 03, =05 05,=0 (4.24)

Letting 0§ o = 0 allows the procedure on which b pp and b P are based to be able to model indepen-
dent p(x) and v(x) when they are indeed independent. Letting o3 ; = 0.5% allows a chance of about
5% for the average level of 1(x) to be as large as 0.84 = ®~1(2-0.5) or as small as 0.16 = &~ 1(—2-0.5).
Similarly, letting 0872 = 0.52 allows a chance of about 5% for the average level of v(x) to be as large as
(1-¢)-0.84+¢ or as small as (1—¢)-0.16+¢. Note that over a restricted range of x, these probabilities
would be higher than 5%.

Linear components (\p,)

The hyperparameters in the linear component determine the slope of the latent function along each
dimension. For different covariates x;’s, their corresponding linear component hyperparameters do not
need to be the same. Instead, a joint prior can be given to these hyperparameters for different covariates.
Using a joint prior allows each linear component hyperparameter to be adjusted individually according
to the real situation without ignoring their dependency. A common choice for such joint priors is the

multivariate log-normal distributions as follow.

log(0.2) 0.6 012 - 0.12
log(0.2) 012 0.6 - 0.12
log()\l)de . s . . . . s
log(0.2) 012 012 --- 06
log(0.3) 0.6 018 --- 0.18
log(0.3) 0.18 06 --- 0.18
log(Ag) ~ Ny . o . ) . ,
log(0.3) 0.18 0.18 --- 0.6
log(0.2) 0.6 015 - 0.15
log(0.2) 0.15 0.6 - 0.15
log(Ag) ~ Ny _ o _ . _ (4.25)

log(0.2) 015 0.5 --- 0.6
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These priors for \,’s are chosen so that the linear trends of the corresponding latent functions will not

be too flat or too steep with high probabilities.
For the case of q@c Py, and fEG Pg, A1 is d + 1 dimensional instead of d dimensional.
Overall scaling hyperparameters (7,)

The overall scaling hyperparameter for the exponential component controls the variance of the cor-
responding latent function at each x. For the case of QASGPT and ggc Pz, T, N2 and 1o not only control
the variances of g, = g1 + go and g, = g2 + go but also the correlation between them. For better
performance, the overall scaling hyperparameters must be adjustable with higher level priors. Log-
normal distributions are a common choice for these priors. In the experiments considered, the following

log-normal distributions will be used.
log(m) ~ N (log(0.3),0.7), log(n2) ~ N (log(0.2),0.7), log(no) ~ N (log(0.3),0.7) (4.26)

These priors for 7,’s are chosen so that the corresponding i function and v function will not be saturated
with high probabilities, and the correlation between these two functions will not have a high probability

of being too extreme.
Length-scale hyperparameters (¢;,)

The length-scale hyperparameters for the exponential component control the correlation between
the values of the latent function at different x’s. For a given distance between two x’s, the smaller the
length-scale hyperparameters are, the less correlated the values of the latent function at these two x’s
are. Therefore, the length-scale hyperparameters determine how wiggly or smooth the corresponding
latent function is. Similarly to the linear component hyperparameters, a joint prior can be given to

the length-scale hyperparameters for different covariates x;’s, so that each length-scale can be adjusted
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individually without losing their dependency. The following multivariate log-normal priors are chosen.

log(2) 08 02 --- 0.2
log(2) 02 08 --- 0.2
log(gl)NNd . ) . . . . )
log(2) 02 02 -+ 08
log(2) 08 02 --- 02
log(2) 02 08 - 02
log(EQ)NNd . 3 X . . . )
log(2) 02 02 --- 08
log(1) 08 02 --- 02
log(1) 02 08 - 02
log(£o) ~ Na . N (4.27)
log(1) 02 02 --- 038

These priors for ¢;,’s are chosen so that atypical length-scale values will not happen with high proba-
bilities.

For the case of QASG P, and (;ASG Py, ¢1 18 d + 1 dimensional instead of d dimensional.
Exponents (ry)

The exponents for the exponential components must satisfy 0 < r;, < 2 for the corresponding
covariance matrices to be positive definite. When the exponents equal 2, the corresponding latent
functions are analytic. Otherwise, they are non-differential. In practice, r;’s could be made adjustable
with higher level priors. However, for the experiments considered in this section, r;’s are all fixed at 2

partly for faster computation.
Jitter

For numerical stability, a jitter equal to 10~° will be added to the diagonal elements of the covariance
functions of both g, and g,. Doing so will help avoid singularity of the covariance matrix after possible
round-off errors in numerical computations. Quite small compared to the overall scaling hyperparam-
eters 7],2” h =1,2,0, adding such a jitter will only affect the results to a negligible extent. (Note that
using a jitter is not necessary for real-valued variables. For example, when y is a real-valued response,
a jitter will be replaced by a noise standard deviation which may be a fixed constant or a parameter

to be adapted.)

A limitation
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One limitation of the chosen priors for A,’s and for £;’s needs to be addressed. In the chosen
multivariate log-normal priors, the correlations are fixed. In practical situation, when prior information
is not sufficient to fix these correlations, they can be made adjustable by the following strategy. Take

£y’s for example. Let

log(4p1), - - -, log(€ha) g N(ap1,br1), given ap1, bp1, and

ap1 ~ N(ahg, bh2)7 given ap2, bhz, h = ]., 2, 0. (428)
Then
b
Cor (log(£ni), 10g(ln;)) = —2— .5 =1,...,d, i # j, given anz, bp1, bna, h=1,2,0.  (4.29)
br1 + bna

If bpo’s are assigned higher level priors, then the correlations can be adjusted through updating bys’s

(with bp1’s either fixed or also assigned higher level priors). For Az’s, the same strategy can be applied.

4.2.2 Scenario design

This subsection describes in details how the experiments under various scenarios are designed.

Four types of scenarios

Four types of scenarios are designed for generating the functions pu and v with different degrees of

correlation. The four types of scenarios are denoted by c.gp, gp.c, gp.i, gp.d and described next.

e Scenario c.gp: p is a constant function and v is generated using a Gaussian process model.
e Scenario gp.c: v is a constant function and p is generated using a Gaussian process model.
e Scenario gp.i: both p and v are generated using a Gaussian process models, independently.

e Scenario gp.d: both p and v are generated using a joint Gaussian process model, dependently.

Under the c.gp or gp.c scenario, u and v are completely uncorrelated. Under the gp.i scenario,
and v as two random functions are independent; however, the values of the particular g and v that
are generated may end up correlated by chance with respect to random x. Under the gp.d scenario,
w and v as two random functions are dependent; therefore, particular p and v generated are likely to
be more correlated than under the gp.i scenario. Note that under the gp.c scenario where the selection
probability is a constant, the estimators $G Py, and $G pg that use the selection probability as a covariate

do not apply.
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Generating ¢ and v given hyperparameters

In order to evaluate the average performance of the estimators under each scenario, 20 pairs of x4 and
v functions are generated independently for each scenario. For the constant p or v under the c.gp or
gp.c scenario, 20 equally spaced values between 0.2 and 0.8 are selected. To generate the non-constant
functions using Gaussian process models with given hyperparameters, the strategy of (2.59)-(2.60) is

adopted and described in detail next.

e Step 1. For a given dimensionality d, generate 2000 x(’s (Y Ny (0,21,), where I, is the d dimen-
sional identity matrix.

e Step 2. With the given hyperparameters, generate values of g, = g1 + go and g, = g2 + go at
both x¢’s and —xg’s, using the Cholesky decomposition of the 8000 x 8000 covariance matrix of
gy and g,.

e Step 3. Get the values of the p and v functions at these x¢’s and —xg’s by

p(x) = P(gu(x))
(1—0.1)3(gy(x)) +0.1. (4.30)

=
NS
I

The p function generated this way is used for the gp.c, gp.i and gp.d scenarios; the v function
generated this way is dependent on the generated p function and used for the c.gp and gp.d
scenarios.

e Step 4. Repeat Steps 2-3 20 times to get 20 independent pairs of dependent p and v functions.

e Step 5. Generate g, = g5 + g§ again from the given hyperparameters at xq’s and —x¢’s with g5
and g independent of the previous g, and go.

e Step 6. Get the values of the v function at x¢’s and —x¢’s from the newly generated g, by (4.30).
This newly generated v function is independent of the generated p function and used for the gp.i
scenario.

e Step 7. Repeat Steps 5-6 20 times to get 20 v functions that are independent of the p functions.

Generating x;, y;, and r; given p and v

For each given pair of p and v functions and a given sample size n, two sets of x1, ..., X, are selected
from the previously generated x¢’s. (Note that for different pairs of functions under the same scenario,
different sets of x1,...,x, are selected to avoid systematic error due to fixed x’s). Given each set of
X1,...,Xp, two sets of y1,...,y, and r1,...,7, are generated according to the corresponding u values
and v values, respectively. Therefore, under each scenario, there are in total 20 x 2 x 2 datasets. Note

that having nested datasets allows for an analysis of variance (ANOVA).
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Three sets of hyperparameters

To produce functions of different degrees of correlation and smoothness, three sets of hyperparameters
are considered. The three sets of hyperparameters share common constant component hyperparame-
ters, linear component hyperparameters, overall scaling hyperparameters for g; and g3, and exponent

hyperparameters as follow.

051 =05% 03,=05% 05,=0
AL =(0.2,...,0.2), Ay = (0.3,...,0.3), Ao = (0.2,...,0.2)
m = 02, N2 = 02

Ti=2,12=210=2 (4.31)

Three different sets of length-scale hyperparameters ¢5,’s and overall scaling hyperparameters ng for
go are selected to produce functions of different degrees of correlation and wiggliness (or smoothness)
as given by (4.32)-(4.34). The first set has large length-scales and small value of 7, therefore produces
functions with low wiggliness and low correlation. The second set has the same length-scales as the first,
but has larger 19, and therefore produces functions of the same wiggliness but higher correlation. The
third set has the same 7 as the second, but has smaller length-scales, and therefore produces functions
with both high wigglieness and high correlation. The three sets of hyperparameters are denoted by I,
hl, hh, respectively.

e Hyperparameter set [l

M),...,Qexp( 0.
by = (2exp(v0.8),...,2exp(V0.
by = (exp(V0.8),...,exp(V0.8))
mw = 03 (4.32)

oo
~~
~—

6 = (2exp

—~
oo

=

~—

e Hyperparameter set hl:

61 = (2exp(vV0.8),...,2exp(V0.
by = (2exp(V0.8),...,2exp(V0.
ty = (exp(vV038),...,exp(v0.8))
o = 0.3exp(1.3v0.7) (4.33)

oo

)
)

oo
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e Hyperparameter set hh:

6= (0.2,...,0.2)
lo = (02,...,0.2)
o = (0.1,...,0.1)
n = 0.3exp(1.3v0.7) (4.34)

Note that log(ng) under the hyperparameter set ll equals the prior mean of log(ng) assigned to the
GP estimators; log(no) under the hyperparameter set hl or hh is 1.3 standard deviations bigger than
the prior mean of log(rng) assigned to the GP estimators. Similarly, log(¢)’s under the hyperparameter
set Il or hl are one standard deviation bigger than the corresponding prior means of log(¢)’s assigned
to the GP estimators; log(¢)’s under the hyperparameter set hh are about 2.5 standard deviations
smaller than the corresponding prior means of log(¢)’s assigned to the GP estimators. Such choices of
hyperparameters for generating data guarantee the true hyperparameter values are reachable by the
GP methods with reasonably large prior probabilities. In practice, having priors that cover the possible
true parameter or hyperparameter values with reasonably large probabilities is the key to the success

of a Bayesian method.

Also note that for different covariates x;,j = 1,...,d, the same linear component coefficients and
length-scales are used. This is so that the generated functions are indeed of dimension d. If, instead,
some z;’s dominated the others, the generated functions would actually resemble lower dimensional
functions. Having the same linear component coefficients and length-scales makes all covariate variables
equally relevant, which may not be the case in practice. However, our models which the GP estimators

are based do not “know” this fact and therefore are valid for general situations.

Dimensionalities and sample sizes

For all scenarios, six dimensionalities (d = 1, 2, 3, 5, 10, 20) and two sample sizes (n = 20, 50) are

considered.

Figure A.1 in Appendix gives two sample pairs of the  and v functions generated in one-dimensional

space (d = 1) under {hh, gp.d}, {hh, gp.i}, {hl, gp.d}, {hi, gp.i}, {ll, gp.d}, and {ll, gp.i}, respectively.

4.2.3 Results and discussion

This subsection compares the Gaussian process (GP) estimators and the non-model based estima-
tors on datasets generated under the various scenarios described in the previous subsection. All the

estimators are compared in terms of mean squared error.
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To compute the mean squared error, we first need to compute the true value of the population mean
¢. For each p function generated, the true value of ¢ is estimated by averaging the values of u at
xp’s and —xq’s, where x¢’s and —xg’s are sampled as described in Subsection 4.2.2. (For a constant
u function, ¢ simply equals p.) For the Horvitz-Thompson estimator $ T, Which requires knowledge
of 1, the true value of ¥ is estimated the same way as for the true value of ¢. Then, for each pair of
the generated p and v functions, the mean squared error of each estimator conditional on the given
pair of p and v is estimated by averaging over the 2 x 2 sets of y1,...,y, and r1,...,7,. Since there
are 20 independent pairs of y and v generated under each scenario, for each estimator, there are 20
estimated conditional mean squared errors which are independent of each other under each scenario.
Then for any two estimators, a paired t-test can be performed on these estimated conditional mean

squared errors under each scenario.

The mean squared errors (MSE) of all the estimators are presented along different dimensionalities
and different scenarios in Figures 4.5 - 4.10 for different hyperparameter sets and different sample sizes,
where for example, d5 refers to the dimensionality d = 5. The results of paired t-tests on the conditional

mean squared errors are given in Figures A.2-A.28 in the Appendix.

Note that none of the datasets simulated in this subsection have the effective sample size n.fy =
>, i equal to zero. So the results presented in this subsection will be the same regardless how the

Praives uT, and ¢pr, estimators are defined when Z?zl r; = 0.

Non-model based estimators

When the pu and v functions are independent

When one of the g and v functions is a constant, i.e. under the gp.c or c.gp scenario, there is
no potential selection bias. Under these two types of scenarios, the naive estimator (Enawe is the
best among the four non-model based estimators (i.e. (}S\mive, $HT15 QASHTQ and QASHTS), under all sets
of hyperparameters: hh, Il and hl. The advantage of the naive estimator under these cases simply
indicates that when the selection bias is not an issue, the Horvitz-Thompson estimators are subject to
larger sampling errors than the naive estimator. (Note that (g T, and :é\ T, exactly equal (Emive under

the gp.c scenario).

Under the gp.i scenario, where the two functions are chosen independently, but will have some
chance correlation, the selection bias can be an issue. However, the naive estimator is still better
than the Horvitz-Thompson estimators (except for a few cases under the hyperparameter sets hl and
[l where $ HT, OF $ o, is slightly but not significantly better than qASnm»ve). The advantage of the naive

estimator over the others under the gp.i scenario is bigger under the hyperparameter set hh than under
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the hyperparameter sets hl and ll. One possible explanation is that with two independent functions

both more wiggly under the hyperparameter set hh, it is more likely for the biases within each wiggled

subregion to cancel out over the whole range of x to such a degree that the sampling errors dominate

the selection bias. (More specifically, since the two functions are independent, by randomness they tend

to be correlated positively in one subregion and negatively in another so that biases within subregions
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The Horvitz-Thompson estimator g/Z;HTl, although unbiased, has, except five cases, been the worst

among all the non-model based estimators under the scenarios c.gp, gp.c and gp.i for all hyperparameter

sets. In the five cases (I, n = 20, gp.i, d = 5; hh, n = 50, c.gp, d = 2; hl, n = 20, gp.i, d = 3; hl,

n =20, gp.i, d = 5; hi, n = 50, c.gp, d = 2) where $HT1 is not the worst, it seems better than $HT3
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but not significantly. Recall from (2.41) that the MSE of <$HT3 is asymptotically smaller than that of

" darp; ‘B dary; ‘R darp; S daps.

9. .
. ¢nawe:

qAS 7, under all cases unless ¢ =1 or ¢ = 0. Therefore, the smaller MSE of (;AS rr, under those five cases

may be either due to the sample size n being not large enough or to the inaccurate estimates of the

MSE’s (which are based on only 20 independently drawn pairs of functions under each scenario).

(/GHT2 and (E uT, are both equal to the naive estimator under the gp.c scenario. However, (EHT2 is
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almost always better than $HT3 under the scenarios c.gp and gp.i. (Where it is not, i.e hh, n = 50,
gp-i, d = 20, the difference between these two estimators is tiny.) It is not surprising that (;ASHTZ does
better than 3 w1, under the c.gp scenario due to it being equivariant in the extended sense where y has
a constant mean function, as shown in (2.6). The reason why QZHTQ is better than (EHT3 under the gp.i

scenario remains less clear.
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When the p and v functions are dependent

" darp; ‘B dary; ‘R darp; S daps.

When the p and v functions are dependent, i.e. under the gp.d scenario, quS uT, eventually gains some

advantage over the naive estimator under the hyperparameter set hh and when n = 50, since now the

selection biases are strong and the sampling errors fade away. However, the advantage of $HT1 over

anm»ve under this scenario is only significant for a couple of cases (d = 1 and d =

10). When n = 20
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under the hyperparameter set hh, $HT1 is as bad as <$mm.

the dependency between the two functions is weaker ,

Under the hyperparameter set hl where

qASHTl seems better than the naive estimator

in most cases, but none of the differences are significant. Under the hyperparameter set [l where the

dependency between the two functions is the weakest, the naive estimator is actually always better

than <$HT1 .

(If the dependency between the two functions is even stronger or the sample size is even
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larger, we would expect to see more advantage of ¢gr, over the naive estimator when selection bias

eventually dominate sampling error.)

The Horvitz-Thompson estimators (E HT, and a HT, also start gaining advantages over the naive esti-
mator under the gp.d scenario, especially under the hyperparameter set hh. Under the hyperparameter
set hh, 5 HT; is the best among all the four non-model based estimators when n = 20, with the ad-
vantages being significant. Under the hyperparameter set hh, aHT2 performs as badly as aHT1 and
the naive estimator when n = 20; when n = 50, <$HT2 catches up with <ZHT3 and outperforms $HT1
and ggm,;ve significantly, due to its consistency and reduced bias with the larger sample size. Under
the hyperparameter set hl, QASHTs still seems mostly the best among the non-model based estimators,
but with no significant advantages. Compared to qAS HTy s $ HT, appears to improve more due to a larger
sample size under the hyperparameter set hl. But the apparent advantages of (ZHTz over both $HT1
and the naive estimator are not significant. Under the hyperparameter set [, g/b\ HT, and q/b\ HT, are more
often better and less often worse than the naive estimator under the gp.d scenario than under the
other scenarios where the two functions are independent, although the differences between these three
estimators are seldom significant. (As argued for ¢?HT1, we can also expect to see more significant
advantages of gg HT, and gfb\ T, over the naive estimator when the dependency between the two functions

are stronger or the sample size is larger.)
Summary

According to the above analyses, when selection bias is strong, $HT3 tends to outperform both
(E uT, and the naive estimator. QAS HT,, although not having so much advantage over 9/5 a1, or the naive
estimator when the sample size is small, catches up with qZHTS with a larger sample size. When the
two functions are less correlated, although $HT2 and (E T, are not better, or may even be worse, than
the naive estimator, they outperform (E mr, most of the time. The Horvitz-Thompson estimator gg HT,
has no general advantages over the other non-model based estimators in all the scenarios investigated.
The overall poor performance of (E T, is not surprising as its inefficiency has been recognized by many

researchers (e.g. Rotnitzky et al., 2012; Scharfstein et al., 1999; Kang and Schafer, 2007).

$HT3 seems superior to qg HT, under the gp.d scenario where selection bias is strong. However, note
that under the gp.d scenario, u(x) and v(x) as random functions are positively correlated and likely
have a positive correlation with respect to x. The advantage of 5 HT, Over $ a1, under the gp.d scenario
where p(x) and v(x) are positively correlated coincides with the results found in Section 4.1. How the
performance of ¢ T, is affected by the sign of the correlation between p(x) and v(x) requires further
investigation. (Note that QZHT2 will not be affected by the sign of the correlation between u(x) and
v(x) due to its equivarance under all affine transformations). Nevertheless, 5 T, Tequires knowledge of

the marginal selection probability ¢ = [ v(x)dFx and is therefore not as widely applicable as <$HT2~
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Model based estimators

PGPy VETSUS PG Ppg

When the relationship between the p and v functions are modeled correctly, or in other words, when
the selection probabilities are incorporated correctly, we would expect that QASG py should outperform
$G Py, Since (ZG py is based on the true selection probabilities while (EG P 18 based on estimated ones.
Under the gp.d scenario, where the two functions are generated using dependent Gaussian process priors
that are similar to the adaptable Gaussian process priors assigned for qASG pr and QASGPE, ggGPT indeed
outperforms <$G pp except one case (I, n =50, gp.d, d = 5) where all the GP estimators are about the
same. Under the hyperparameter set hh, the advantages of ;ZS\GPT over QZGPE are the strongest, often
marginally significant and sometimes even significant with p-values < 0.01. Under the hyperparameter
set hl, QASG py outperforms QASG P, with marginal significance half of the time. Under the hyperparameter
set Il where selection bias is the weakest, <ZG pyp is still better than 5(; Py except when d = 5 and n = 50,

but the advantages of QZG Py Over (ES\G py are not large.

When the p and v functions are independent, 5@ pp Seems worse than <ZG P, under the scenarios c.gp
and gp.i, especially under the hyperparameter set hh when n = 50. Under the gp.c scenario where the
selection probability is a constant, the differences between ;EG pp and <$G py are rather small. Actually,
it is not clear what we would expect for the differences between ag pr and qASG py under these scenarios,
since models that lack dependence of p and v have only small probabilities under the priors assigned

for both ;Z/;GPT and QgGPE-

ang VErsus $GPS

First note that QASGPR and agps are not applicable under the scenario gp.c where the selection
probability is a constant. Otherwise, the differences between &5@ Py, and ag py are rather small under
all scenarios. Although we would expect that g/b\gps should be better than QA5G P, Since gggps is based
on a larger set of x sampled from the distribution of x, it is not clear how much better (;ASG pg is. If the
advantage of $G pg OVer 8@ Py is small as in the scenarios considered, then practically when a larger
set of x is not available and q/i)\g ps is thus not applicable, we would not be too concerned whether the

results by QASG p, would be slightly better if $Gps were used instead.

bapy versus dap, and G py

Although (;ASGPT, (;ASGPR and $GPS all use the true selection probabilities, they take different ap-
proaches. Recall that (/50 py incorporates the selection probability by modeling the p function condi-
tional on the true selection probabilities using dependent priors for the p and v functions, while (}S\G Pr

and (;ASG pg only model the p function, but with the selection probability v as an additional covariate.

Under the gp.d scenario where the two functions are generated dependently using joint Gaussian
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process priors, 5@ pp has its model closer to the true model than $GPR and (ZG ps do. Therefore, we
would expect that (EG pr is better than EGPR and gggps under the gp.d scenario. Indeed, under the gp.d
scenario, $GPT is better than <$GPR and ¢A5GPS except one case (Il, n = 50, gp.d, d = 5) where all the
GP estimators are about the same. The advantage of QASG pr 1s the strongest under the hyperparameter
set hh where selection bias is the strongest, and the weakest under the hyperparameter set [l where

selection bias is the weakest.

Under the scenarios c.gp and gp.i where the two functions are independent, :é\ng and :é\(;ps seem
generally better than g/i;g pr, with a few cases where the advantages of $G Py, and/or &G pg Over g/i;g pp are
(marginally) significant. Note that ggg P, and 5@ ps are not applicable under the scenario gp.c where

the selection probability is a constant.

QASGPE versus (ZGPR and ggcps

Under the gp.d scenario, QASGPE (like oG p,) has its model closer to the true model than bc pp and
$G ps do. But, (EGPE is based on the estimated selection probabilities while $G P, and QZG ps use the
true selection probabilities. Therefore, it is not obvious whether q/b\(;pE would do better or worse than
ang and aGPs under the gp.d scenario. Under the hyperparameter set [/, there are no significant
differences from QASGPE to qASGPR and Q/Z;GPS. Under the hyperparameter set hl, QASGPE seems generally
better than QASGPR and QASG pg, but the differences are mostly not significant. Under the hyperparameter
set hh, QAﬁg py perform better than $G P and (ZG p for larger dimensionalities d, possibly because in the
higher dimensional spaces, the generated functions are more complex and therefore having the right

model is more important than having the right selection probabilities.

Under the scenarios c.gp and gp.i, <;§\ng (like q/é\GPT) seems generally worse than $G P, and (EG Ps)
with a few cases where the advantages of (EG pp and/or $G pg over $GPE are (marginally) significant.
Note that QASG Py, and qEG pg are not applicable under the scenario gp.c where the selection probability is

a constant.

bGP, versus bpr, OGPy, bGPy and GG

Theoretically, we would expect that QASG p, should perform worse than the other GP estimators when
the p and v functions are dependent and better when the two functions are independent. Under the
scenario gp.d where selection bias is the strongest, QZG p, is indeed the worst among all the GP estimators
except where g/zﬁ\gp, is pretty close to QASGPR and QASGPS. For hh when n = 20 and d = 10 or 20, g/b\gp,
seems significantly better than &EG P, but with an advantage much less than the advantages of Q/ﬁ\G Pr
and ¢ap, over ggpy.

Under the scenarios c.gp and gp.i, the differences between &EG p, and $G Py, and {5G pg are rather small

except two cases (hh, n = 20, gp.i, d = 10; hh, n = 20, gp.i, d = 20) where QASGPI is (marginally)
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significantly better than qAﬁg pPr- Under the scenarios c.gp and gp.i, qAﬁg Py is also often close to (Eg P
Where it is not, $G Py is only slightly worse than ¢7G p,. Since, as discussed earlier, under the scenarios
c.gp and gp.1, (EGPT is generally worse than ggng (although the differences are not dramatic), it is not
surprising that the advantages of (;ASG p, Oover qASG py under these scenarios are more obvious than the
advantages of QZG p, over $G py- However, the advantages of q/ﬁ\(;p, over $G pp under these scenarios are
not very large too, and often not significant. Under the scenario gp.c where $GPR and 86 pg are not

applicable, $GPI, <$GPT and QASGPE are rather close each other.

Although we would expect g/i;G p, to perform better under the scenarios where the 1 and v functions
are independent, it often does not have obvious advantages over the other GP estimators. When it
does, the advantages are not large. Although under the priors assigned for the other GP estimators,
independent p and v functions only occur with small probabilities, the other GP estimators are able

to model the p function comparably well when it is independent of the v function.

Model based v.s. Non-model based estimators

Under the various scenarios considered, all the model based estimators generally perform better than
all the non-model based estimators, often with large and significant advantages, whether selection bias
is strong or not. In particular, qASG p, is often significantly better than the Horvitz-Thompson estimators
when selection bias is not strong (or not present). When selection bias is the strongest (i.e. under
hh and gp.d), compared to (EHT2 and g/b\ HTy s Q/b\GPI does comparably well when n = 50 and significantly
better when n = 20. This is contrary to what one might expect from the arguments by Robins and
Ritov (1997) and by Ritov et al. (2013) that when the sample size is small and the p function is
complex, any Bayesian method that fails to consider the selection probability will not do as well as the
Horvitz-Thompson estimator QZHTl. (Note that, $HT1 is even worse than either of ggHTz and (Z HT; OF

both of them in all scenarios considered.)

Summary

Based on the above analyses, whether selection bias is strong or not, having an appropriate model
for p is important for improving the efficiency for estimating the population mean ¢. A method like
Horvitz-Thompson that totally ignores the covariates, x, can be very inefficient, even if it is unbiased
or consistent. When the p function is dependent on the selection probability, a method like (EGPU
although consistent by having a correct model for p, may also not perform well enough with limited
sample sizes. Therefore, it is best to have a method which not only corrects selection bias but also
exploits the covariate information as much as possible. Some have argued (e.g. Robins and Ritov,

1997; Kang and Schafer, 2007) that in complex situations, where the dependency between the u and
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the v functions is complex, it is impossible to have a model for u that is flexible enough to effectively
capture the relationship between x and p(x) with a limited sample size. However, the results analyzed
in this subsection demonstrate that Gaussian process model based methods (even with the selection
probability being ignored) can efficiently model complex functions with better performance than those
non-model based methods most of time. These results also demonstrate that Gaussian process models

can be implemented effectively enough for their benefits to be realized in practice.

4.3 An example due to Kang and Schafer

This section studies an example from Kang and Schafer (2007) as described next. Suppose that a
covariate vector z = (z1, 22, 23, 24) is distributed as N(0,I) where I is the 4 x 4 identity matrix. Given

z, the real-valued response variable y is determined by,
y = po(z) +€=2104 27421 + 13.720 + 13.723 + 13.724 + ¢, (4.35)

where € ~ N(0,1). The response variable y is observed if » = 1, with the selection probability function

being
vo(z) = Pr(r = 1|z) = expit(—21 + 0.522 — 0.2523 — 0.124) (4.36)

Instead of observing the z;’s, suppose it is the following covariates that are observed

1 = exp(z1/2)

9 = z9/(l+exp(z1))+ 10

r3 = (2123/25+0.6)3

vy = (22 + 24 +20)? (4.37)

Denote x = (21, %2, x3,x4). Since Pr(zs + 24 < —20) = 0, the mapping between these two covariate
vectors z and x is practically one-to-one. Therefore, if the true relationships were known, y could be
predicted from x as well as it could be from z. However, with x;’s being the covariates, the functions
u(x) = E[y|x] and v(x) = Pr(r = 1|x) are more complicated than po(z) and v(z). Since we pretend
we observed the wrong covariate vector x, we assume that the distribution of x is unknown.

Note that in this artificial example, the selection probability v is not bounded away from zero in

the original paper by Kang and Schafer. As discussed earlier, in practice, it is essential to have the

selection probability bounded away from zero. Otherwise, the survey is not sufficiently well designed,
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and any inference problem based on it would be inherently difficult. In this section, I will consider both

the cases where the selection probability is not bounded or is bounded away from zero by 0.05.

4.3.1 Setup

For this example, the ordinary least squares (OLS) estimator based on the linear regression model
(without interaction terms) will be included for comparison, in addition to the estimators considered
in Section 4.2. Since we do not know the distribution of x, ¢ = E[u(x)] will be estimated using only

the observed x’s as in (3.22). In such a case, the estimator (EGPS does not apply.

Since y is real-valued, for the Gaussian process estimators that use the latent function g, the link

function from g, to p is simply the identity function. Then, y is modeled as
y=p(x)+e=gu(x) +e (4.38)

where the predictor function g, has a prior based on Gaussian process model and the noise term e
has a normal distribution N(0,4?) and is independent of the predictor g,. When u(x) = g,(x), the

latent vector g,(fl), i.e. the values of g, at x1,...,X,, no longer needs to be updated. Therefore, for the

estimators (EGPI, $GPT and (EGPR, no latent vector will be updated, while for QASGPE, only gﬁ"), i.e. the
values of g, at x1,...,X,, will be updated. (Whether a latent vector is updated or not substantially

affects the computing time, as will be discussed in Section 4.4.)

For the Gaussian process estimators, the same priors for g, and g, from Section 4.2 will be used.
In addition to model g, and g,, we also need to model the noise standard deviation J. The following

log-normal distribution is selected for 6,
log(d) ~ N (log(2.4),0.8) (4.39)

Such a prior for § is chosen so that it covers a range of values of the noise standard deviation with

reasonably large probabilities, including the true value of 1.

Since the z;’s under this example differ dramatically in scale from the z;’s generated in Section 4.2,
we need to transform them so that they have about the same range as those in Section 4.2, since the

same priors will be used. The z;’s are transformed by

x1 — V2(z; —1)/0.6, Ty — V2(z9 — 10)/0.5
x3 — V2(z3 — 0.2)/0.04, x4 — V2(z4 — 400)/55 (4.40)
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These transformations of x;’s are what one might do after looking at the summary statistics or the
scatterplots of the observed x;’s. Similarly, we also need to subtract 200 from y and then divide the
difference by 40 so that it has about the same range as the latent function g, generated in Section
4.2. This transformation of y is also what one might do after looking at the summary statistics or
the scatterplot of the observed y’s, and therefore does not build in knowledge of the true mean of y.
(Note that transforming the observed data with the priors for the hyperparameters kept the same is
equivalent to transforming the priors for the hyperparameters with the observed data kept the same.)

Consequently, the prior for the noise standard deviation becomes

log(8) ~ N (log(0.06),0.8) (4.41)

For convenience, the transformed x;’s are also used for the OLS estimators and the transformed y is
also used for both the OLS estimator and the Horvitz-Thompson estimators. For the Horvitz-Thompson
estimators (EHT1 and QAﬁ T, Which are non-equivariant under the transfomation: y — y + ¢, ¢ # 0, the

results would be different if the untransformed y is used, as will be discussed more later in this section.

Robins et al. (2007) have pointed out that under the original selection mechanism of this example,
the selection bias is not very strong and therefore it is not surprising that the ordinary least squares
(OLS) estimator performed well or even better than some of the doubly robust estimators considered
in Kang and Schafer (2007). Robins et al. (2007) have also showed that if the selection mechanism
is reversed, i.e. y being observed with the selection probability function 1 — v(x), the performance
of the OLS estimator is no longer acceptable. Therefore, in this section all the estimators will be
studied under both the original and the reversed selection mechanisms. When considering the bounded
selection probability, the selection probability equals 0.95v(x) + 0.05 under the original selection and
equals 0.95(1 — v(x)) + 0.05 under the reversed selection.

In the original paper, Kang and Schafer considered two sample sizes, n = 200 and n = 1000, with
m = 1000 simulated datasets for each. However, due to the limited amount of time, only datasets of
sample size n = 200 will be studied. Also to save time, the Gaussian process estimators will be studied
only with m = 100 simulated datasets. The frequentist estimators that are fast to compute will be

studied with m = 1000 simulated datasets.

For the estimators (;ASG py and QASGPE which are based on Gaussian process models that assign only
positive correlation for the functions g, and g, and therefore favors p(x) and v(x) with positive correla-
tion (w.r.t x), the sign of y needs to be reversed, since the true correlation between p(x) and v(x) (w.r.t
x) is negative (—0.61). Under the reversed selection mechanism, y is kept with its original sign, since

the correlation between y(x) and the reversed selection probability 1 —v(x) is positive. (Generalisation
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of q@c pp and (ZG P 50 that the correlation between g,, and g, is adjustable will be discussed in the last

chapter.)

For the estimators $G py and (EGPE, v will not be bounded away from zero when being linked from
the corresponding latent function g,, whether the true selection probability is bounded or not. This
will, however, make the estimator QASG pp and (ZGPE slightly different from what they are in Section
4.2. Robustness of QASG py and aGPE against whether v is bounded or not will be discussed later in this

section. Note that (gg p, and (gg pr, will not be affected, since they do not have a model for v.

For the Horvitz-Thompson estimators, true selection probabilities at the observed covariates are
used, typical in survey problems where selection probabilities are often available. For the estimator
(E HT;, it is also the true marginal selection probability 1 that is used. If ¢ is hard to obtain in practice,

(;AbHT3 will not be applicable.

4.3.2 Results

First note that none of the datasets simulated in this section have the effective sample size n.fy =
>, ri equal to zero. So the results presented in this subsection will be the same regardless how the

Pnaive, T, and ¢, estimators are defined when Z;;l r; = 0.

When the selection probability is not bounded

We first look at the results when the selection probability is not bounded. The results of the
frequentist estimators obtained from m = 1000 datasets are given in Table 4.1. Table 4.2 gives the
results for the Gaussian process estimators and two of the frequentist estimators based on m = 100

datasets. All the results are presented based on the original scale of y.

Obviously, as shown in Table 4.1, q/ﬁ\nawe must be severely biased and has an extremely large MSE
compared to the other estimators under both the original and reversed selection mechanisms. Under
the original selection mechanism, all comparisons between the frequentist estimators are significant
according to the paired t-tests except for $HT1 and (ZHTS- <$HT2 seems better than (EHT1 and $HT3
under both selection mechanisms, but not significantly when the selection is reversed. (Note that from
the result in Section 2.1, we may expect that 5 HT, 1S better than ;5 g1, under both selection mechanisms,

which seems true but not significantly.)

The OLS estimator 80 s does substantially better than all the other frequentist estimators under
the original selection mechanism. This is no surprise, as Robins et al. (2007) point out that selection
bias is not very strong under the original selection mechanism. Unlike the naive estimator, $OL5,

although also ignoring the selection probability, does consider the covariates x;’s, although not in a
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MSE p-value
Gnaive  PHT,  OHT, PHT
Gnaive 1109 (2.3)
o, 295  (1.9)  0.000
A. Original Selection (ZASHTZ 29.6 (1.2) 0.000  0.000
dur, 292 (1.9) 0.000 0.572 0.000
dors 119  (0.5) 0.000 0.000 0.000 0.000
Gnaive 1105 (2.2)
our, 339 (12.9)  0.000
B. Reversed Selection (ZASHTZ 26.5 (3.5)  0.000 0.447
dur,  30.7  (9.8) 0.000 0.314 0.523
dors 319 (1.0) 0.000 0.877 0.135 0.902

Table 4.1: Mean squared errors (MSE) of anm-vm <$HT1 , (ZHT27 <$HT3 and QASOLS (with standard errors in brackets)
and p-values of paired t-tests on the squared errors, based on m = 1000 datasets of sample size n = 200. The

selection probability is not bounded away from zero. Note: a p-value of “0.000” means “< 0.0005”.

very effective way. Therefore, g/zgo Ls is able to remove part of selection bias and even does better

than the HT estimators which are unbiased or consistent but ignore the covariates totally. When the

selection is reversed and selection bias is strong, q@o s no longer outperforms the HT estimators. But

the differences between </Z5\O s and the HT estimators are not significant.

Note that the results for the OLS estimator in Table 4.1 obtained with m = 1000 datasets are similar

to those by Kang and Schafer (2007) and by the discussants of Kang and Schafer (2007).

MSE p-value
¢uT, PoLS bcP,  barr PGPy
$ur, 219 (3.3)
?\OLS 11.0 (1.4) 0.003
A. Original Selection ?\GPI 7.5 (0.9) 0.000 0.000
¢ap, 7.0 (0.8) 0.000 0.000 0.101
EGPE 7.6 (1.0) 0.000 0.007 0.866 0.294
(;ASGPR 59 (0.7) 0.000 0.000 0.035 0.050 0.029
our, 211 (40)
?\OLS 29.9 (2.6) 0.081
B. Reversed Selection ‘?\GPI 10.1 (1.2) 0.007  0.000
¢ap, 8.0 (1.0) 0.001 0.000 0.000
$GPE 8.1 (1.0) 0.001 0.000 0.000 0.877
QASGPR 5.7 (0.7) 0.000 0.000 0.000 0.002 0.002

Table 4.2: Mean squared errors (MSE) of $HT2, a;OLs, QEGPI, (ZGPT, a;ng and <$GPR (with standard errors
in brackets) and p-values of paired t-tests on the squared errors, based on m = 100 datasets of sample size
n = 200. The selection probability is not bounded away from zero.

“<0.0005”.

Note: a p-value of “0.000” means

Table 4.2 gives the results of the Gaussian process estimators with comparison to both $o s and
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$HT2 (the best among the HT estimators according to Table 4.1). Obviously, all the GP estimators
perform better than both (EO s and (5 T, under either selection mechanism. The superority of the GP
estimators is because they, whether ignoring the selection probability or not, can model the complex
function p(x) more effectively, compared to QASO s which is based on a linear regression model and qAS HT,

which has no model at all.

Among the GP estimators, qZGPR is best under both selection mechanisms. Under the original
selection, <EGPT seems better than $GPE but not significantly, and is only better than $GP1 with
a marginal significance. The difference between aGPE and g/b\gpl is rather small under the original
selection. When selection bias is strong under the reversed selection, all the differences between the GP
estimators are significant, except for qEGPT and (EG Py, the difference between which is almost invisible.
Unlike QASGPT and ¢/@\ng, QZGPR does not assume a link function between the latent function g, and the
selection probability v. (It actually does not model v or have g, at all.) Both qgc pp and QEGPE impose
a probit link function between g, and v which may not match the truth well. This difference of (;ASGPR
from <ZG pp and &5@ p, Mmay explain why &5@ P, does better than $G pp and (ZG Py, although they have all
exploited the selection probability in some way. As discussed in earlier sections, $G pr is expected to be
better than ZsGPE if the selection probabilities are correct and the model for the dependency between
the functions p and v is also correct. In this example, however, we are not sure how the p and v
functions are actually related. If the Gaussian process priors which q/ﬁ\GPT and (}5@ p, are based on do
not have a high probability for the true relationship between p and v, QZGPT is not necessarily better
than QASG Py as seen in Table 4.2. (;ASG Py, although about the same as ZSGPI under the original selection,
indeed does better when the selection is reversed. That is, when selection bias is strong, even with a
highly flexible model for y, incorporating the selection bias in some appropriate way can help achieve
better results. Note that $G Py is the only estimator that does not require knowledge of v but still

exploits the selection probability through a joint model for y and v.

When the selection probability is bounded

Results with the selection probability bounded away from zero by 0.05 are presented in Tables 4.3
and 4.4, where the selection probability equals 0.95v(x) + 0.05 under the original selection and equals
0.95(1 — v(x)) + 0.05 under the reversed selection.

Compared to the results in Tables 4.1 and 4.2, the Horvitz-Thompson estimators have improved quite
a bit under both selection mechanisms. Particularly, all the HT methods are now significantly better
than the OLS method under the reversed selection, although still much worse than the OLS method
under the original selection. The substantial improvement of the HT estimators when the selection

probability is bounded away from zero is not surprising, since they are well known to be sensitive
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MSE p-value
Pnaive PHT, OHT, PHT,
d)naive 92.7 (20)
dur,  23.0 (1.2)  0.000
A. Original Selection (ZASHTQ 18.6  (0.9) 0.000  0.000
dur, 225 (1.1)  0.000 0.078 0.000
dors 115 (0.5) 0.000 0.000 0.000 0.000
(rbnaive 94.5 (20)
éur, 160 (0.7)  0.000
B. Reversed Selection $HT2 183 (0.8) 0.000 0.000
énr, 155 (0.7)  0.000 0.005 0.000
dors 263 (0.9) 0.000 0.000 0.000 0.000

Table 4.3: Mean squared errors (MSE) of anm-vm <$HT1 , (ZHT27 <$HT3 and QASOLS (with standard errors in brackets)
and p-values of paired t-tests on the squared errors, based on m = 1000 datasets of sample size n = 200. The
selection probability is bounded away from zero by 0.05. Note: a p-value of “0.000” means “< 0.0005”.

MSE p-value
¢mrT, 9HT, PHT, POLS bGP, PGPr PGP
our, 23.0 (3.5)
b, 18.1 (2.5) 0.002
our, 236 (3.7) 0.484 0.000
A. Original Selection ¢ors 11.7 (1.4) 0.004 0.030 0.004
dep, 7.1 (0.8) 0.000 0.000 0.000 0.000
dap, 6.7 (0.8) 0.000 0.000 0.000 0.000 0.117
bcp, 7.0 (0.9) 0.000 0.000 0.000 0.001 0.856 0.518
bep, 6.0 (0.7) 0.000 0.000 0.000 0.000 0.061 0.111 0.062
ourT, 133 (2.1)
dur, 155 (2.4) 0.008
Sur, 130 (2.1) 0.421 0.000
B. Reversed Selection ¢oLs 23.9 (2.4) 0.000 0.003 0.000
bep, 8.7 (1.2) 0.026 0.002 0.037 0.000
bep, 7.2 (1.0) 0.002 0.000 0.004 0.000 0.000
bep, 7.2 (1.0) 0.003 0.000 0.004 0.000 0.000 0.934
bap, 5.6 (0.6) 0.000 0.000 0.000 0.000 0.001 0.014 0.013

Table 4.4: Mean squared errors (MSE) of qAbHTl, $HT27 $HT37 QZOLSa $GP17 $GPTa qAﬁapE and ggch (with
standard errors in brackets) and p-values of paired t-tests on the squared errors, based on m = 100 datasets
of sample size n = 200. The selection probability is bounded away from zero by 0.05. Note: a p-value of

“0.000” means “< 0.0005”.

to extremely small selection probabilities, and are incapable of extrapolating into regions where no

observations are available, since they totally ignore x.

The GP estimators have also improved compared to the results in Table 4.2, presumably due to

both the availability of observations in the previously empty regions and the slightly increased effective

sample sizes. (The average effective sample size over 100 datasets has increased from 99.4 to 104.4 under
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the original selection and from 100.6 to 104.5 under the reversed selection.) Similar to the results in
Table 4.2, all the GP methods are substantially better than both the HT methods and the OLS method
under both selection mechanisms. ng P also remains the best among all the GP methods under both
selection mechanisms. The advantage of (Eg Py OVEr (;ASG p, is still more signifincant under the reversed

selection where selection bias is strong.

Note that not getting any observations in regions with extremely small selection probabilities imposes
an inherently difficult problem for all methods. But this problem is less severe for model-based methods
for which extrapolation into those empty regions is possible, depending on how good the models are.
This is one of the reasons why the GP methods are less sensitive to extremely small selection proba-
bilities than the HT methods. Another reason why the HT methods are more sensitive to extremely
small selection probabilities is inherent to all methods based on inverse probability weighting where the

weights can be extremely large due to the extremely small selection probabilities.

Comparison to some doubly robust methods

The results of some doubly robust (DR) methods by several authors are summarized in Tables 4.5-4.7.
These DR methods are based on estimated selection probabilities using the linear logistic regression
either on the original covariates z;’s or on the transformed covariates x;’s, as shown in Tables 4.5-

4.7. Note that results by these authors are based on datasets generated using unbounded selection

probabilities.
MSE
fit v with z fit v with x
KSpe 10.8 166.9
.. . KSwrr 8.3 14.7
A. Original Selection KSp 8.6 12.3
KSsgrry 22.0 1.8 x 1010

Table 4.5: Results by Kang and Schafer (2007) with m = 1000 datasets. BC'": bias-corrected linear regression;
WLR: linear regression with inverse probability weighted coefficients; R: linear regression using selection
probability based covariates; SRRg: using the inverse selection probability as a covariate as proposed by
Scharfstein et al. (1999). For more details, see Kang and Schafer (2007).

Since the true selection probability is indeed a linear expit function of the original covariates z’s, I
assume that their estimated selection probabilities based on z’s are very close to the true values. Even
o, it may not be completely fair to compare their results to the results by GPr and GPg which use
the true selection probabilities. Therefore, I will only compare their results to those by GPgr and G Py,
where G Pg estimates the selection probabilities using the transformed covariates x’s and G P; totally
ignores the selection probabilities. Please note that since these authors did not provide the standard

errors of their estimated MSE, and since all their results are based on m = 1000 datasets and mine are
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MSE

fit v with z  fit v with x

RSLRpR+mase) 12.12 169.91

RSLRDR(ﬁ,mWLS) 9.24 14.74

A. Original Selection ~ RSLRpR(+ pr_rpw-_nr) 7.40 14.90
RSLRB_pRr(#mnse) 11.83 54.65
RSLRB_DR(:pxriirss) 9.69 16.82

RSLRpR+mrse) 13.11 19.90

RSLRDR(z swrs) 9.02 18.24

B. Reversed Selection  RSLRpRr(+mpr_rpw-_nr) 7.76 17.90
RSLRB_pRr(#mrse) 11.76 19.69
RSLRB_DR(pxriirse) 11.12 19.55

Table 4.6: Results by Robins et al. (2007) with m = 1000 datasets. 7: the estimated v or the v-model; 7
the estimated p or the y-model, “B-DR”: DR robust methods that guarantee that the estimated ¢ fall into
the parameter space of ¢: Tpxr: the selection probabilities are estimated using an extended linear logistic
regression with an additional user-supplied covariate h(z) or h(x). For more details, see Robins et al. (2007).

MSE
fit v with z  fit v with x
TANarpw,,, 11.8 158.8
TANw s 8.9 15.3
- . TANREG, ;14 7.5 12.0
A. Original Selection TANppo,.. 79 135
TANREGE;'}L 7.5 12.7
TANppom 7.0 13.5

hat

Table 4.7: Results by Tan (2007) with m = 1000 datasets. For more details, see Tan (2007).

based on m = 100 datasets, I assume that their results are “accurate” compared to mine. The standard

errors of the estimated MSE by GP; and GPg are given in Table 4.2.

Comparing results in Table 4.2 and Tables 4.5-4.7, GP; and GPfg clearly do much better than all
these DR methods when the selection probabilities are estimated using x. (Note that GPg is based
on estimated selection probabilities using x and G Py totally ignores the selection probabilities.) Even
when compared to the results by the DR methods based on the true model for v, i.e. using z, GP;
and G Pg still do better than most of the DR methods and do comparably well compared to the best
of these DR methods. The inefficiency of these DR methods when both models are wrong (i.e. both
models are based on x) confirms that only being “doubly” robust is not enough and we need highly

flexible models that are robust against various situations.
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4.3.3 Discussion
Non-equivariance of ¢y, and ¢ur,

Since $HT1 and QASHTS are non-quivariant under the transformation: y — y + ¢, where ¢ # 0, the
results of $ T, and qAﬁ w1, will be different if based on the original y’s. Table 4.8 gives the results of $ HT
and ngS T, Using the untransformed y’s, which dramatically differ from the results using the transformed
y’s as in Tables 4.1 and 4.3. Whether the results are better or worse under different transformations,

non-equivariance is just undesirable.

Unbounded Selection Probability Bounded Selection Probability
Original Selection | Reversed Selection | Original Selection | Reversed Selection
¢rT, 543.0 (28.9) | 359.6 (23.0) | 414.6 (19.7) | 276.6 (11.5)
QEHTB 308.8 (20.7) [132.9 (9.2) 1199.6 (10.3) | 74.2 (3.3)

Table 4.8: Mean squared errors (MSE) of ¢ur, and <$HT3 (with standard errors in brackets) based on the
original y’s with m = 1000 datasets.

Robustness of GPr and GPr against whether v is assumed bounded or not

In practice, it is common that the selection probability is bounded away from zero. However, it is
not always clear where the bound is. When using a method, like GPr and G Pg, that assumes a model
on the selection probability v, it is desired that the results do not vary a lot whether the model assumes
v is bounded or not. Therefore, I also consider the variants of GPr and GG Pg that assume the selection
probability is bounded away from zero by 0.05 and denote them by G Pr, and G Pgy, respectively. For
the datasets generated with selection probabilities bounded away from zero by 0.05, we would expect

that G Pry and GPgyp, will do better than GPr and GPg.

The results of GPrp, and GPgy, for the datasets generated using bounded selection probabilities are
presented in Table 4.9 along with the results of GPr and GPg. As shown in Table 4.9, the difference
between GPg and GPgy is not significant under both selection mechanisms. The difference between
GPr, and GPr is not significant, either, under the reversed selection. Under the original selection,
G Pry, indeed seems significantly better than G Pp, but the difference between G Pry, and G Pr is rather

small, particularly smaller than the differences from QASG py to aG‘PE and $G Py as in Table 4.4.

Robustness of GPr and GPr against the transformation of v

Interestingly, I also ran into some variants of the estimators 5@ pp and gg Py due to a mistake. Recall
that the link function from g, to v assumed for QASGPT and $G Py 1s the probit function. Therefore, for

qAbGPT, it is g,; = @ Y(v(x;)), i = 1,...,200, that should be used as the “known” g,. However,
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MSE p-value
bGrr  PcPr, PGPy
dorr 6.7 (08)
A. Original Selection QASGP” 6.5 (0.8) 0.044
dcre 70 (0.9) 0518  0.293
dcr, 71 (0.9) 0468 0.263 0.855
dore 72 (L0)
B. Reversed Selection 9¢Pre 72 (1.0) 0471
dore T2 (1.0) 0934 0.736
dcr, 70 (10) 0504 0.699 0.266

Table 4.9: Mean squared errors (MSE) of (ZGPT, ac;pﬂ, $GPE7 and acpEb (with standard errors in brackets)
and p-values of paired t-tests on the squared errors, based on m = 100 datasets of sample size n = 200. The
selection probability is bounded away from zero by 0.05. GPr and GPg assume v is not bounded away
from zero; GPr, and G Pgp, assume v is bounded away from zero by 0.05. Note: a p-value of “0.000” means
“< 0.0005”.

I originally used g, = logit(v(x;)), ¢ = 1,...,200, instead. Having different g, ;’s would alter the
prior relationship between u and the fixed v, since the prior relationship between g,, and g, is fixed,
thereby making the comparison between $GPT and (561 p, more complicated. After having corrected
this mistake, I found that the result is very different, a bit surprisingly. The difference between these
two 8@ pr’s is presumably due to the sensitivity of the prior for g, conditional on g, ;’s (which QZG pp is
based on) against the scaling of g, ;’s. This has prompted me to wonder if similar issues may occur to
QASG P, if a different transformation of v is used as the additional covariate. Therefore, I also considered
two variants of <$GPR with the additional covariate x5 = ®~!(v(x)) or x5 = 6v(x) — 3, respectively.
These two variants of (ZG Py are denoted by (ZG Pr, and (ZG Prs, Tespectively. The variant of (EG pp With

gvi = logit(v(x;)), i = 1,...,200, is denoted by ¢gpy,.

To compare these different versions of (ZGPT and qAﬁg Py, 1 consider both situations where the true
selection probability is bounded away from zero or not. For datasets generated using bounded selection
probabilities, I also consider the respective variants of ggg pp and ggg P, Which assume that v is bounded

away from zero by 0.05. Similar to qASGPTb, this variant of (;ASGPTZ is denoted by qASGPT%.

Table 4.10 gives the results for these different versions of $GPT and qAﬁg p, with datasets generated
using unbounded selection probabilities. Table 4.11 gives the results with datasets generated using

bounded selection probabilities.

According to Table 4.10, angQ does differ from aGPT significantly under the reserved selection.
Under the original selection where selection bias is not strong, it is conceivable that q§G pp and (ZG Pro
may be less sensitive to the scaling of g, ;’s and therefore differ less. The three versions of (EG Py S are,

however, close to each other under either selection mechanism.

According to Table 4.11, when the selection probability is bounded away from zero, the differences
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MSE p-value
$GPr  PGPry PGP PGPRy
¢apr 7.0 (0.8)
dap, 6.5 (0.7)  0.150
A. Original Selection ¢A5GPR 59 (0.7)  0.050 0.185
bepm 6.0 (0.7) 0077  0.278 0.140
barm, 59 (0.7) 0026 0057 0888 0.536
¢ap, 8.0 (1.0)
¢arr, 6.8 (0.8) 0.0002
B. Reversed Selection ¢A5c:PR 5.7 (0.7) 0.0025 0.0416
barm, 57 (0.7) 0.0018 0.0207 0.450
borm 5.9 (0.7) 0.0004 0.0143 0593  0.425

Table 4.10: Mean squared errors (MSE) of $GPT7 $GPT27 $GPR, $GPR2 and $GPR3 (with standard errors in
brackets) and p-values of paired t-tests on the squared errors, based on m = 100 datasets of sample size n = 200.
The selection probability is not bounded away from zero. Note: a p-value of “0.000” means “< 0.0005”.

MSE p-value
bGPy PGPr, PGPrs PGPra, PGPr  PGPrs PGP
err 6.7 (0.8)
A. Original Selection ¢cpr, 65 (0.8) 0.044
darm, 6.0 (0.7) 0.006 0.045
dcrr 6.2 (0.7) 0.035 0.149 0.391
depn 6.0 (0.7) 0111 0.230 0913  0.581
depn, 6.0 (0.7) 0122 0.252 0983 0.633 0.361
q/gc;pm 6.0 (0.7) 0.103 0.226 0.989 0.593 0.776 0.939
dere T2 (L0)
B. Reversed Selection ¢GPro  7-2 (1.0) 0471
derr, 6.7 (0.9) 0.068 0.114
dcrr, 6.2 (0.8) 0.001 0.002 0.088
dep, 5.6 (0.6) 0.014 0017 0026 0.163
dcrn, 5.6 (0.6) 0.012 0015 0.021 0.146 0.653
(ZGPR3 5.6 (0.6) 0.006 0.007 0.009 0.100 0.927 0.976

Table 4.11: Mean squared errors (MSE) of éapr,, ¢apPry, PGPrys ®GPray, PGPr, PGPry and ¢Gpp, (With
standard errors in brackets) and p-values of paired t-tests on the squared errors, based on m = 100 datasets of
sample size n = 200. The selection probability is bounded away from zero by 0.05. GPr and GPrg assume
that v is not bounded away from zero; G Pr, and G Prop assume that v is bounded away from zero by 0.05.

Note: a p-value of “0.000” means “< 0.0005”.

between the different versions of ang are, again, rather close to each other, under both selection

mechanisms. The difference between g/i;G pp and (}S\G Pr, is significant under the original selection and

marginally significant under the reversed selection. The difference between 5@ P, and &;Fm is not

significant under the original selection, but significant under the reversed selection.

The sensitivity (or robustness) of (ZGPT and $G pr against the scaling of g, ;’s or the transformation

of v could be clarified further by additional investigations.
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Estimated noise standard deviations (4)

Since the mapping between the original covariates z;’s and z;’s is practically one-to-one, we expect
that modeling on x;’s should be as good as on z;’s, if the model is good enough. A perfect model
would figure out nearly the exact relationship between y and all the covariates x;’s and thus have the
estimated noise standard deviation § close to its true value. A less perfect model tends to miss some

of the important effects and thus produce a larger estimate for the noise standard deviation.

Estimated noise standard deviation (9)
(true 6 = 1)
Min Median Mean Max
on 1000 datasets
OLS 10.4 14.7 14.7 229
on 100 datasets
OLS 10.9 14.9 149 229

GPy 0.6 5.5 5.3 9.8

GPr 1.0 3.6 3.6 7.6

.. . GPry 1.0 3.5 3.6 7.6

A. Original Selection G Pro 13 93 95 6.6
G Proy 1.3 2.0 2.1 5.9

GPg 0.6 4.3 4.3 9.7

GPgy 0.6 4.3 4.3 9.9

GPr 0.8 1.0 1.0 1.2

G Pro 0.8 1.0 1.0 1.2

GPr3 0.9 1.1 1.1 1.3

on 1000 datasets

OLS 9.4 14.6 14.6  22.7
on 100 datasets

OLS 10.9 14.5 14.6  22.7

GPy 1.5 5.6 5.6 9.0

GPr 1.6 3.8 3.9 6.9

. GPry 1.2 3.6 3.7 8.0

B. Reversed Selection GPro 13 93 95 6.3
GProp 1.2 2.1 2.2 6.4

GPg 1.0 4.1 4.1 8.1

GPgy 1.1 3.9 4.1 8.5

GPg 0.8 1.0 1.1 1.2

G Pro 0.8 1.0 1.0 1.2

GPr3 0.8 1.0 1.0 1.3

Table 4.12: Minimum, median, mean and maximum of the estimated noise standard deviations by each method
on m = 1000 or m = 100 datasets. The selection probability is bounded away from zero by 0.05.

Table 4.12 gives the estimated noise standard deviations by each method on datasets generated using
bounded selection probabilities. Clearly, by the OLS method, the estimated noise standard deviations
are much larger than those by the GP methods, indicating that the OLS method is far from figuring out
the true relationship between y and z;’s. By the GPr method, also ignoring the selection probability,

the estimated noise standard deviations are much smaller than those by the OLS method, indicating
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that the GPr method, although still much less than perfect, can fit the relationship between y and x;’s
substantially better than the OLS method. All the other GP methods have the estimated standard
deviations much smaller than those by GP;. Particularly, all the three versions of GPgr have the

estimated noise standard deviations pretty close to the true value of 1.

As may be noted in Table 4.12, by the methods GPr and GPpg, the estimated noise standard
deviations are sometimes smaller than the true value, 1. This might seem that the data has been
overfitted. However, these estimated noise standard deviations are subject to two sources of random
errors. First, they are based on MCMC samples which may have an effective sample as small as 20
due to the stopping rule applied (see Subsection 3.2.5). Therefore, even when the posterior mean of §
is well above 1, the estimated ¢ may occassionally be smaller than 1 by chance. Second, the particular
observed dataset may just be less variable than typical due to randomness. In such a case, a good
model tends to have the estimated noise standard deviation less than the true value of §. In particular,

the posterior mean of § by a GP method may be smaller than the true value of 1.

Overfitting by the GP methods, however, might also be possible. Recall that the exponential parts of
the covariance functions used for the GP methods as in (2.50) and (2.66) are stationary, and therefore
favor functions with the same properties over different regions in the covariate vector space. For a
function with different degrees of wiggliness over different regions, GP methods based on such covariance
functions may produce large estimated length-scales due to the smoother parts of the function, therefore
underfitting the more wiggly parts; they may also produce small estimated length-scales due to the more
wiggly parts of the function, therefore overfitting the less wiggly parts. More about the stationarity of

the GP covariance functions is discussed in the last chapter.

4.4 Computing time by Gaussian process estimators

The computing time taken by each Gaussian process method for processing one dataset is determined
by the time taken for each MCMC iteration and the number of MCMC iterations required. The time
taken per iteration depends on the efficiency of the MCMC sampling schemes used (e.g. Elliptical slice
sampling and univariate slice sampling). For the sampling schemes used, the time taken per iteration
depends on the dimensionality d of the covariate vector and the length n of the latent vector(s). The
dimensionality d of the covariate vector determines how many hyperparameters need to be updated and
the length n of the latent vector(s) determines the time taken for computing the Cholesky decomposition
of the covariance matrix of the latent vector(s), which is proportional to n. Computing the covariance

matrix of the latent vector(s) takes time proportional to dn?.

The number of MCMC iterations required depends on the required effective sample size from the
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MCMC iterations and how fast the MCMC iterations mix (see Subsection 3.2.5). Given the required
effective sample size of the MCMC iterations, the slower the MCMC iterations mix, the larger the
autocorrelation times of the MCMC iterations are and the larger number of iterations are required.
The speed at which the MCMC iterations mix is mainly attributable to the length n of the latent
vector(s), when n is large compared to d. That is why the average number of iterations required by
G Pg, per dataset is much larger for the Kang and Schafer example (where the length of the latent vector
is n = 200) than for the experiments considered in Section 4.2 (where the length of the concatenated
latent vector is 2 x n = 2 x 20 or 2 x 50). Similarly, the average numbers of iterations required by G Py,
GPr and GPg per dataset for the Kang and Schafer example are much less than those required for the
experiments considered in Section 4.2, since for the Kang and Schafer example where y is real-valued,

no latent vector needs to be updated by GP;, GPr and GPg.

Take the Kang and Schafer example for illustration. The average times for 1000 iterations by G P
and GPg are around 10 minutes on a processor running at about 3GHz. The average times for 1000
iterations by GPr and GPg are about 45 minutes using the same processor and the same version of R
programming language. The reasons why GPr and GPg take longer time per iteration are 1) about
two times more hyperparameters need to be updated for GPr and GPg than for GP; and GPgr, and
2) the covariance matrix of the latent vector(s) that needs to be updated for GPr and GPg is 2n x 2n
instead of n x n for GP; and GPg. The average numbers of iterations required per dataset by G Py,
GPr and GPg are about 1000-1500, while the average number of iterations per dataset required by
G Pg is about 12000-15000. Therefore, the average total times taken per dataset by GP; and G Pg are
less than 15 minutes, the average total time taken per dataset by G Pr is about one hour or less, and

the average total time taken per dataset by GPg is about 10 hours.

The total time (10 hours) taken per dataset by GPgp may seem unacceptable in certain practical
situations. However, there is large space for improvement in the time taken by GPg. The current
computing program written for this thesis is not optimal. First, there may be redundancy in computing
or updating things that are not needed. Second, in terms of computation, the dimensionality of the
covariance matrix of the latent vector(s) can be reduced from 2n x 2n to (ness +n) X (nesy +n) in
the case of GPr and GPg, or from n X n to nefr X neps in the case of GPr and GPgr, where ngyy¢
is the effective sample size of the observed dataset. These two types of improvement will help reduce
the computing time taken per iteration by all these estimators. The dominating factor that influences
the time taken per dataset by GPg compared to GPr is the number of iterations required, which is
determined by the efficiency of sampling the latent vector. In the current computing program, the
latent vector is updated 5 times in between updating each hyperparameter. If instead, the latent vector

is updated more times (e.g. 10 or 20) in between updating hyperparameters, the latent vector will
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be sampled more efficiently over iterations with reduced autocorrelation time. Note that updating
the latent vector takes a minor amount of time compared to updating the hyperparameters. That is,
increasing the number of times updating the latent vector per iteration will not substantially increase
the total time taken per iteration, but may largely reduce the number of iterations required per dataset.
Therefore, the time taken per dataset by GPg can conceivably be reduced greatly, for example, from

10 hours to a few hours or even less.



Chapter 5

Conclusion

Both simulation studies and the analysis of the Kang and Schafer example in this thesis show that
the Gaussian process approaches that use the selection probability are able to not only correct selection
bias effectively, but also control the sampling errors well, and therefore can often provide more efficient
estimates than the methods compared that are not based on Gaussian process models, in both simple
and complex situations. Even the Gaussian process approach that ignores the selection probability

often, though not always, performs well when some selection bias is present.

Particularly, a method like the Horvitz-Thompson estimator that totally ignores the covariates can
be very inefficient, even if it is unbiased or consistent. A method like the Gaussian process estimator
(gg p, that has a highly flexible model for the response, but does not employ the selection probability
explicitly, may still do reasonably well when selection bias is not strong. When the response function
depends on the selection probability in a complex manner, a method like QASG p, that has a flexible model
for the response, but does not exploit the selection probability more explicitly, may no longer do well
with a limited sample size. Therefore, it is best to have a method which not only corrects selection bias
explicitly but also exploits the covariate information to a maximum extent without overfitting the data.
The Gaussian process estimators (Eg Pr) ($G Py and QASG Py, Dot only have a flexible model for the response,
but also employ the selection probability in a rather flexible manner, unlike many popular approaches
in the literature that employ the selection probability only in the form of its inverse. Methods like
$GPT, ang and $G Pr, although not perfect, can conceivably deal with a large number of complex

problems sufficiently well, when selection bias is an issue.

In addition to demonstrating the strength of the Gaussian process methods considered, this thesis
shows that these methods can be implemented efficiently enough to realize their benefits in practice.

They, therefore, should be brought to broader attention, and help promote use of Bayesian hierarchical

83
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models in general for dealing with selection bias in complex situations.

The Gaussian process approaches considered in this thesis are, however, not without flaws. Particu-
larly, the exponential parts of the Gaussian process covariance functions used in this thesis as in (2.46),
(2.47), (2.50) or (2.66) are stationary, and therefore favor functions with the same degrees of smoothness
over different subregions of the covariate vector space. With such covariance functions, functions that
have different properties in different regions of the covariate vector space only have very small prob-
abilities under the corresponding Gaussian process priors. Therefore, with finite sample sizes, models
based on these Gaussian process priors may not do well for estimating such functions. Developing
approaches to correcting selection bias using Gaussian process models with non-stationary covariance

functions or using other Bayesian hierarchical models would be interesting for future research.

In addition, the strategy given by (2.59) only allows positive correlations between the latent functions
g, and g,. When the correlation between pu(x) and v(x) with respect to x is known to be negative
as for the Kang and Schafer example, the response variable can be reversed so that this strategy still
works fine. However, in practice, it is often not known if the correlation between p(x) and v(x) (w.r.t
X) is positive or negative. The strategy by (2.59) can be generalized such that the correlation between

the latent functions g, and g, is adjustable. One type of generalisation is as follows. Consider

g = ago+ g1 and g, = Bgo + g2 (5.1)

where g1, g2, go are the same as in (2.60) and « and 3 are hyperparameters which have priors over
(n)

(—00,00). Then for any x1,...,x,, the covariance matrix for ?n) where
v
9u(x1) gv(%1)
gu(x2) 9v(x2)
ggn) _ " and g™ = _ , (5.2)
9u (Xn) v (Xn)
is
(n) K 2
+ a* K afK
Cov g?n) _ 1 0 BKo (5.3)
gv afKo Ky + %K

where Kj, i = 1,2,0, are the same as in (2.63). With o and  adjustable over (—oo, 00), the correlation

between g\ and g\ is also adjustable over (—1,1).

Despite the extensive experimental studies in this thesis, certain aspects of the Gaussian process
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estimators studied remain unclear. In particular, as indicated by the Kang and Schafer example in
Section 4.3, the type of estimators that use the selection probability as a covariate (i.e. EGPR, QASGPRQ
and $G Prs) Seem more robust against how the selection probability function has been transformed when
used as a covariate, compared to the type of estimators (i.e. (;ASG pp and QZG pr,) that assign a joint prior
for g, and g,. Further studies may determine whether it is generally true that the <ZG P, estimator is

more robust than the (}S\G p, estimator against the transformation of the selection probability.

If the aGPR estimator is indeed more robust than the :é\ng estimator, then we can expect that a
modified version of <$G P, that uses estimated selection probabilities would also be more robust than
qASG py (the version of <$G pr that uses the estimated v). Particularly, we may consider estimating the
selection probability using Gaussian process models. To do so, two strategies could be considered.
First, the selection probability could be estimated, and then used as a fixed covariate over MCMC
iterations for modeling the response. Second, we could model the response and the selection probability
simultaneously. That is, the selection probability is sampled at each MCMC iteration. In this case, the
hyperparameters for the response and the hyperparameters for the selection probability can either be

independent or share common priors.



Appendix A

Figures
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-4 -2 0 2 4 -4 -2 0 2 4

Figure A.1: Two sample pairs of functions (red solid: p and blue dash: v) in one-dimensional space (d = 1)
under {hh, gp.d}, {hh, gp.i}, {hl, gp.d}, {hi, gp.i}, {ll, gp.d}, and {Ii, gp.i}, respectively.
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