CSC 363, Winter 2010 — Short Assignment #2

Due at start of tutorial time on January 27. Late assignments will not be accepted, as
the tutorial instructors will immediately go over the solution. I prefer that you hand the
assignment in on paper, but if you need to, you can email it (as a plain text file or PDF
attachment, no Microsoft Word files please) to radford@cdf.utoronto. ca. (Please use
this email address only for assignment submission. )

This assignment is to be done by each student individually. You are encouraged to
discuss the course material in general with other students, but you should not discuss
this assignment (verbally, in writing, by email, or in any other way) with people other
than the course instructor and tutors, except to clarify the meaning of the question.
Handing in work that is not your own is a serious academic offense.

There is a Turing Machine that decides the language
Apran = {(B,w)| B is a DFA with alphabet {0,1} that accepts input string w}

A proof of this is briefly outlined on page 166-167 of the text (Theorem 4.1), for the
more general case where the DFA could have any alphabet. For this assignment, you
are to provide more details of the proof that Appae is Turing decidable, by giving an
implementation-level description of a TM that decides Appap;. You should not give a
formal description (such as a detailed state diagram). (See page 157 for more on the
distinction between formal and implementation-level descriptions.)

The definition of Appap1 given above is not precise. A precise definition requires
that we specify a way of encoding a DFA with alphabet {0, 1} so that it can be input to
the TM. We can choose whatever input alphabet we wish to facilitate such an encoding.
But note that whatever input alphabet we choose is fized, the same for any DFA that
the TM will simulate.

You should use the following encoding, which uses the input alphabet {0,1, A, R, $}.
We order the states of the DFA to be encoded, and number them as 0,1,2,...,k — 1,
with 0 being the start state. The encoding of the DFA is $0¢0; - - - 0x_1$, where ¢; is
a string specifying whether or not ¢ is an accept state and the transitions from state ¢
when the input symbol is 0 or 1. We encode 9; as Xty0t;, where X is either the symbol
A, if i is an accept state, or the symbol R, if 7 is not an accept state, and t, and ¢; are
the numbers of the states that follow state ¢ if the input symbol is a 0 or a 1. We encode
the number j as j consecutive 1 symbols (so zero is encoded as the empty string).

For example, consider the DFA with k = 3 states, numbered 0, 1,2, in which 0 is the
start state, 2 is the only accept state, and

§(0,0)=0 §(1,0) =0
0,1)=1 §(1,1)=2

The encoding of this DFA is $R01R011A11011$. The encoding (B, w) for a DFA plus
input string is just the encoding of the DFA followed by the input string.



Here, I will give a high-level description of a TM for deciding Appao; with this
encoding. You should produce an implementation-level description. For convenience, I
will use a 3-tape TM, which as we’ve seen could be converted to a one-tape TM. The
input string will be on tape 1 when the TM starts.

The TM starts by scanning the input, checking that it starts with a valid encoding
of a DFA. This is mostly simple, except for checking that all the transitions specify valid
state numbers (ie, if there are k states, the transitions should be to states numbered 0 to
k —1). To check that the state numbers are valid, the TM copies each state number (a
string of some number of 1s) to tape 2, starting at the beginning of that tape, but without
clearing tape 2 to blanks to start. The result is that when the end of the description of
the DFA is reached (as marked by the second $), tape 2 will contain the largest state
number encountered. The TM can then check whether this number is too large for the
the number of states in the description, and reject if it is too large.

Once the validity of the DFA encoding has been checked, the TM scans the input
string after the DFA encoding, and copies it to tape 2.

The TM then simulates the transitions of the DFA. The number of the current state
of the DFA is stored on tape 3, which is initialized to all blanks, which corresponds to
state zero. To simulate a transition, the TM scans tape 3 from the beginning, and the
encoding of the DFA (still on tape 1) from the beginning, moving past 1 symbols on
tape 3 and past encodings of transitions from states on tape 1, until the right part of
the encoding of the DFA is reached. Depending on whether the current input symbol
(on tape 2) is 0 or 1, the appropriate new state number is then copied to tape 3, and
the head for tape 2 is moved right to look at the next symbol. When the end of the
input string on tape 2 is reached, the TM accepts or rejects depending on whether the
current state is an accept state or reject state.

In producing an implementation-level description of such a TM, you can of course
choose any tape alphabet you wish (but it must be fized, the same for any input), and
any set of states. You needn’t specify exactly what the set of states is — you can just
mention operations the TM does that will require various states in order to remember
things (but keep in mind that you can remember only a fixed number of things in the
state of the control unit). Your implementation-level description should be at a level
of detail similar to what was given to you for short assignment #1, not at the level of
detail you handed in as the solution for that assignment.



