
CSC 363, Winter 2010 — Long Assignment #1

Due at start of lecture on February 24. You may hand in up to one long assignment up to one
day late without explanation (put it under my door in PT209E or SS6026A by 7pm). Other late
assignments will be accepted only with a valid excuse (presented as soon as possible), and only up
to the next tutorial time, when the solution will be reviewed (if this is not enough time, some other
accommodation will be made). I prefer that you hand the assignment in on paper, but if you need
to, you can email it (as a plain text file or PDF attachment, no Microsoft Word files please) to
radford@cdf.utoronto.ca. (Please use this email address only for assignment submission.)

This assignment is to be done by each student individually. You are encouraged to discuss the course
material in general with other students, but you should not discuss this assignment (verbally, in
writing, by email, or in any other way) with people other than the course instructor and tutors,
except to clarify the meaning of the question. Handing in work that is not your own is a serious
academic offense.

In answers to the questions below, you should give high-level descriptions of any Turing Machines
you construct, similar to the proofs in Sipser’s book. In particular, you needn’t specify an exact
method for encoding Turing Machines. You can use the fact that a Turing Machine can simulate
the operation of another Turing Machine without giving the details of how this might be done.
You can also use the fact that a k-tape Turing Machine can be converted to an equivalent 1-tape
Turing Machine. Any other theorems proved in Chapters 1–4 of Sipser’s book can also be used.
You should, however, give details when they are essential to the proof idea. In general, a proof is
an argument that convinces a skeptical but suitably knowledgeable person. You can assume the
person to be convinced has understood the basic ideas in Chapters 3 and 4 of Sipser’s book.

Question 1: For any language L, define the language Lπ as the set of all permutations of strings
in L. In other words,

Lπ = { s1s2 · · · sn | for some permutation π1π2 · · ·πn of 1, . . . , n, sπ1sπ2 · · · sπn is in L }

Here, n can be any non-negative integer. Note that Lπ will include the empty string if L does.

Give a procedure that takes a nondeterministic Turing Machine M that recognizes L and
produces a nondeterministic Turing Machine, Mπ, that recognizes the language Lπ. For simplicity,
assume that the input alphabet of M is {0, 1} (the solution should easily generalize to any input
alphabet), but the tape alphabet of M is not constrained. The state space for Mπ should be
the state space for M plus no more than five new states, one of which is the start state for Mπ.
(Solutions with more than five but less than ten additional states will receive part marks.) The
transitions from the states in Mπ that are taken from M should be the same in Mπ as in M . You
may extend the tape alphabet for Mπ to include symbols not in the tape alphabet for M .

You should give complete details of the transitions for the new states, as a table for the δ
function or as a state transition diagram.

Hint: Any permutation can be expressed as some sequence of swaps of adjacent symbols.

Question 2: Let’s say that a tape square of a Turing Machine “has been used” if at any time
during the computation so far it was set to a symbol other than blank (even if it has since been
set to blank again). (Note: “has been used” is not standard terminology; I’ve just introduced it
for this question.) At any time during the computation by a Turing Machine, M , on an input



string, w, a finite set of tape squares will have been used. Let m be the number of the rightmost
square that has been used, numbering squares 1, 2, 3, . . . starting at the beginning of the tape (the
leftmost square). Let h be the number of the square where the tape head is positioned. Prove that
for every M , there is a constant k (which may depend on M , but not on the input, w) such that if
at some point in the computation of M on input w, the difference h −m is k or greater, then M
does not halt on input w.

Hint: If the tape head is k squares past the last square that has been used, how must it have
gotten there?

Question 3: Let L0 and L1 be languages on the alphabet Σ01 = {0, 1}. Define the language L2

on the alphabet Σ012 = {0, 1, 2} that consists of strings of length zero or greater in which each
symbol is the sum of the symbols in corresponding positions from some string of the same length
in L0 and some string of the same length in L1. In other words,

L2 = { s1s2 · · · sn | for some a1a2 · · · an ∈ L0 and b1b2 · · · bn ∈ L1, each si is equal to ai + bi }

where n may be any non-negative integer. For example, if 0110 ∈ L0 and 1100 ∈ L1, then 1210 ∈ L2.

Prove that if L0 and L1 are Turing recognizable, then L2 is also Turing recognizable.

Question 4: For any language L, define the language B(L) as follows:

B(L) = { 0w |w ∈ L } ∪ { 1w |w ∈ L }

Prove that there exists a language L such that both B(L) and B(L) are not Turing recognizable.

Question 5: Let’s say that the computation of a Turing Machine M on input w is “confined” if
during computation the tape head is positioned at only a finite number of different tape squares.
(Note: “confined” is not a standard term; I’ve just introduced it for this question.) Obviously, any
computation that halts (in the accept or reject state) must be confined. If the computation loops,
it might or might not be confined.

Define the following language:

CONFTM = { 〈M,w〉 |M is a TM and the computation of M on w is confined }

Prove the following:

a) CONFTM is Turing recognizable.

b) CONFTM is not Turing recognizable.

Hints: If a computer has a finite amount of memory, and loops forever, what must happen
sooner or later? If a computer program loops forever, can you modify it so that it at least does
something as it loops?


