### A Property of the Entropy

For any two probability distributions,  $p_1, \ldots, p_q$  and  $p'_1, \ldots, p'_q$ :

$$\sum_{i=1}^{q} p_i \log_r \left(\frac{1}{p_i}\right) \leq \sum_{i=1}^{q} p_i \log_r \left(\frac{1}{p_i'}\right)$$

#### Proof:

First, note that for all x > 0,  $\ln x \le x - 1$  (see Jones & Jones, p. 40). So  $\log_r x \le (x - 1)/\ln r$ .

We can now show that the LHS-RHS above is:

$$\sum_{i=1}^q p_i \left[ \log_r \left( \frac{1}{p_i} \right) - \log_r \left( \frac{1}{p_i'} \right) \right] \ = \ \sum_{i=1}^q p_i \log_r \left( \frac{p_i'}{p_i} \right)$$

$$\leq \frac{1}{\ln r} \sum_{i=1}^{q} p_i \left( \frac{p_i'}{p_i} - 1 \right) = \frac{1}{\ln r} \left( \sum_{i=1}^{q} p_i' - \sum_{i=1}^{q} p_i \right) = 0$$

## Proving We Can't Compress to Less Than the Entropy

We can use this result to prove that any uniquely decodable r-ary code for S must have average length at least  $H_r(S)$ :

#### Proof:

Let the codeword lengths be  $l_1,\dots,l_q$ , and define  $K=\sum_{i=1}^q r^{-l_i}$  and  $p_i'=r^{-l_i}/K$ .

The  $p'_i$  can be seen as probabilities, so

$$H_r(\mathcal{S}) = \sum_{i=1}^q p_i \log_r \left(\frac{1}{p_i}\right) \le \sum_{i=1}^q p_i \log_r \left(\frac{1}{p_i'}\right)$$

$$= \sum_{i=1}^{q} p_i \log_r(r^{l_i}K) = \sum_{i=1}^{q} p_i(l_i + \log_r K)$$

Since the code is uniquely decodable,  $K \leq 1$  and hence  $\log_r K \leq 0$ . We conclude that the the average code length,  $\sum p_i l_i$ , is at least as great as the entropy,  $H_r(S)$ .

#### Shannon-Fano Codes

Lengths of optimal codes are hard to figure out, but it's easy to find the lengths of the *almost* optimal Shannon-Fano codes.

We make an r-ary code for symbols with probabilities  $p_1, \ldots, p_q$  using codewords of lengths

$$l_i = \lceil \log_r(1/p_i) \rceil$$

Here,  $\lceil x \rceil$  is the smallest integer greater than or equal to x.

The McMillan inequality says such a code exists, since

$$\sum_{i=1}^{q} \frac{1}{r^{l_i}} \ \leq \ \sum_{i=1}^{q} \frac{1}{r^{\log_r(1/p_i)}} \ = \ \sum_{i=1}^{q} p_i \ = \ 1$$

Example with r = 2:

# Average Lengths of Shannon-Fano Codes

The average length of a Shannon-Fano code for source S with symbols probabilities  $p_1, \ldots, p_q$  is

$$\begin{split} \sum_{i=1}^{q} p_i l_i &= \sum_{i=1}^{q} p_i \lceil \log_r(1/p_i) \rceil \\ &\leq \sum_{i=1}^{q} p_i \left( 1 + \log_r(1/p_i) \right) \\ &= \sum_{i=1}^{q} p_i + \sum_{i=1}^{q} p_i \log_r(1/p_i) ) \\ &= 1 + H_r(\mathcal{S}) \end{split}$$

# Proof of Shannon's Noiseless Coding Theorem

Consider coding the n-th extension of a source  $\mathcal{S}$ , whose symbols have probabilities  $p_1,\ldots,p_q$ , using an r-ary Shannon-Fano code.

The Shannon-Fano code for blocks of n symbols will have average length,  $L_n$ , no greater than  $1 + H_r(S^n) = 1 + nH_r(S)$ .

The average length per original source source symbol will therefore be no greater than

$$\frac{L_n}{n} = \frac{1 + nH_r(\mathcal{S})}{n} = H_r(\mathcal{S}) + \frac{1}{n}$$

By choosing n to be large enough, we can make this as close to the entropy,  $H_r(\mathcal{S})$ , as we wish.

### An End and a Beginning

This is a mathematically satisfying result. From a practical point of view, though, we still have two problems:

• How can we compress data to nearly the entropy in practice?

The number of possible blocks of size n is  $q^n$  — huge when n is large. And n may need to be large to get close to the entropy.

One solution: A technique known as arithmetic coding.

 Where do the probabilities p<sub>1</sub>,..., p<sub>q</sub> come from? And are they really constant?
 This is the problem of source modeling.