Notes for CSC 310, Radford M. Neal, 2002

Tradeoffs Choosing Codeword Lengths

The Kraft-McMillan inequalities imply that to
make some codewords shorter, we will have to
make others longer.

Example: The obvious binary encoding for
eight symbols uses codewords that are all
three bits long. This code is instantaneous,
and satisfies the Kraft inequality, since:

+++++++=

Suppose we want to encode the first symbol
using only two bits. We'll have to make some
other codewords longer — eg, we can encode
two of the other symbols in four bits, and the
remaining five symbols in three bits, since

+++++++=1

How should we choose among the possible
codes?

Formalizing Which Codes are the Best:
Probabilities for Source Symbols

We'd like to choose a code that uses short
codewords for common symbols and long ones
for rare symbols.

To formalize this, we need to assign each
symbol in the source alphabet a probability.
Symbols s1,...,sq will have probabilities
written as pi1,...,pq. We assume that these
probabilities don't change with time.

We also assume that symbols in the source
sequence, X1, X5, ..., Xn, are independent:
P(X1 =384 & Xo=35;, & -+ & Xn =35;,)

= pil p'i2 o pzn
These assumptions are really too restrictive in
practice, but we’'ll ignore that for now.

Average Codeword Length

We define the average codeword length of a
code with codewords of lengths Iy,...,1l4 for
symbols s1,...,sq, Whose probabilities are
p1,...,Dq, tOo be

q
> pil
=1
This is the average length of the codeword
encoding a single source symbol. But since
averaging is a linear operation, the average
length of a coded message with n source
symbols is just nL. For example, when n = 3:

¢ g q
030 T piy piypig (liy + liy + i)

’i1=l ’i2=l i3=1

Zp1111+zp1212+2p1313= 3L

13=1 12=1 13=1

We aim to choose a code for which L is small.

Optimal Codes

We say a code is optimal for a given source
(with given symbol probabilities) if its average
length is at least as small as that of any other
code.

There can be many optimal codes for the
same source, all with the same average length.

The Kraft-McMillan inequalities imply that if
there is an optimal code, there is also an
optimal instantaneous code. More generally,
for any uniquely decodable code with average
length L, there is an instantaneous code with
the same average length.

3a.1

Notes for CSC 310, Radford M. Neal, 2002

Do Optimal Codes Always Exist?

It’s not obvious that an optimal code will
always exist.

There are infinitely many possible codes.
Perhaps there could be an infinite sequence of
codes with average lengths of, say

10.1, 10.01, 10.001, 10.0001, ...

If these codes were better than any others,
then there would be no optimal code — just
codes closer and closer to the limiting average
length of 10.

Jones & Jones prove that there are always
optimal codes. I'll bypass this and prove that
we can always construct an optimal code —
from this it follows that they always exist.

Ways to Improve Instantaneous Codes

Suppose we have an instantaneous code for
$1,...,8¢, With probabilities p;,...,pq. Let [; be
the length of the codeword for s;.

Under each of the following conditions, we can
find a better instantaneous code, with smaller
average length:

e If p; < ps and 1 < l5:

Swap the codewords for s; and so.

e If there is a codeword of the form xby,
with z, y € T* and b € T, but there are no
codewords of the form zb'z, for z € T* and
b €T, with b # b:

Change all the codewords of the form zby
to zy. (This will be an improvement if
none of the p; are zero, and doesn’'t make
things worse in any case.)

The Improvements in Terms of Trees

We can view these improvements in terms of
the trees for the codes. Here's an example:

/ \ | 0w s, p,=0.11
[o]

T~ oL | $,p,=020

_— 100 S, p;=0.14

[0]
T~ 101 | s, p=012
<
|

— 110 S, p5=0.13
[1] $p=030

1|

Two codewords have the form 01... but
none have the form 00... (ie, there's only one
branch out of the 0 node). We can therefore

improve the code by deleting the surplus node.

Continuing to Improve the Example

The result is the code shown below:

— 00 s, =011

L o]
/ T[] s,p=020

— 100 S, ;=014

[]
\ T[] s,p=012
<

| 1o s, p5=0.13
T[] §p=0320

[u]

Now we note that sg, with probability 0.30,
has a longer codeword than s;, which has
probability 0.11. We can improve the code by
swapping the codewords for these symbols.

3a.2

Notes for CSC 310, Radford M. Neal, 2002

The State After These Improvements
Here's the code after this improvement:

L S P =0.30
T~ o | $p,=020

[o]

_— 100 S, p;=0.14

[0]
/ [101 | s, p=012
\

— 110 s, p5=0.13
[m] s,p=o1

[]

In general, after such improvements:

e The most improbable symbol will have a
codeword of the longest length.

e There will be at least one other codeword
of this length — otherwise the longest
codeword would be a solitary branch.

e The second-most improbable symbol will
also have a codeword of the longest
length.

A Final Rearrangement

The codewords for the most improbable and
second-most improbable symbols must have
the same length. The most improbable
symbol’'s codeword also has a “sibling” of the
same length.

We can swap codewords to make this sibling
be the codeword for the second-most
improbable symbol.

For the example, the result is

L S Ps=0.30
T~ ot | s,p,=020

[o]

_— 100 S, p;=0.14

[0]
\ / [101 | g p,=013
\

— 110 S Py =012
T[] s,p=011

[u]

Huffman Codes

We can use these insights about code trees to
try to construct optimal codes.

We will prove later that the resulting Huffman
codes are in fact optimal.

We'll concentrate on Huffman codes for a
binary code alphabet. Non-binary Huffman
codes are similar, but slightly messier.

Huffman Procedure for Binary Codes

Here's a recursive procedure to construct a
Huffman code for a binary code alphabet:

procedure Huffman:

inputs: symbols s1,...,s,
probabilities p1,...,pq
output: a code mapping si,...,s, to codewords
ifg=2:
Return the code s1 — 0, s2+— 1.
else
Reorder s1,...,s, and p1,...,p; SO that p; > -+ > p,.
Create a new symbol s', with associated
probability p' = py—1 + pqg-
Recursively call Huffman to find a code for

S1,...,8¢-2,5 with probabilities p1,...,ps—2,p".
Let the codewords for si,...,s4-2,5' in this
code be wi,...,wg_2, w'.

Return the code
S1 > W1, ..., Sq-2 FF Wq—2, Sg—1 — w'0, sq > w'l.

3a.3

