Notes for CSC 310, Radford M. Neal, 2002

More on Hamming Distance

Recall that the Hamming distance, d(u,v),
of two codewords u and v is the number of
positions where u and v have different
symbols.

This is a proper distance, which satisfies the
triangle inequality:

d(u,w) < d(u,v) + d(v,w)

Here's a picture showing why:
u: XXXAAAQQQRQITI

V: XXXAAAPPPPIJIIJ

w: XXXBBBPPPPITI
Here, d(u,v) =6, d(u,v =15), and d(u,w) =7.

Minimum Distance and Decoding

A code’s minimum distance is the minimum of
d(u,v) over all distinct codewords u and v.

If the minimum distance is at least 2t+ 1, a
nearest neighbor decoder will always decode
correctly when there are t or fewer errors.

Here's why: Suppose the code has distance
d>2t4+ 1. If u is sent and v is received,
having no more than t errors, then

e d(u,v) <t.
e d(u,u’) > d for any codeword u’ # u.
From the triangle inequality:
d(u,u’) < d(u,v) + d(v,u’)
It follows that
d(v,u’) > d(u,u)—d(u,v) > d—t > (2t+1)—t > t+1

The decoder will therefore decode correctly to
u, at distance ¢, rather than to some other u’.

A Picture of Distance and Decoding

Here's a picture of codewords (black dots) for
a code with minimum distance 2t 4+ 1, showing
how some transmissions are decoded:

()

Incorrect decodings with
more than t errors

Correct decoding with
lessthan t errors

Correct decoding with Z
more than t errors

Hamming'’s Sphere-Packing Bound

We'd like to make the minimum distance as
large as possible, or alternatively, have as
many codewords as possible for a given
distance. There's a limit, however.

Consider a binary code with d = 3, which can
correct any single error. The “spheres” of
radius one around each codeword must be
disjoint — so that any single error leaves us
closest to the correct decoding.

For codewords of length n, each such sphere
contains 1+n points. If we have M codewords,
the total number of points in all spheres will
be M (1+4n), which can't be greater than the
total number of points, 2".

So for binary codes that can correct any single
error, the number of codewords is limited by

M < 2"/(14n)
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A More General Version of the Bound

A binary code of length n that is guaranteed
to correct any pattern of up to ¢ errors can’t
have any more than the following number of
codewords:

(o (3)(3) ¢+ ()

The kth term in the brackets is the number of
possible patterns of k errors in n bits:

n n!
(k) T K (n—k)!

If the above bound is actually reached, the
code is said to be perfect. For a perfect code,
the disjoint spheres of radius ¢ around
codewords cover all points.

Very few perfect codes are known. Usually, we
can’'t find a code with as many codewords as
would be allowed by this bound.

The Gilbert-VVarshamov Bound

The sphere-packing bound is an upper limit
on how many codewords we can have. There's
also a lower limit, showing there is a code
with at least a certain number of codewords.

There is a binary code of length n with
minimum distance d that has at least the
following number of codewords:

(o (3) (5) + o+ (2)

Why? Imagine spheres of radius d—1 around
codewords in a code with fewer codewords
than this. The number of points in each
sphere is the sum above in brackets, so the
total number of points in these spheres is less
than 2™. So there’s a point outside these
spheres where we could add a codeword that
is at least d away from any other codeword.

Minimum Distance for Linear Codes

To find the minimum distance for a code with
M codewords, we will in general have to look
at all M(M—1)/2 pairs of codewords.

But there’s a short-cut for linear codes...

Suppose two distinct codewords u and v are a
distance d apart. Then the codeword u— v will
have d non-zero elements. The number of
non-zero elements in a codeword is called its
weight.

Conversely, if a non-zero codeword u has
weight d, then the minimum distance for the
code is at least d, since 0 is a codeword, and
d(u,0) is equal to the weight of u.

So the minimum distance of a linear code is
equal to the minimum weight of the M —1
non-zero codewords.

Examples of Minimum Distance and
Error Correction for Linear Codes

Recall the [5,2] code with the following
codewords:

00000 00111 11001 11110

The three non-zero codewords have weights of
3, 3, and 4. This code therefore has minimum
distance 3, and can correct any single error.

Is this a “perfect” code?

The single-parity check code with n = 4 has
the following codewords:

0000 0011 0101 0110
1001 1010 1100 1111

The smallest weight of a non-zero codeword
above is 2, so this is the minimum distance of
this code. This is too small to guarantee
correction of even one error. (Though the
presence of a single error can be detected.)
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Finding Minimum Distance From a
Parity-Check Matrix

We can find the minimum distance of a linear
code from a parity-check matrix for it, H.

The minimum distance is equal to the smallest
number of linearly-dependent columns of H.

Why? A vector u is a codeword iff urT = o.
If d columns of H are linearly dependent, let u
have 1s in those positions, and Os elsewhere.
This u is a codeword of weight d. And if there
were any codeword of weight less than d, the
1s in that codeword would identify a set of
less than d linearly-dependent columns of H.

Special cases:
e If H has a column of all zeros, then d = 1.
e If H has two identical columns, then d < 2.

e For binary codes, if all columns are distinct
and non-zero, then d > 3.

Example: The [7,4] Hamming Code

We can define the [7,4] Hamming code by the
following parity-check matrix:

0001111
0110011
1010101

Clearly, all the columns of H are non-zero, and
they are all distinct. So d > 3. We can see
that d = 3 by noting that the first three
columns are linearly dependent, since

0 0 0 0
o|+[{1]4+]1 = 0
1 0 1 0

This produces 1110000 as an example of a
codeword of weight three.

Since it has minimum distance 3, this code can
correct any single error. Is it a perfect code?

11a. 3




