Generator Matrices

We can arrange a set of basis vectors for a linear code in a *generator matrix*, each row of which is a basis vector.

A generator matrix for an [n, k] code will have k rows and n columns.

Here's a generator matrix for the [5, 2] code looked at earlier:

$$\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right)$$

Note: Almost all codes have more than one generator matrix.

Encoding Blocks Using a Generator Matrix

We can use a generator matrix for an [n,k] code to encode a block of k message bits as a block of n bits to send through the channel.

We regard the k message bits as a row vector, \mathbf{a} , and multiply by the generator matrix, G, to produce the channel input, \mathbf{u} :

$$u = aG$$

If the rows of G are linearly independent, each \mathbf{a} will produce a different \mathbf{u} , and every \mathbf{u} that is a codeword will be produced by some \mathbf{a} .

Example: Encoding the message block (1,1) using the generator matrix for the [5,2] code given earlier:

Parity-Check Matrices

Suppose we have specified an [n,k] code by a set of c=n-k equations satisfied by any codeword, \mathbf{v} :

$$b_{1,1} v_1 + b_{1,2} v_2 + \dots + b_{1,n} v_n = 0$$

$$b_{2,1} v_1 + b_{2,2} v_2 + \dots + b_{2,n} v_n = 0$$

:

$$b_{c,1} v_1 + b_{c,2} v_2 + \dots + b_{c,n} v_n = 0$$

We can arrange the coefficients in these equations in a *parity-check matrix*, as follows:

$$\begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ & & \vdots & & \\ b_{c,1} & b_{c,2} & \cdots & b_{c,n} \end{pmatrix}$$

If C has parity-check matrix H, we can check whether \mathbf{v} is in C by seeing whether $\mathbf{v}H^T = \mathbf{0}$.

Note: Almost all codes have more than one parity-check matrix.

Example: The [5, 2] Code

Here is one parity-check matrix for the [5,2] code used earlier:

$$\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right)$$

We see that 11001 is a codeword as follows:

But 10011 isn't a codeword, since

Examples: Repetition Codes and Single Parity-Check Codes

An [n, 1] repetition code has the following generator matrix (for n = 4):

Here is a parity-check matrix for this code:

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)$$

One generator matrix for an [n, n-1] single parity-check code is the following:

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)$$

Here is the parity-check matrix for this code:

$$(1 \ 1 \ 1 \ 1)$$

Dual Codes

If $\mathcal C$ is a linear [n,k] code, the set of all vectors orthogonal to every vector in $\mathcal C$ is a linear [n,n-k] code — the *dual* of $\mathcal C$ (written $\mathcal C^\perp$).

Why is \mathcal{C}^{\perp} a linear code? If \mathbf{v}_1 and \mathbf{v}_2 are in \mathcal{C}^{\perp} , then $\mathbf{v}_1 \cdot \mathbf{u} = 0$ and $\mathbf{v}_2 \cdot \mathbf{u} = 0$ for every \mathbf{u} in \mathcal{C} . Hence $(\mathbf{v}_1 + \mathbf{v}_2) \cdot \mathbf{u} = 0$ for every \mathbf{u} in \mathcal{C} , from which it follows that $\mathbf{v}_1 + \mathbf{v}_2$ is in \mathcal{C}^{\perp} .

Suppose $\mathbf{u}_1,\ldots,\mathbf{u}_k$ is a set of basis vectors for $\mathcal C$. A vector $\mathbf v$ will be orthogonal to all $\mathbf u$ in $\mathcal C$ if and only if it is orthogonal to all these basis vectors. In other words:

$$\mathbf{v} \cdot \mathbf{u}_1 = 0 \ \& \ \mathbf{v} \cdot \mathbf{u}_2 = 0 \ \& \ \cdots \ \& \ \mathbf{v} \cdot \mathbf{u}_k = 0$$
if and only if

$$\mathbf{v} \cdot (a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + a_k \mathbf{u}_k) = 0$$
 for all a_1, \dots, a_k

It follows that C^{\perp} is an [n, n-k] code, since its codewords satisfy k independent equations.

Generator and Parity-Check Matrices For Dual Codes

Suppose $\mathcal C$ has a generator matrix G and a parity-check matrix H.

A vector \mathbf{v} will be in \mathcal{C}^{\perp} if and only if it is orthogonal to all the rows of G — in other words, if $\mathbf{v}G^T = \mathbf{0}$. So G is a parity-check matrix for \mathcal{C}^{\perp} .

If \mathbf{v} is a row of H, it must be in \mathcal{C}^{\perp} , since $\mathbf{v} \cdot \mathbf{u} = \mathbf{0}$ for every \mathbf{u} in \mathcal{C} . The rows of H are independent, so these n-k rows form a basis for \mathcal{C}^{\perp} . Hence H is a generator matrix for \mathcal{C}^{\perp} .

We can get the dual of a code by swapping its generator and parity-check matrices. The repetition and single-parity check codes are each duals of the other.

In general, the dual of the dual of $\mathcal C$ is $\mathcal C$ itself. Some codes are their own duals.

Manipulating the Parity-Check Matrix

There are usually many parity-check matrices for a given code. We can get one such matrix from another using the following "elementary row operations":

- Swapping two rows.
- Multipling a row by a non-zero constant (not useful for F₂).
- Adding a row to a different row.

These operations don't alter the solutions to the equations the parity-check matrix represents.

Ex: This parity-check matrix for the [5, 2] code:

$$\left(\begin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

can be transformed into this alternative:

$$\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right)$$

Manipulating the Generator Matrix

We can apply the same elementary row operations to a generator matrix for a code, in order to produce another generator matrix, since these operations just convert one set of basis vectors to another.

Example: Here is a generator matrix for the [5,2] code we have been looking at:

$$\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right)$$

Here is another generator matrix, found by adding the first row to the second:

$$\left(\begin{array}{cccccc}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)$$

Note: These manipulations leave the set of codewords unchanged, but they don't leave the way we encode messages by computing $\mathbf{u} = \mathbf{a}G$ unchanged!

Equivalent Codes

Two codes are said to be *equivalent* if the codewords of one are just the codewords of the other with the order of symbols permuted.

Permuting the order of the columns of a generator matrix will produce a generator matrix for an equivalent code, and similarly for a parity-check matrix.

Example: Here is a generator matrix for the [5,2] code we have been looking at:

$$\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right)$$

We can get an equivalent code using the following generator matrix obtained by moving the last column to the middle:

$$\left(\begin{array}{ccccc} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{array}\right)$$

Generator and Parity-Check Matrices In Systematic Form

Using elementary row operations and column permutations, we can convert any generator matrix to a generator matrix for an equivalent code that is is *systematic form*, in which the left end of the matrix is the identity matrix.

Similarly, we can convert to the systematic form for a parity-check matrix, which has an identity matrix in the right end.

For the [5,2] code, only permutations are needed. The generator matrix can be permuted by swapping columns 1 and 3:

$$\left(\begin{array}{ccccc} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{array}\right) \; \Rightarrow \; \left(\begin{array}{ccccc} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{array}\right)$$

When we use a systematic generator matrix to encode a block \mathbf{a} as $\mathbf{u} = \mathbf{a}G$, the first k bits will be the same as those in \mathbf{a} . The remaining n-k bits can be seen as "check bits".

Relationship of Generator and Parity-Check Matrices

If G and H are generator and parity-check matrices for \mathcal{C} , then for every \mathbf{a} , we must have $(\mathbf{a}G)H^T=\mathbf{0}$ — since we should only generate valid codewords. It follows that

$$GH^T = \mathbf{0}$$

Furthermore, any H with n-k independent rows that satisfies this is a valid parity-check matrix for \mathcal{C} .

Suppose G is in systematic form, so

$$G = [I_k \mid P]$$

for some P. Then we can find a parity-check matrix for $\mathcal C$ in systematic form as follows:

$$H = [-P^T \mid I_{n-k}]$$

since $GH^T = -I_kP + PI_{n-k} = \mathbf{0}$. (Note that $-P^T = P^T$ in F_2 .)