Notes for CSC 310, Radford M. Neal, 2002

Finite Fields

From now on, we |look only at channels whose
input and output alphabets are the same, each
consisting of the elements of some finite field.

A finite field consists of a finite collection of
“numbers"” that behave like real and complex
numbers. Specifically,

e Addition and multiplication are defined,
and they are commutative and associative,
and multiplication is distributive over
addition.

e There are numbers called 0 and 1, such
that a4+ 0=a and a-1 = a for all a.

e Subtraction and division (except by 0) can
be done, and these operations are the
inverses of addition and multiplication.

The Finite Field F»

The smallest finite field, called F» or GF(2),
has just two elements, 0 and 1. Addition and
multiplication are defined as follows:

04+0=0 0-0=0

1+40=1 1-0=0
1+41=0 1-1=1

This can also be seen as arithmetic modulo 2
(called Z5).

Viewed as logical operations, addition is the
same as ‘exclusive-or’, and multiplication is
the same as ‘and’.

Note: In F5, —a = a, and hence a —b=a +b.

Other Finite Fields

There is a finite field with p elements for every
prime p. This field is the same as Z,, in which
arithmetic on O,...,p— 1 is done module p.

For example, Z3 = F3 works as follows:

04+0=0 0-0=0

0+1=1 0-1=0
0+2=2 0-2=0
14+40=1 1-0=0
14+41=2 1-1=1
14+2=0 1.-2=2
24+0=2 2-0=0
241=0 2-1=2
242=1 2.-2=1

There’s also a finite field for every integer
power of a prime, with p® elements. These
fields are not the same as Z,e, which is not a
field when e > 1. (See J&J, Section 6.1.)

Vector Spaces Over a Finite Field

Just as we can define vectors over real
numbers, we can define vectors over a finite
field. We get to add such vectors, and
multiply them by a scalar from the finite field.

We can think of these vectors as n-tuples of
field elements. For instance, with vectors of
length five over Fy:

(1,0,0,1,1) 4+ (0,1,0,0,1) = (1,1,0,1,0)
1'(13030a1a1) = (110a031u1)
0"(1a0707171) = (0,0,0,0,0)

Most properties of real vector spaces continue
to hold — eg, the existence of basis vectors.

We refer to the vector space of all n-tuples
from Fy as F'. We will use boldface letters
such as u and v to refer such vectors.
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Linear Codes

We can view Fg’ as the input and output
alphabet of the nth extension of a channel
with input and output alphabet Fj.

A code, C, for this extension of the channel is
a subset of F;L.

C is a linear code if the following conditions hold:

1) If u and v are codewords of C, then u+v
is also a codeword of C.

2) If u is a codeword of C and a is in Fy, then
al is also a codeword of C.

In other words, C must be a subspace of Fg‘.
Note that the all-zero codeword must be in C,
since 0 = Ou for any u.

Note: For binary codes (over F5), condition
(2) will always hold if condition (1) does, since
lu=uand Ou=0=u+u.

Linear Codes From Basis Vectors

We can construct a linear code by choosing k&
linearly-independent basis vectors from F(}T.

We'll call the basis vectors uq,...,u;. We
define the set of codewords to be all those
vectors that can be written in the form

aiui + apus + - - + agpUy

where ay,...,an are elements of Fy.

The codewords obtained with different
ai,...,a; are all different. (Otherwise
uy,...,u; wouldn't be linearly-independent.)

There are therefore q;, codewords.

We can encode a block consisting of &
symbols, ai,...,ax, from Fy; as a codeword of
length n using the formula above.

This is referred to as an [n, k] code.

Linear Codes From Linear Equations

Another way to define a linear code for F;"
is to provide a set of simultaneous equations
that must be satisfied for v to be a codeword.

These equations have the form b-v =0, ie

bivi +bovo+ -+ bpvn = 0

The set of solutions is a linear code because

1) br-u=0and b-v=0 implies b-(u+v) =0.

2) b-v =20 implies b- (av) = 0.

If we have n — k such equations, and they are
independent, the code will have q’C codewords.

A [3,1] Code Over F3

As a simple example, consider the code for F_;f’
defined by the following equations that must
be satisfied by a codeword v:
'U]_+’U2 = 0
vp+2v3 = 0
There should be three codewords in this code.

One of them is (1,2,2), since in F3 (which is
Z3),1+2=0and2+2.2=2+4+1=0.

We can take this codeword as a basis vector,
and find the other two codewords as the
multiples of it:

0(1,2,2) =(0,0,0), 2(1,2,2) =(2,1,1)
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The Repetition Codes Over F5

A repetition code over F} has only two
codewords — one has all 0s, the other all 1s.

This is a linear [n, 1] code, with (1,...,1) as
the basis vector.

The code is also defined by the following n — 1
equations satisfied by a codeword v:

vi+v2=0, va+v3=0, -, vp_1+va=0

The Single Parity-Check Codes

An [n,n — 1] code over F, can be defined by
the following single equation satisfied by a
codeword v:

vi+vo+--4+vy = 0

In other words, the parity of all the bits in a
codeword must be even.

This code can also be defined using n—1
basis vectors. One choice of basis vectors
when n = 5 is as follows:

(1,0,0,0,1)
(0,1,0,0,1)
(0,0,1,0,1)
(0,0,0,1,1)

A [5,2] Binary Code
Recall the following code from lecture 9b:

{ 00000, 00111, 11001, 11110}

Is this a linear code? We need to check that
all sums of codewords are also codewords:

00111411001 =11110
00111+ 11110= 11001
11001411110 = 00111

We can generate this code using 00111 and
11001 as basis vectors. We then get the four
codewords as follows:

0:0011140-11001 = 00000
0-0011141-11001 = 11001
1.0011140-11001 = 00111
1-0011141-11001 =11110

The [7,4] Binary Hamming code

The [7,4] Hamming code is defined over F, by
the following equations that are satisfied by a
codeword u:

ug +us+ug+uy = 0
UQ+U3+U6+U7 0
u; +uz+us+uy = 0

Since these equations are independent, there
should be 16 codewords.

We can also define the code in terms of the
following four basis vectors:

1001100, 0101010, 1110000, 1101001

We will see later that this code is capable of
correcting any single error.
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